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Kinematics of a nonlinear Reissner-Mindlin shell model
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Outline

Brief review of the kinematics of a nonlinear Reissner-Mindlin shell model

Challenges for a consistent formulation

Overcoming these challenges with optimization on manifolds
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Kinematics of a nonlinear Reissner-Mindlin shell model

Kinematics

Mappings:
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Kinematics of a nonlinear Reissner-Mindlin shell model

Kinematic assumptions

• Geometry approximation:

• First order transverse shear effects are taken into account:

• The director field                is independent of the midsurface field                

(in contrast to Kirchhoff-Love)     

• Thickness change is not contained in kinematic description:

• The director is a unit vector, i.e. 

• Discretization of the midsurface field                     trivial since it maps onto a vector space

• Discretization and parametrization of the director field                     difficult due to the nonlinear space 

Discretization
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Challenges

Interpolation on the unit sphere

(Algebraic) optimization on manifolds

Update of nodal values



Interpolation:
Review of 
historic approaches
(for non-linear Reissner-Mindlin shell formulations)
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Interpolation: Review of existing approaches

Angles

• The unit sphere can be parameterized with an angle pair

WIKIPEDIA (2008) CC BY-SA 3.0 

• Singularities, violates objectivity, unit length constraint violated  

• The resulting interpolation is, e.g. RAMM (1976)

RAMM (1976), ARGYRIS(1982), BAŞAR ET AL(1992), 

WRIGGERS & GRUTTMANN (1993)
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Interpolation: Review of existing approaches

Direct interpolation of the current nodal directors in the embedding space

• Standard interpolation formula  for finite elements in vector spaces

HUGHES & LIU (1981), BATHE & BOLOURCHI (1980), 

BETSCH & STEINMANN (2002), BENSON ET AL (2010)

• Interpolated value does not lie on the unit sphere

• Simple straightforward interpolation

• Objective
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Interpolation: Review of existing approaches

Generalized Spherical Linear interpolation (SLERP)

• SLERP: Interpolation between two unit vectors

• Generalization for four vectors in 2D

• Complicated interpolation

AREIAS (2013)

Directors have unit length

• Objective



University of Stuttgart, Institute for Structural Mechanics 11

• Objective

• Singularity-free

• Useable for arbitrary polynomial order

• Invariant to node numbering

• Unit length in the domain 

Interpolation: Desired Properties



Suitable 
interpolation schemes 
for the director field
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• Euclidean distance can be generalized for the manifold

Suitable interpolation schemes for the director field

Geodesic Finite Elements

• GFE define a class of finite elements to interpolate on manifold

SANDER (2012)

• Consider the following interpolation scheme

• objective since distances are a priori rotational invariant

• Directors have unit length

• Implicit interpolation by minimization problem → Nonlinear minimization problem at each integration point

• Since:

Identical to 

standard interpolation!
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Suitable interpolation schemes for the director field

Projection-Based Finite Elements

• Projection-based interpolation is a special kind of geodesic finite elements

• In contrast to the GFE definition

GROHS ET AL (2019)

• PB finite elements use the distance of the embedding space

• objective since distances are a priori rotational invariant

• Directors have unit length

• Implicit interpolation by minimization problem
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Suitable interpolation schemes for the director field

What does all that mean for the unit sphere?

Example with two directors:

• Geodesic Finite Elements (GFE):

• NFE/Standard interpolation:

SANDER (2012)

• Projection-Based (PBFE): GROHS ET AL (2019)
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Suitable interpolation schemes for the director field

What does all that mean for the unit sphere?

Example with two directors:



University of Stuttgart, Institute for Structural Mechanics 17

Comparison of 

interpolation schemes 
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Interpolation: Numerical experiments

Roll-up of clamped beam

• 16 Iterations of Newton’s method to reach equilibrium
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Interpolation: Numerical experiments

Roll-up of clamped beam

• 16 Iterations of Newton’s method to reach equilibrium
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Interpolation: Numerical experiments

Roll-up of clamped beam

• Reference plane → Reference interpolation identical

• Q1 shell elements,     -continuity between elements

• Moderate initial slenderness                   → Moderate locking
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• Reference plane → Reference interpolation identical

• Quadratic B-spline shell elements,     -continuity between elements

• Moderate initial slenderness → Moderate locking

Interpolation: Numerical experiments

Roll-up of clamped beam

Convergence order degenerates!
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Interpolation: Numerical experiments

Roll-up of clamped beam

1 load step

• Reference plane → Reference Interpolation identical

• Quartic B-spline shell elements,     -continuity between elements

• Moderate initial slenderness → Moderate locking

Convergence order degenerates!
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Challenges

Interpolation on the unit sphere

(Algebraic) optimization on manifolds

Update of nodal values



Algebraic
optimization
on manifolds
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Algebraic optimization on manifolds

Literature

ABSIL PA, MAHONY R, SEPULCHRE R (2008) OPTIMIZATION

ALGORITHMS ON MATRIX MANIFOLDS. PRINCETON UNIVERSITY PRESS, 

DOI:10.1515/9781400830244

BOUMAL N (2020) AN INTRODUCTION TO OPTIMIZATION ON SMOOTH MANIFOLDS. AVAILABLE ONLINE, LINK

Constrained
optimization on an 

unconstrained
space

Penalty

Lagrange 
multiplier 
method

Unconstrained
optimization on a 
constrained space

Direct 
optimization on 

the manifold 
(by exploiting 

the embedding)

https://doi.org/10.1515/9781400830244
http://www.nicolasboumal.net/book
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Algebraic optimization on manifolds

(Algebraic) Problem statement
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Riemannian 

gradient
(exploiting embedding information)
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Algebraic optimization on manifolds

Toy problem, gradient and Riemannian gradient
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Algebraic optimization on manifolds

Riemannian Gradient: submanifolds

• No charts

• No artificial singularities

• Simple linearization

“For Riemannian submanifolds, the Riemannian 

gradient is the orthogonal projection of the “classical” 

gradient to the tangent spaces.”
BOUMAL N (2020) AN INTRODUCTION TO OPTIMIZATION ON SMOOTH MANIFOLDS.
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Challenges

Interpolation on the unit sphere

(Algebraic) optimization on manifolds

Update of nodal values



Update of 
nodal values
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Algebraic optimization on manifolds

Update of nodal values

Geodesics generalize the concept of straight lines

The exponential map creates the unique geodesic curve starting at      in direction         with constant speed  

Along these geodesics one could perform e.g. line search
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Algebraic optimization on manifolds

Update of nodal values

ABSIL PA , "OPTIMIZATION ON MANIFOLDS: METHODS AND APPLICATIONS", LEUVEN, 18 SEP 2009.

Luenberger (1973), Introduction to linear and nonlinear programming. 

Luenberger mentions the idea of performing line search along geodesics, “which 

we would use if it were computationally feasible (which it definitely is not)”. 

Generalize the concept of the exponential map → Retractions
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Algebraic optimization on manifolds

Update of nodal values

Retractions for the unit sphere
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Algebraic optimization on manifolds

Update of nodal values

Retractions for the unit sphere
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Algebraic optimization on manifolds

Toy problem: Newton’s method, iteration count vs. gradient norm

#iteration
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Simulations
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Simulation of magnetic vorticies

Simulation elastic deformation of shells

AM, BISCHOFF (2022): A CONSISTENT FINITE ELEMENT FORMULATION OF THE

GEOMETRICALLY NON-LINEAR REISSNER-MINDLIN SHELL MODEL, DOI

http://dx.doi.org/10.1007/s11831-021-09702-7
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Simulation of magnetic vorticies

Simulation elastic deformation of shells

Riemannian Trust-Region method

Minimizers for cylinder buckling
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Simulation of Reissner-Mindlin shells

Simulation elastic deformation of shells
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Simulation of Reissner-Mindlin shells

Simulation elastic deformation of shells

50 load steps
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Simulation of Reissner-Mindlin shells

Simulation elastic deformation of shells

Several load steps
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Other physical problems

Simulation of micromagnetics

Maxwell’s equation in vacuum and matter
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Other physical problems

Simulation of micromagnetics

GEEK3, WIKIPEADIA (2022), CC BY-SA 4.0, LINK

https://commons.wikimedia.org/wiki/File:VFPt_magnets_BHM.svg
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Other physical problems

Simulation of micromagnetics

Minimizers for cylinder buckling
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Application of optimization on manifolds to nonlinear shell theory

Summary

• Historical approaches can be outperformed by interpreting the problem as optimization on manifolds

• Interpolation must stay on the manifolds

• Lots of customization points exist, e.g., retractions

• Many other manifolds can be found in literature

• Methods can be used for other physical simulations (micromagnetics)

Examples:

The important Sobolev space                    does not even always possess the structure of a Banach manifold

Geodesics for interpolation are not always unique

Not mentioned:



University of Stuttgart, Institute for Structural Mechanics 47

References
Algebraic consideration of optimization of manifolds:

Rosen JB (1961) The gradient projection method for nonlinear programming. Part II. nonlinear constraints. SIAM 9(4):514–532, doi:10.1137/0109044

Luenberger, David G. (1973) Introduction to linear and nonlinear programming. Vol. 28. Reading, MA: Addison-wesley,.

Adler RL, Dedieu JP, Margulies JY, Martens M, Shub M (2002) Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J Numer Anal 22(3):359–390, 

doi:10.1093/imanum/22.3.359

Absil PA, Mahony R, Sepulchre R (2008) Optimization Algorithms on Matrix Manifolds. Princeton University Press, doi:10.1515/9781400830244

Absil PA, Malick J (2012) Projection-like retractions on matrix manifolds. SIAM J Optim 22(1):135–158, doi:10.1137/100802529

Absil PA, Mahony R, Trumpf J (2013) An extrinsic look at the riemannian hessian. In: Nielsen F, Barbaresco F (eds) Geometric Science of Information, pp 361–368, doi:10.1007/978-3-642-40020-

9_39

Huang W (2017) ). Introduction to riemannian bfgs methods. Available online, URL Link to online resource

Boumal N (2020) An introduction to optimization on smooth manifolds. Available online, URL Link to online resource

Finite elements for manifolds:

Grohs P (2011) Finite elements of arbitrary order and quasiinterpolation for data in Riemannian manifolds. Tech. Rep. 2011-56, Seminar for Applied Mathematics, ETH Zürich, URL 

https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2011/2011-56.pdf

Sander O (2012) Geodesic finite elements on simplicial grids. Int J Numer Methods Eng 92(12):999–1025, doi:10.1002/nme.4366

Grohs P, Hardering H, Sander O (2015) Optimal A Priori Discretization Error Bounds for Geodesic Finite Elements. Found Comut Math 15(6):1357–1411, doi:10.1007/s10208-014-9230-z

Grohs P, Hardering H, Sander O, Sprecher M (2019) Projection-based fnite elements for nonlinear function spaces. SIAM J Numer Anal, doi: 10.1137/18M1176798

Hardering H (2018) L2-discretization error bounds for maps into Riemannian manifolds. Numer Math (Heidelb) 139(2):381–410, doi:10.1007/s00211-017-0941-3

Physical simulations (Small sample):

Sander O, Neff P, Bırsan M (2016) Numerical treatment of a geometrically nonlinear planar Cosserat shell model. Comput Mech 57(5):817–841, doi:10.1007/s00466-016-1263-5

Bischoff M, (1999) Theorie und Numerik einer dreidimensionalen Schalenformulierung, doi: 10.18419/opus-126

AM, Bischoff M.(2022) A Consistent Finite Element Formulation of the Geometrically Non-linear Reissner-Mindlin Shell Model. DOI :10.1007/s11831-021-09702-7. 

https://doi.org/10.1137/0109044
https://doi.org/10.1093/imanum/22.3.359
https://doi.org/10.1515/9781400830244
https://doi.org/10.1137/100802529
https://doi.org/10.1007/978-3-642-40020-9_39
https://www.math.fsu.edu/~whuang2/pdf/SIAM_OP17_slides.pdf
http://www.nicolasboumal.net/book
https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2011/2011-56.pdf
https://doi.org/10.1002/nme.4366
https://doi.org/10.1007/s10208-014-9230-z
https://doi.org/10.1137/18M1176798
https://doi.org/10.1007/s00211-017-0941-3
https://doi.org/10.1007/s00466-016-1263-5
http://dx.doi.org/10.18419/opus-126
https://doi.org/10.1007/s11831-021-09702-7


University of Stuttgart, Institute for Structural Mechanics 48

Email

University of Stuttgart

Institute for Structural Mechanics

Pfaffenwaldring 7, 70569 Stuttgart, Germany

Thank you!

Alex Müller

mueller@ibb.uni-stuttgart.de


