

An objective and path-independent geometrically non-linear Reissner-Mindlin shell formulation

Alexander Müller, Manfred Bischoff

WCCM-APCOM

Yokohama

31.7.22 - 5.8.22

University of Stuttgart, Institute for Structural Mechanics

Kinematics of a nonlinear Reissner-Mindlin shell model

Kinematic assumptions

Geometry approximation:

 $\mathbf{x} = \mathbf{\Phi}_t(\xi^1,\!\xi^2,\!\xi^3) = \boldsymbol{\varphi}(\xi^1,\!\xi^2) + \xi^3 \mathbf{t}(\xi^1,\!\xi^2)$

- First order transverse shear effects are taken into account:
 - The director field $t(\xi^1,\xi^2)$ is independent of the midsurface field $\varphi(\xi^1,\xi^2)$ (in contrast to Kirchhoff-Love)
- Thickness change is not contained in kinematic description:
 - The director is a unit vector, i.e. $\mathbf{t}: \mathcal{A} \to \mathcal{S}^2 \subset \mathbb{R}^3$ $\mathcal{S}^2 = \{ \mathbf{x} \in \mathbb{R}^3 \mid | \mathbf{x} \cdot \mathbf{x} = 1 \}$

Discretization

•

- Discretization of the midsurface field $\varphi: A \to \mathbb{R}^3$ trivial since it maps onto a vector space \mathbb{R}^3
- Discretization and parametrization of the director field $t: A \to S^2$ difficult due to the nonlinear space S^2

Director fields

Example 1: Geometrically nonlinear Reissner-Mindlin shell

 $\mathbf{t}(\xi^1,\xi^2)$ $\mathbf{t}:\mathcal{A} o \mathcal{S}^2\subset \mathbb{R}^3$

Director fields

Example 2: Geometrically nonlinear beam

Director fields

Example 3: Magnetic Maxwell equations in matter

$$\mathbf{m}(\xi^1,\xi^2,\xi^3)$$
 $\mathbf{m}:\mathcal{A} o\mathcal{S}^2\subset\mathbb{R}^3$

Outline

Open questions/Outlook

University of Stuttgart, Institute for Structural Mechanics

Interpolation: Review of historic approaches

(for Reissner-Mindlin shell)

Baustatik und Baudynamik

Example 1: Angles

- The unit sphere can be parameterized with an angle pair $(\alpha,\beta) \rightarrow \beta$
 - The resulting interpolation is, e.g. RAMM (1976)

$$\mathbf{t} = \sum_{A=1}^{n} N^{A}(\xi) \mathbf{R}_{A}(\alpha^{A}, \beta^{A}) \mathbf{t}_{0}^{A}, \quad \mathbf{t}_{A} = \mathbf{R}_{A} \mathbf{t}_{0}^{A}$$

• Singularities, violates objectivity, unit length constraint violated

 $\mathbf{t} = \mathbf{R}(\alpha, \beta) \mathbf{t}_0, \ \mathbf{R}(\alpha, \beta) \in \mathcal{SO}(3)$

RAMM (1976), ARGYRIS(1982), BAŞAR ET AL(1992), WRIGGERS & GRUTTMANN (1993)

WIKIPEDIA (2008) CC BY-SA 3.0

Example 2: Direct interpolation of the nodal directors

- Standard interpolation formula for finite elements in vector spaces
 - Simple straightforward interpolation

HUGHES & LIU (1981), BATHE & BOLOURCHI (1980), BETSCH & STEINMANN (2002), BENSON ET AL (2010)

$$\mathbf{t} = \sum_{A=1}^{n} N^{A}(\xi) \mathbf{t}_{A}$$

- Interpolated value does not lie on the unit sphere
- Objective

Example 3: Generalized Spherical Linear interpolation (SLERP)

• SLERP: Interpolation between two unit vectors $\mathbf{t}_1, \mathbf{t}_2$

$$\mathbf{t} = \text{SLERP}(\mathbf{t}_1, \mathbf{t}_2, \xi^1) = \frac{\sin((1 - \xi^1) \arccos(\mathbf{t}_1 \cdot \mathbf{t}_2))}{\sin(\arccos(\mathbf{t}_1 \cdot \mathbf{t}_2))} \mathbf{t}_1 + \frac{\sin(\xi^1 \arccos(\mathbf{t}_1 \cdot \mathbf{t}_2))}{\sin(\arccos(\mathbf{t}_1 \cdot \mathbf{t}_2))} \mathbf{t}_2,$$

• Generalization for four vectors in 2D

 $\mathbf{t} = \mathrm{SLERP}[\mathrm{SLERP}(\mathbf{t}_1, \mathbf{t}_2, \xi^1), \mathrm{SLERP}(\mathbf{t}_3, \mathbf{t}_4, \xi^1), \xi^2]$ Areias (2013)

- Complicated interpolation
- Objective

Directors have unit length

Example 4: Interpolating increments

• Only incremental rotations are interpolated SIMO ET AL (1990), BÜCHTER & RAMM (1992), DORNISCH ET AL (2016)

$$\Delta \boldsymbol{\theta} = \sum_{i} N^{i}(\xi, \eta) \Delta \boldsymbol{\theta}_{i}$$

• Rotation matrices are updated at each IP SIMO ET AL (1990), DORNISCH ET AL (2016)

 $\mathbf{R}_{IP}^{k+1} = \exp(\Delta \hat{\boldsymbol{\theta}}) \mathbf{R}_{IP}^{k}$

٠

→ Non-objective and path-dependent for elastic problems as proven in CRISFIELD & JELENIĆ (1999)

Directors at GPs have unit length

Interpolation: Desired Properties

- Objective
- Singularity-free
- Interpolated value stays on the manifold
- Useable for arbitrary polynomial order
- Generalizable from 1D
- Invariant to node numbering
- No artificial path-dependence

Geodesic Finite Elements SANDER (2012)

GFE define a class of finite elements to interpolate on manifold

Consider the following interpolation scheme

$$\mathbf{x}^{*}(\boldsymbol{\xi}, \mathbf{x}_{i}) = \arg\min_{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}, \boldsymbol{\xi}; \mathbf{x}_{i}) \qquad f(\mathbf{x}, \boldsymbol{\xi}; \mathbf{x}_{i}) = \sum_{i=1}^{n} N^{i}(\boldsymbol{\xi}) ||\mathbf{x}_{i} - \mathbf{x}||^{2}$$

$$\text{Identical to standard interpolation!}$$

$$\text{Since:} \quad \frac{\partial f(\mathbf{x}, \boldsymbol{\xi}; \mathbf{x}_{i})}{\partial \mathbf{x}} \stackrel{!}{=} \mathbf{0} = \sum_{i=1}^{n} N^{i}(\boldsymbol{\xi})(\mathbf{x}_{i} - \mathbf{x}) = \sum_{i=1}^{n} N^{i}(\boldsymbol{\xi})\mathbf{x}_{i} - \sum_{i=1}^{n} N^{i} \mathbf{x}$$

$$\mathbf{x}^{*} = \sum_{i=1}^{n} N^{i}(\boldsymbol{\xi})\mathbf{x}_{i}$$

- Euclidean distance can be generalized for the manifold $\ensuremath{\mathcal{M}}$

$$\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathcal{M}} \sum_{i=1}^n N^i(\boldsymbol{\xi}) \operatorname{dist}(\mathbf{x}_i, \mathbf{x})_{\mathcal{M}}^2 = \mathbf{x}_{GP}$$

- objective since distances are a priori rotational invariant
- Directors have unit length
- Implicit interpolation by minimization problem \rightarrow Nonlinear minimization problem at each integration point

Projection-Based Finite Elements GROHS ET AL (2019)

Projection-based interpolation is a special kind of geodesic finite elements

• In contrast to the GFE definition

$$\mathbf{x}^* = \arg\min_{\mathbf{x}\in\mathcal{M}}\sum_{i=1}^n N^i(\boldsymbol{\xi})\operatorname{dist}(\mathbf{x}_i,\mathbf{x})_{\mathcal{M}}^2 = \mathbf{x}_{GP}$$

• PB finite elements use the distance of the embedding space

$$\mathbf{x}^* = \arg\min_{\mathbf{x}\in\mathcal{M}}\sum_{i=1}^n N^i(\boldsymbol{\xi})\operatorname{dist}(\mathbf{x}_i, \mathbf{x})_{\mathbb{R}^n}^2 = \mathbf{x}_{GP}$$

- objective since distances are a priori rotational invariant
- Directors have unit length
- Implicit interpolation by minimization problem

University of Stuttgart, Institute for Structural Mechanics

 \mathbf{t}_2

What does all that mean for the unit sphere?

Example with two directors:

• **NFE**/Standard interpolation:

$$N^{1}(\xi) = 1 - \xi, \quad N^{2}(\xi) = \xi$$

 \mathbf{t}_1

$$\blacksquare \mathbf{t}_{\mathrm{GP}} = \sum_{i=1}^{n} N^{i}(\xi) \mathbf{t}_{i}$$

• Projection-Based (PBFE): Grohs et al (2019) • $\mathbf{t}_{GP} = \arg\min_{\mathbf{t}\in\mathcal{S}^2}\sum_{i=1}^n N^i(\xi)\operatorname{dist}(\mathbf{t}_i,\mathbf{t})^2_{\mathbb{R}^n}$ = $\arg\min_{\mathbf{t}\in\mathcal{S}^2}\sum_{i=1}^n N^i(\xi)||\mathbf{t}_i - \mathbf{t}||^2 = \frac{\sum_{i=1}^n N^i(\xi)\mathbf{t}_i}{||\sum_{i=1}^n N^i(\xi)\mathbf{t}_i||}$

• Geodesic Finite Elements (GFE): Sander (2012) • $\mathbf{t}_{\mathrm{GP}} = \arg\min_{\mathbf{t}\in\mathcal{S}^2}\sum_{i=1}^n N^i(\xi)\operatorname{dist}(\mathbf{t}_i,\mathbf{t})_{\mathcal{S}^2}^2$ $= \arg\min_{\mathbf{t}\in\mathcal{S}^2}\sum_{i=1}^n N^i(\xi)\operatorname{arccos}(\mathbf{t}_i\cdot\mathbf{t})^2$

University of Stuttgart, Institute for Structural Mechanics

What does all that mean for the unit sphere?

Example with two directors:

Comparison of interpolation schemes

Baustatik und Baudynamik

Roll-up of clamped beam

AM, BISCHOFF (2022): A CONSISTENT FINITE ELEMENT FORMULATION OF THE GEOMETRICALLY NON-LINEAR REISSNER-MINDLIN SHELL MODEL, DOI

Roll-up of clamped beam

- Reference plane → Reference interpolation identical
- Q1 shell elements, C^{0} -continuity between elements

M

 $\perp h$

L

Roll-up of clamped beam

- Reference plane → Reference interpolation identical
- Quadratic p = 2 B-spline shell elements, C^1 -continuity between elements

M

 $\perp h$

L

Roll-up of clamped beam

- Reference plane → Reference Interpolation identical
- Quartic p = 4 B-spline shell elements, C^3 -continuity between elements

M

 $\perp h$

L

Interpolation: Desired Properties

Geometric (PBFE and GFE) satisfy all the desired properties

- Geometric (PBFE and GFE) satisfy all the desired properties
 - Objective
 - Singularity-free
 - Interpolated value stays on the manifold
 - Useable for arbitrary polynomial order
 - Generalizable from 1D
 - Invariant to node numbering
 - No artificial path-dependence
- Drawbacks
 - Maybe expensive to evaluate

Interlude: Function spaces

Interlude: Test function spaces

- First order geometric finite element functions satisfy $V_h^M(\Omega) \subset H^1(\Omega, M)$
- Discrete test functions live in the tangent bundle $\delta \mathbf{u} \in T_{\mathbf{u}} V_h^M(\Omega)$
- Manifold

u
$$V_h^M(\Omega) \subset H^1(\Omega, M)$$

 $\delta \mathbf{u}$ $T_{\mathbf{u}}V_h^M(\Omega)$

• Vector space

$$\mathbf{u} = \sum_{i=1}^{n} N^{i}(\xi) \mathbf{u}_{i} \qquad V_{h}^{\mathbb{R}^{n}}(\Omega) \subset H^{1}(\Omega, \mathbb{R}^{n})$$

$$\delta \mathbf{u} = \sum_{i=1}^{N^{i}} N^{i}(\xi) \mathbf{u}_{i} \quad T_{\mathbf{u}} V_{h}^{\mathbb{R}^{n}}(\Omega) = V_{h}^{\mathbb{R}^{n}}(\Omega) \subset H^{1}(\Omega, \mathbb{R}^{n})$$

University of Stuttgart, Institute for Structural Mechanics

(B) Second-order, vertex degree of freedom

(c) Second-order, edge degree of freedom SANDER O (2016)

Outline

Open questions/Outlook

University of Stuttgart, Institute for Structural Mechanics

Literature

ABSIL PA, MAHONY R, SEPULCHRE R (2008) OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS. PRINCETON UNIVERSITY PRESS, DOI:10.1515/9781400830244

BOUMAL N (2020) AN INTRODUCTION TO OPTIMIZATION ON SMOOTH MANIFOLDS. AVAILABLE ONLINE, LINK

Baustatik und Baudynamik

 $\mathbb R$

Riemannian submanifolds

 $f(\mathbf{x}): \mathcal{M} \to \mathbb{R} \qquad \mathcal{M} \subset \mathbb{R}^n$

Metric of the embedding \bar{g}_x induces metric g_x on \mathcal{M}

 $g_{\mathbf{x}}(\boldsymbol{\xi}, \boldsymbol{\zeta}) = \bar{g}_{\mathbf{x}}(\boldsymbol{\xi}, \boldsymbol{\zeta}), \quad \boldsymbol{\xi}, \boldsymbol{\zeta} \in T_{\mathbf{x}} \mathcal{M}$

Spherical coordinates [edit]

We may define a coordinate system in an *n*-dimensional Euclidean space which is ar of a radial coordinate *r*, and *n* – 1 angular coordinates $\varphi_1, \varphi_2, \ldots, \varphi_{n-1}$, where the ang [0,360) degrees). If x_i are the Cartesian coordinates, then we may compute x_1, \ldots, x_n

 $\begin{array}{l} x_1 = r\cos(\varphi_1) \\ x_2 = r\sin(\varphi_1)\cos(\varphi_2) \\ x_3 = r\sin(\varphi_1)\sin(\varphi_2)\cos(\varphi_3) \\ \vdots \\ x_{n-1} = r\sin(\varphi_1)\cdots\sin(\varphi_{n-2})\cos(\varphi_{n-1}) \\ x_n = r\sin(\varphi_1)\cdots\sin(\varphi_{n-2})\sin(\varphi_{n-1}). \end{array}$

WIKIPEDIA: N-SPHERE

Riemannian gradient

Riemannian Gradient: submanifolds

$$f(\mathbf{x}): \mathcal{M} \to \mathbb{R}$$
 $\overline{f}(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$

"For Riemannian submanifolds, the Riemannian gradient is the orthogonal projection of the "classical" gradient to the tangent spaces."

BOUMAL N (2020) AN INTRODUCTION TO OPTIMIZATION ON SMOOTH MANIFOLDS.

 $\operatorname{grad} f(\mathbf{x}) = P_{\mathbf{x}} \operatorname{grad} \overline{f}(\mathbf{x})$

- No parametrization
- No artificial singularities
- Simple linearization

Toy problem, gradient and Riemannian gradient

Euclidean gradient Riemannian gradient

Riemannian Hessian

Riemannian Hessian: submanifolds

 $f(\mathbf{x}): \mathcal{M} \to \mathbb{R}$ $\overline{f}(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$

Levi-Civita connection:

 $abla_{\eta_{\mathbf{x}}} \boldsymbol{\xi} = P_{\mathbf{x}} \overline{
abla}_{\eta_{\mathbf{x}}} \boldsymbol{\xi} = P_{\mathbf{x}} \mathrm{D}_{\eta_{\mathbf{x}}} \boldsymbol{\xi} \qquad \boldsymbol{\xi}, \boldsymbol{\eta} \in T_{\mathbf{x}} \mathcal{M}$

 $\operatorname{Hess} f(\mathbf{x})\boldsymbol{\eta} = P_{\mathbf{x}} \operatorname{Hess} \overline{f}(\mathbf{x}) P_{\mathbf{x}} \boldsymbol{\eta} + W_{\mathbf{x}}(\boldsymbol{\eta}, P_{\mathbf{x}}^{\perp} \operatorname{grad} \overline{f}(\mathbf{x}))$

"[...] This shows that, for Riemannian submanifolds of Euclidean spaces, the Riemannian Hessian is the projected Euclidean Hessian plus a correction term which depends only on the normal part of the Euclidean gradient."

BOUMAL N (2020) AN INTRODUCTION TO OPTIMIZATION ON SMOOTH MANIFOLDS.

Algebraic optimization on manifolds

Reduction of dimensions

Gradient and Hessian, example unit sphere S^{n-1}

$$P_{\mathbf{x}} = \mathbf{I} - \mathbf{x} \otimes \mathbf{x}$$

$$\operatorname{grad} \Pi(\mathbf{x}) = P_{\mathbf{x}} \operatorname{grad} \bar{\Pi}(\mathbf{x}) \qquad \operatorname{Hess} \Pi(\mathbf{x}) = P_{\mathbf{x}} \operatorname{Hess} \bar{\Pi}(\mathbf{x}) - (\mathbf{x}^{T} \operatorname{grad} \bar{\Pi}(\mathbf{x}))\mathbf{I}$$

$$\operatorname{grad} \Pi(\mathbf{x}) \in T_{\mathbf{x}} \mathcal{S}^{n-1} \qquad \operatorname{Hess} \Pi(\mathbf{x}) \in (T_{\mathbf{x}} \mathcal{S}^{n-1} \times T_{\mathbf{x}} \mathcal{S}^{n-1})$$

Define a basis of the tangent space in S^2 at \mathbf{x}

$$\mathbf{\Lambda} = [\mathbf{x}_{I}^{1} \ \mathbf{x}_{I}^{2}] \in \mathbb{R}^{3 \times 2}$$

grad^{red} $\Pi(\mathbf{x})_{2 \times 1} = \mathbf{\Lambda}^{T}(P_{\mathbf{x}} \operatorname{grad} \bar{\Pi}(\mathbf{x})) = \mathbf{\Lambda}^{T}[\operatorname{grad} \bar{\Pi}(\mathbf{x})]_{3 \times 1}$
Hess^{red} $\Pi(\mathbf{x})_{2 \times 2} = \mathbf{\Lambda}^{T}[\operatorname{Hess} \bar{\Pi}(\mathbf{x})]_{3 \times 3}\mathbf{\Lambda}$

Resulting optimization algo has only n-1 dofs (as the dim. of the manifold)

Update of nodal values

Update of nodal values

 $\mathbf{x}_k + \Delta \mathbf{x}_k \not\in \mathcal{M}$

The exponential map creates the *unique* geodesic curve starting at \mathbf{x}_k in direction $\Delta \mathbf{x}_k$ with constant speed

 $\gamma(t) = \exp_{\mathbf{x}_k}(t\Delta \mathbf{x}_k)$ $\mathbf{x}_{k+1} = \exp_{\mathbf{x}_k}(\Delta \mathbf{x}_k)$

Along these geodesics one could perform e.g. gradient descent

University of Stuttgart, Institute for Structural Mechanics

Algebraic optimization on manifolds

Update of nodal values

Absil PA, "Optimization on manifolds: methods and applications", Leuven, 18 Sep 2009. Luenberger, D.G. (1973) Introduction to Linear and Nonlinear Programming. Addison-Wesley, Boston. **Luenberger (1973),** Introduction to linear and nonlinear programming. Luenberger mentions the idea of performing line search along geodesics, "which we would use if it were computationally feasible (which it definitely is not)".

Generalize the concept of the exponential map \rightarrow Retractions

$R_{\mathbf{x}}^{\exp}(\Delta \mathbf{x}) = \exp_{\mathbf{x}}(\Delta \mathbf{x}) = \cos(||\Delta \mathbf{x}||)\mathbf{x} + \frac{\sin(||\Delta \mathbf{x}||)}{||\Delta \mathbf{x}||}\Delta \mathbf{x}$

Algebraic optimization on manifolds

Update of nodal values

Retractions for the unit sphere

 $R_{\mathbf{x}}^{\mathrm{rrn}}(\Delta \mathbf{x}) = \frac{\mathbf{x} + \Delta \mathbf{x}}{||\mathbf{x} + \Delta \mathbf{x}||}$

Algebraic optimization on manifolds

Update of nodal values

Retractions for the unit sphere

Riemannian Newton

	Classic Newton	Riemannian Newton
Update	$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta \mathbf{x}_k$	$\mathbf{x}_{k+1} = R_{\mathbf{x}_k}(\Delta \mathbf{x}_k)$
Gradient	$\operatorname{grad} f(\mathbf{x})$	$\operatorname{grad} f(\mathbf{x}) = P_{\mathbf{x}} \operatorname{grad} \overline{f}(\mathbf{x})$
Hessian	$\operatorname{Hess} f(\mathbf{x})$	$\operatorname{Hess} f(\mathbf{x})\boldsymbol{\eta} = P_{\mathbf{x}} \operatorname{Hess} \overline{f}(\mathbf{x}) P_{\mathbf{x}} \boldsymbol{\eta} + W_{\mathbf{x}}(\boldsymbol{\eta}, P_{\mathbf{x}}^{\perp} \operatorname{grad} \overline{f}(\mathbf{x}))$

Ingredients:

 $\begin{array}{ll} R_{\mathbf{x}}: T_{\mathbf{x}}\mathcal{M} \to \mathcal{M} & \text{Hess } \bar{E}(\mathbf{x}) \\ \mathbf{P}_{\mathbf{x}}: \mathbb{R}^{n} \to T_{\mathbf{x}}\mathcal{M} & \text{grad } \bar{E}(\mathbf{x}) \\ W_{\mathbf{x}}: T_{\mathbf{x}}\mathcal{M} \times T_{\mathbf{x}}^{\perp}\mathcal{M} \to T_{\mathbf{x}}\mathcal{M} \end{array}$ Tangent space basis $\mathbf{\Lambda}$

Algebraic optimization on manifolds

Toy problem: Newton's method, iteration count vs. gradient norm

Summary

	LAM	Penalty	Coords	Manifold optimization
Linearization	\odot	\odot	$\overline{\mathbf{S}}$	\odot
Singularities	\bigcirc	\odot	\odot	\odot
Search space dimensions	3	2	1	1
Minimization	$\overline{\mathbf{\cdot}}$	\odot	\odot	\odot
Iterations	\odot	$\overline{\mathbf{\cdot}}$	\odot	\odot

Outline

University of Stuttgart, Institute for Structural Mechanics

Reissner-Mindlin: Roll-up of clamped beam

• 16 Iterations of Newton's method to reach equilibrium

Reissner-Mindlin: L-shape

Reissner-Mindlin: Buckling of a sheared sheet

AM, BISCHOFF (2022): A CONSISTENT FINITE ELEMENT FORMULATION OF THE GEOMETRICALLY NON-LINEAR REISSNER-MINDLIN SHELL MODEL, DOI

AM, BISCHOFF

(2022): A CONSISTENT FINITE ELEMENT FORMULATION OF THE

EXPERIMENTS.

J MECH MATER STRUCT 1:3-25.

00

Reissner-Mindlin: Buckling of a sheared sheet

WONG W, PELLEGRINO GEOMETRICALLY NON-LINEAR REISSNER-MINDLIN SHELL MODEL ഗ (2006) WRINKLED MEMBRANES PART I: 00

University of Stuttgart, Institute for Structural Mechanics

Reissner-Mindlin: Buckling of a sheared sheet

GEOMETRICALLY NON-LINEAR REISSNER-MINDLIN SHELL MODEL, AM, BISCHOFF (2022): A CONSISTENT FINITE ELEMENT FORMULATION OF THE 00

Other physical problems

Simulation of micromagnetics

Maxwell's equation in vacuum and matter

Other physical problems

Simulation of micromagnetics

Open questions

Other manifolds

Manifold	Exponential map	Other retractions	Tangent space
Unit sphere S^{n-1}	$\cos \Delta \mathbf{x} \mathbf{x} + \frac{\sin \Delta \mathbf{x} }{ \Delta \mathbf{x} } \Delta \mathbf{x}$	$\frac{\mathbf{x} + \Delta \mathbf{x}}{ \mathbf{x} + \Delta \mathbf{x} }$	$T_{\mathbf{x}} \mathcal{S}^{n-1} = \{ \mathbf{y} \in \mathbb{R}^n \mid \mathbf{y}^T \mathbf{x} = 0 \}$
Special linear group $\mathcal{SL}(n) = \{ \mathbf{X} \in \mathbb{R}^{n \times n} \mid \det \mathbf{X} = 1 \}$	$\exp(\Delta \mathbf{X})\mathbf{X}$	$\frac{\mathbf{X} + \Delta \mathbf{X}}{\det(\mathbf{X} + \Delta \mathbf{X})^{1/n}}$	$T_{\mathbf{X}}\mathcal{SL}(n) = \{\mathbf{Y} \in \mathbb{R}^{n \times n} \mid \operatorname{tr} \mathbf{Y} = 0\}$
Symmetric Special linear manifold $\mathcal{SSL}(n) = \{ \mathbf{X} \in \mathbb{R}^{n \times n} \mid $ $\det \mathbf{X} = 1 \land \mathbf{X}^T = \mathbf{X} \}$	$\exp(\Delta \mathbf{X})\mathbf{X}$	$\frac{\mathbf{X} + \Delta \mathbf{X}}{\det(\mathbf{X} + \Delta \mathbf{X})^{1/n}}$	$T_{\mathbf{X}} \mathcal{SSL}(n) = \{ \mathbf{Y} \in \mathbb{R}^{n \times n} \mid \operatorname{tr}(\mathbf{X}^{-1}\mathbf{Y}) = 0 \}$
Special orthogonal group $\mathcal{SO}(n) = \{ \mathbf{X} \in \mathbb{R}^{n \times n} \mid $ $\mathbf{X}^T \mathbf{X} = \mathbf{I} \land \det \mathbf{X} = 1 \}$	$\exp(\Delta \mathbf{X})\mathbf{X}$	QR decomposition	$T_{\mathbf{X}}\mathcal{SO}(n) = \{\mathbf{Y} \in \mathbb{R}^{n \times n} \mathbf{Y}^T = -\mathbf{Y}\}$

Outlook

Apply results

• Geometrically nonlinear beam

Dynamics on manifolds

- Non-constant mass matrix
- Riemannian Hamiltonian/Lagrangian
- Variational integrators for manifolds

• ...

References

Algebraic consideration of optimization of manifolds:

Rosen JB (1961) The gradient projection method for nonlinear programming. Part II. nonlinear constraints. SIAM 9(4):514–532, doi:10.1137/0109044

Luenberger, David G. (1973) Introduction to linear and nonlinear programming. Vol. 28. Reading, MA: Addison-wesley,.

Adler RL, Dedieu JP, Margulies JY, Martens M, Shub M (2002) Newton's method on Riemannian manifolds and a geometric model for the human spine. IMA J Numer Anal 22(3):359–390, doi:10.1093/imanum/22.3.359

Absil PA, Mahony R, Sepulchre R (2008) Optimization Algorithms on Matrix Manifolds. Princeton University Press, doi: 10.1515/9781400830244

Absil PA, Malick J (2012) Projection-like retractions on matrix manifolds. SIAM J Optim 22(1):135–158, doi:10.1137/100802529

Absil PA, Mahony R, Trumpf J (2013) An extrinsic look at the riemannian hessian, doi: 10.1007/978-3-642-40020-9_39

Boumal N (2020) An introduction to optimization on smooth manifolds. Available online, URL Link to online resource

Finite elements for manifolds:

Grohs P (2011) Finite elements of arbitrary order and quasiinterpolation for data in Riemannian manifolds. Tech. Rep. 2011-56, Seminar for Applied Mathematics, ETH Zürich, URL https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2011/2011-56.pdf

Sander O (2012) Geodesic finite elements on simplicial grids. Int J Numer Methods Eng 92(12):999–1025, doi: 10.1002/nme.4366

Grohs P, Hardering H, Sander O (2015) Optimal A Priori Discretization Error Bounds for Geodesic Finite Elements. Found Comut Math 15(6):1357–1411, doi:10.1007/s10208-014-9230-z

Sander O (2016) Test Function Spaces for Geometric Finite Elements, url: http://arxiv.org/abs/1607.07479

Grohs P, Hardering H, Sander O, Sprecher M (2019) Projection-based fnite elements for nonlinear function spaces. SIAM J Numer Anal, doi: <u>10.1137/18M1176798</u>

Hardering H (2018) L2-discretization error bounds for maps into Riemannian manifolds. Numer Math (Heidelb) 139(2):381–410, doi: 10.1007/s00211-017-0941-3

Physical simulations (Small sample):

Sander O, Neff P, Birsan M (2016) Numerical treatment of a geometrically nonlinear planar Cosserat shell model. Comput Mech 57(5):817–841, doi:10.1007/s00466-016-1263-5

Bischoff M, (1999) Theorie und Numerik einer dreidimensionalen Schalenformulierung, doi: <u>10.18419/opus-126</u>

AM, Bischoff M.(2022) A Consistent Finite Element Formulation of the Geometrically Non-linear Reissner-Mindlin Shell Model. DOI : 10.1007/s11831-021-09702-7.

Thank you!

Alex Müller

Email mueller@ibb.uni-stuttgart.de

Slides https://www.ibb.unistuttgart.de/institut/team/Mueller-00006/

University of Stuttgart Institute for Structural Mechanics Pfaffenwaldring 7, 70569 Stuttgart, Germany

