

Application of

optimization on manifolds

to nonlinear shell theory

Alexander Müller, Manfred Bischoff

Workshop on Nonlinear Bending, University of Freiburg

24.05.2022

Kinematics of a nonlinear Reissner-Mindlin shell model

Energy contributions

BISCHOFF (1999)

University of Stuttgart, Institute for Structural Mechanics

Outline

Brief review of the kinematics of a nonlinear Reissner-Mindlin shell model

Challenges for a consistent formulation

Overcoming these challenges with optimization on manifolds

Kinematics of a nonlinear Reissner-Mindlin shell model

Kinematics

$$\begin{aligned} \mathbf{X} &= \mathbf{\Phi}_0(\xi^1, \xi^2, \xi^3) = \boldsymbol{\varphi}_0(\xi^1, \xi^2) + \xi^3 \mathbf{t}_0(\xi^1, \xi^2) \\ \mathbf{x} &= \mathbf{\Phi}_t(\xi^1, \xi^2, \xi^3) = \boldsymbol{\varphi}(\xi^1, \xi^2) + \xi^3 \mathbf{t}(\xi^1, \xi^2) \end{aligned}$$

Mappings:

$$oldsymbol{\chi}_t = oldsymbol{\Phi}_t \circ oldsymbol{\Phi}_0^{-1}, \quad oldsymbol{\chi}_t : egin{cases} \mathcal{B}_0 o \mathcal{B}_t \subset \mathbb{R}^3 \ oldsymbol{\xi} \mapsto \mathbf{x} = oldsymbol{\chi}_t(\mathbf{X}) \end{cases}$$

University of Stuttgart, Institute for Structural Mechanics

Kinematics of a nonlinear Reissner-Mindlin shell model

Kinematic assumptions

Geometry approximation:

 $\mathbf{x} = \mathbf{\Phi}_t(\xi^1, \xi^2, \xi^3) = \boldsymbol{\varphi}(\xi^1, \xi^2) + \xi^3 \mathbf{t}(\xi^1, \xi^2)$

- First order transverse shear effects are taken into account:
 - The director field $t(\xi^1,\xi^2)$ is independent of the midsurface field $\varphi(\xi^1,\xi^2)$ (in contrast to Kirchhoff-Love)
- Thickness change is not contained in kinematic description:
 - The director is a unit vector, i.e. $\mathbf{t}: \mathcal{A} \to \mathcal{S}^2 \subset \mathbb{R}^3$ $\mathcal{S}^2 = \{ \mathbf{x} \in \mathbb{R}^3 \mid | \mathbf{x} \cdot \mathbf{x} = 1 \}$

Discretization

•

- Discretization of the midsurface field $\varphi: A \to \mathbb{R}^3$ trivial since it maps onto a vector space \mathbb{R}^3
- Discretization and parametrization of the director field $t: A \to S^2$ difficult due to the nonlinear space S^2

Challenges

Interpolation on the unit sphere

(Algebraic) optimization on manifolds

Update of nodal values

Interpolation: Review of historic approaches

(for non-linear Reissner-Mindlin shell formulations)

Interpolation: Review of existing approaches

Baustatik und Baudynamik

Angles

- The unit sphere can be parameterized with an angle pair $(\alpha,\beta) \rightarrow \beta$
 - The resulting interpolation is, e.g. RAMM (1976)

$$\mathbf{t} = \sum_{A=1}^{n} N^{A}(\xi) \mathbf{R}_{A}(\alpha^{A}, \beta^{A}) \mathbf{t}_{0}^{A}, \quad \mathbf{t}_{A} = \mathbf{R}_{A} \mathbf{t}_{0}^{A}$$

• Singularities, violates objectivity, unit length constraint violated

```
\mathbf{t} = \mathbf{R}(\alpha,\beta)\mathbf{t}_0, \ \mathbf{R}(\alpha,\beta) \in \mathcal{SO}(3)
```

RAMM (1976), ARGYRIS(1982), BAŞAR ET AL(1992), WRIGGERS & GRUTTMANN (1993)

WIKIPEDIA (2008) CC BY-SA 3.0

Interpolation: Review of existing approaches

Direct interpolation of the current nodal directors in the embedding space

- Standard interpolation formula for finite elements in vector spaces
 - Simple straightforward interpolation

HUGHES & LIU (1981), BATHE & BOLOURCHI (1980), BETSCH & STEINMANN (2002), BENSON ET AL (2010)

- $\mathbf{t} = \sum_{A=1}^{n} N^{A}(\xi) \mathbf{t}_{A}$
- Interpolated value does not lie on the unit sphere
- Objective

Interpolation: Review of existing approaches

Generalized Spherical Linear interpolation (SLERP)

• SLERP: Interpolation between two unit vectors $\mathbf{t}_1, \mathbf{t}_2$

$$\mathbf{t} = \text{SLERP}(\mathbf{t}_1, \mathbf{t}_2, \xi^1) = \frac{\sin((1 - \xi^1) \arccos(\mathbf{t}_1 \cdot \mathbf{t}_2))}{\sin(\arccos(\mathbf{t}_1 \cdot \mathbf{t}_2))} \mathbf{t}_1 + \frac{\sin(\xi^1 \arccos(\mathbf{t}_1 \cdot \mathbf{t}_2))}{\sin(\arccos(\mathbf{t}_1 \cdot \mathbf{t}_2))} \mathbf{t}_2,$$

• Generalization for four vectors in 2D

 $\mathbf{t} = \text{SLERP}[\text{SLERP}(\mathbf{t}_1, \mathbf{t}_2, \xi^1), \text{SLERP}(\mathbf{t}_3, \mathbf{t}_4, \xi^1), \xi^2]$ Areias (2013)

- Complicated interpolation
- Objective

Directors have unit length

Interpolation: Desired Properties

- Objective
- Singularity-free
- Useable for arbitrary polynomial order
- Invariant to node numbering
- Unit length in the domain

Geodesic Finite Elements SANDER (2012)

- GFE define a class of finite elements to interpolate on manifold
 - Consider the following interpolation scheme

$$\mathbf{x}^{*}(\boldsymbol{\xi}, \mathbf{x}_{i}) = \arg\min_{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}, \boldsymbol{\xi}; \mathbf{x}_{i}) \qquad f(\mathbf{x}, \boldsymbol{\xi}; \mathbf{x}_{i}) = \sum_{i=1}^{n} N^{i}(\boldsymbol{\xi}) ||\mathbf{x}_{i} - \mathbf{x}||^{2}$$

$$Identical to standard interpolation!$$

$$\cdot \quad \text{Since:} \quad \frac{\partial f(\mathbf{x}, \boldsymbol{\xi}; \mathbf{x}_{i})}{\partial \mathbf{x}} \stackrel{!}{=} \mathbf{0} = \sum_{i=1}^{n} N^{i}(\boldsymbol{\xi})(\mathbf{x}_{i} - \mathbf{x}) = \sum_{i=1}^{n} N^{i}(\boldsymbol{\xi})\mathbf{x}_{i} - \sum_{i=1}^{n} N^{i} \mathbf{x} \qquad \mathbf{x}^{*} = \sum_{i=1}^{n} N^{i}(\boldsymbol{\xi})\mathbf{x}_{i}$$

- Euclidean distance can be generalized for the manifold ${\cal M}$

$$\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathcal{M}} \sum_{i=1}^n N^i(\boldsymbol{\xi}) \operatorname{dist}(\mathbf{x}_i, \mathbf{x})_{\mathcal{M}}^2 = \mathbf{x}_{GP}$$

- objective since distances are a priori rotational invariant
- Directors have unit length
- Implicit interpolation by minimization problem \rightarrow Nonlinear minimization problem at each integration point

Projection-Based Finite Elements GROHS ET AL (2019)

- Projection-based interpolation is a special kind of geodesic finite elements
 - In contrast to the GFE definition

$$\mathbf{x}^* = \arg\min_{\mathbf{x}\in\mathcal{M}}\sum_{i=1}^n N^i(\boldsymbol{\xi})\operatorname{dist}(\mathbf{x}_i,\mathbf{x})_{\mathcal{M}}^2 = \mathbf{x}_{GP}$$

• PB finite elements use the distance of the embedding space

$$\mathbf{x}^* = \arg\min_{\mathbf{x}\in\mathcal{M}}\sum_{i=1}^n N^i(\boldsymbol{\xi})\operatorname{dist}(\mathbf{x}_i, \mathbf{x})_{\mathbb{R}^n}^2 = \mathbf{x}_{GP}$$

- objective since distances are a priori rotational invariant
- Directors have unit length
- Implicit interpolation by minimization problem

 \mathbf{t}_2

What does all that mean for the unit sphere?

Example with two directors:

• **NFE**/Standard interpolation:

$$N^{1}(\xi) = 1 - \xi, \quad N^{2}(\xi) = \xi$$

 \mathbf{t}_1

$$\mathbf{I}_{\mathrm{GP}} = \sum_{i=1}^{n} N^{i}(\xi) \mathbf{t}_{i} = \arg \min_{\mathbf{t} \in \mathbb{R}^{n}} \sum_{i=1}^{n} N^{i}(\xi) ||\mathbf{t}_{i} - \mathbf{t}||^{2}$$

• Projection-Based (PBFE): GROHS ET AL (2019)
•
$$\mathbf{t}_{\text{GP}} = \arg\min_{\mathbf{t}\in\mathcal{S}^2}\sum_{i=1}^n N^i(\xi)\operatorname{dist}(\mathbf{t}_i,\mathbf{t})_{\mathbb{R}^n}^2$$

 $= \arg\min_{\mathbf{t}\in\mathcal{S}^2}\sum_{i=1}^n N^i(\xi)||\mathbf{t}_i - \mathbf{t}||^2 = \frac{\sum_{i=1}^n N^i(\xi)\mathbf{t}_i}{||\sum_{i=1}^n N^i(\xi)\mathbf{t}_i||}$

• Geodesic Finite Elements (GFE): Sander (2012) • $\mathbf{t}_{\text{GP}} = \arg\min_{\mathbf{t}\in\mathcal{S}^2}\sum_{i=1}^n N^i(\xi)\operatorname{dist}(\mathbf{t}_i,\mathbf{t})_{\mathcal{S}^2}^2$ $= \arg\min_{\mathbf{t}\in\mathcal{S}^2}\sum_{i=1}^n N^i(\xi)\operatorname{arccos}(\mathbf{t}_i\cdot\mathbf{t})^2$

University of Stuttgart, Institute for Structural Mechanics

What does all that mean for the unit sphere?

Example with two directors:

Comparison of interpolation schemes

Roll-up of clamped beam

• 16 Iterations of Newton's method to reach equilibrium

Roll-up of clamped beam

• 16 Iterations of Newton's method to reach equilibrium

Roll-up of clamped beam

- Reference plane → Reference interpolation identical
- Q1 shell elements, C^{0} -continuity between elements
- Moderate initial slenderness $L/h = 12 \rightarrow$ Moderate locking

Baustatik und Baudynamik

Roll-up of clamped beam $\perp h$ MReference plane \rightarrow Reference interpolation identical Quadratic p = 2 B-spline shell elements, C^1 -continuity between elements • LModerate initial slenderness $L/h = 12 \rightarrow$ Moderate locking ٠ deformed 10^{1} M^{mod} \mathbf{PBFF} Absolute tip rotation error 10^{0} undeformed \mathbf{NFF} GFE 10^{-1} 10^{-2} $E = 1000 \, \rm kN \, cm^{-2}$ $L = 12 \,\mathrm{cm}$ 10^{-3} $b = 1 \,\mathrm{cm}$ h varying 10^{-4} clamped $\nu = 0$ 3 10^{-5} 10^{-6} Convergence order degenerates! 10^{-7} 10^{-8} 10 100 1000 Number of elements

Interpolation: Numerical experiments

M

 $\perp h$

L

Roll-up of clamped beam

- Reference plane → Reference Interpolation identical
- Quartic p = 4 B-spline shell elements, C^3 -continuity between elements
- Moderate initial slenderness $L/h = 12 \rightarrow$ Moderate locking

Challenges

Interpolation on the unit sphere

(Algebraic) optimization on manifolds

Update of nodal values

Algebraic optimization on manifolds

Algebraic optimization on manifolds

Literature

ABSIL PA, MAHONY R, SEPULCHRE R (2008) OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS. PRINCETON UNIVERSITY PRESS, DOI:10.1515/9781400830244

BOUMAL N (2020) AN INTRODUCTION TO OPTIMIZATION ON SMOOTH MANIFOLDS. AVAILABLE ONLINE, LINK

Algebraic optimization on manifolds

(Algebraic) Problem statement

Riemannian gradient (exploiting embedding information)

Algebraic optimization on manifolds

Toy problem, gradient and Riemannian gradient

Algebraic optimization on manifolds

Riemannian Gradient: submanifolds

$$f(\mathbf{x}): \mathcal{M} \to \mathbb{R}$$
 $\overline{f}(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$

"For Riemannian submanifolds, the Riemannian gradient is the orthogonal projection of the "classical" gradient to the tangent spaces."

BOUMAL N (2020) AN INTRODUCTION TO OPTIMIZATION ON SMOOTH MANIFOLDS.

 $\operatorname{grad} f(\mathbf{x}) = P_{\mathbf{x}} \operatorname{grad} \overline{f}(\mathbf{x})$

- No charts
- No artificial singularities
- Simple linearization

Challenges

Interpolation on the unit sphere

(Algebraic) optimization on manifolds

Update of nodal values

Update of nodal values

Algebraic optimization on manifolds

Update of nodal values

 $\mathbf{x}_k + \Delta \mathbf{x}_k \not\in \mathcal{M}$

Geodesics generalize the concept of straight lines

The exponential map creates the *unique* geodesic curve starting at \mathbf{x}_k in direction $\Delta \mathbf{x}_k$ with constant speed

 $\gamma(t) = \exp_{\mathbf{x}_k}(t\Delta \mathbf{x}_k)$ $\mathbf{x}_{k+1} = \exp_{\mathbf{x}_k}(\Delta \mathbf{x}_k)$

Along these geodesics one could perform e.g. line search

University of Stuttgart, Institute for Structural Mechanics

Update of nodal values

ABSIL PA, "OPTIMIZATION ON MANIFOLDS: METHODS AND APPLICATIONS", LEUVEN, 18 SEP 2009.

Luenberger (1973), Introduction to linear and nonlinear programming. Luenberger mentions the idea of performing line search along geodesics, "*which we would use if it were computationally feasible (which it definitely is not)*".

Generalize the concept of the exponential map \rightarrow Retractions

$R_{\mathbf{x}}^{\exp}(\Delta \mathbf{x}) = \exp_{\mathbf{x}}(\Delta \mathbf{x}) = \cos(||\Delta \mathbf{x}||)\mathbf{x} + \frac{\sin(||\Delta \mathbf{x}||)}{||\Delta \mathbf{x}||}\Delta \mathbf{x}$

Update of nodal values

Retractions for the unit sphere

 $R_{\mathbf{x}}^{\mathrm{rrn}}(\Delta \mathbf{x}) = \frac{\mathbf{x} + \Delta \mathbf{x}}{||\mathbf{x} + \Delta \mathbf{x}||}$

Baustatik und Baudynamik

Algebraic optimization on manifolds

Update of nodal values

Retractions for the unit sphere

Algebraic optimization on manifolds

Toy problem: Newton's method, iteration count vs. gradient norm

Simulations

Simulation of magnetic vorticies

Simulation elastic deformation of shells

Simulation of magnetic vorticies

Simulation elastic deformation of shells

Riemannian Trust-Region method

Minimizers for cylinder buckling

Simulation of Reissner-Mindlin shells

Simulation elastic deformation of shells

Simulation of Reissner-Mindlin shells

Simulation elastic deformation of shells 50 load steps

University of Stuttgart, Institute for Structural Mechanics

Simulation of Reissner-Mindlin shells

Baustatik und Baudynamik

Simulation elastic deformation of shells

Several load steps

, ľ

Deformation (x1): displacement of NumPro, step 0.1.

Other physical problems

Simulation of micromagnetics

Maxwell's equation in vacuum and matter

 $\mathbf{B} = \mu_0 \mathbf{H}$ Ω $\operatorname{div} \mathbf{B} = 0$ $\nabla \times \mathbf{H} = 0$ \mathcal{B} $\mathbf{B} = \mu_0 (\mathbf{M} + \mathbf{H})$ $\operatorname{div} \mathbf{B} = 0$ $\nabla \times \mathbf{H} = 0$

Other physical problems

Simulation of micromagnetics

Μ

Other physical problems

Simulation of micromagnetics

Application of optimization on manifolds to nonlinear shell theory

Summary

- Historical approaches can be outperformed by interpreting the problem as optimization on manifolds
- Interpolation must stay on the manifolds
- Lots of customization points exist, e.g., retractions
- Many other manifolds can be found in literature
- Methods can be used for other physical simulations (micromagnetics)

Not mentioned:

Examples:

The important Sobolev space $W^{1,2}(\Omega, \mathcal{M})$ does not even always possess the structure of a Banach manifold Geodesics for interpolation are not always unique

References

Algebraic consideration of optimization of manifolds:

Rosen JB (1961) The gradient projection method for nonlinear programming. Part II. nonlinear constraints. SIAM 9(4):514–532, doi:10.1137/0109044

Luenberger, David G. (1973) Introduction to linear and nonlinear programming. Vol. 28. Reading, MA: Addison-wesley,.

Adler RL, Dedieu JP, Margulies JY, Martens M, Shub M (2002) Newton's method on Riemannian manifolds and a geometric model for the human spine. IMA J Numer Anal 22(3):359–390, doi:10.1093/imanum/22.3.359

Absil PA, Mahony R, Sepulchre R (2008) Optimization Algorithms on Matrix Manifolds. Princeton University Press, doi: 10.1515/9781400830244

Absil PA, Malick J (2012) Projection-like retractions on matrix manifolds. SIAM J Optim 22(1):135–158, doi:10.1137/100802529

Absil PA, Mahony R, Trumpf J (2013) An extrinsic look at the riemannian hessian. In: Nielsen F, Barbaresco F (eds) Geometric Science of Information, pp 361–368, doi: 10.1007/978-3-642-40020-9_39

Huang W (2017)). Introduction to riemannian bfgs methods. Available online, URL Link to online resource

Boumal N (2020) An introduction to optimization on smooth manifolds. Available online, URL Link to online resource

Finite elements for manifolds:

Grohs P (2011) Finite elements of arbitrary order and quasiinterpolation for data in Riemannian manifolds. Tech. Rep. 2011-56, Seminar for Applied Mathematics, ETH Zürich, URL https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2011/2011-56.pdf

Sander O (2012) Geodesic finite elements on simplicial grids. Int J Numer Methods Eng 92(12):999–1025, doi:10.1002/nme.4366

Grohs P, Hardering H, Sander O (2015) Optimal A Priori Discretization Error Bounds for Geodesic Finite Elements. Found Comut Math 15(6):1357–1411, doi: 10.1007/s10208-014-9230-z

Grohs P, Hardering H, Sander O, Sprecher M (2019) Projection-based fnite elements for nonlinear function spaces. SIAM J Numer Anal, doi: 10.1137/18M1176798

Hardering H (2018) L2-discretization error bounds for maps into Riemannian manifolds. Numer Math (Heidelb) 139(2):381–410, doi:10.1007/s00211-017-0941-3

Physical simulations (Small sample):

Sander O, Neff P, Birsan M (2016) Numerical treatment of a geometrically nonlinear planar Cosserat shell model. Comput Mech 57(5):817-841, doi: 10.1007/s00466-016-1263-5

Bischoff M, (1999) Theorie und Numerik einer dreidimensionalen Schalenformulierung, doi: 10.18419/opus-126

AM, Bischoff M.(2022) A Consistent Finite Element Formulation of the Geometrically Non-linear Reissner-Mindlin Shell Model. DOI: 10.1007/s11831-021-09702-7.

University of Stuttgart, Institute for Structural Mechanics

Thank you!

Alex Müller

Email mueller@ibb.uni-stuttgart.de

University of Stuttgart Institute for Structural Mechanics Pfaffenwaldring 7, 70569 Stuttgart, Germany

