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Kinematics of a nonlinear Reissner-Mindlin shell model

Kinematic assumptions

• Geometry approximation:

• First order transverse shear effects are taken into account:

• The director field                is independent of the midsurface field                

(in contrast to Kirchhoff-Love)     

• Thickness change is not contained in kinematic description:

• The director is a unit vector, i.e. 

• Discretization of the midsurface field                     trivial since it maps onto a vector space

• Discretization and parametrization of the director field                     difficult due to the nonlinear space 

Discretization
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Director fields

Example 1: Geometrically nonlinear Reissner-Mindlin shell
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Director fields

Example 2: Geometrically nonlinear beam
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Director fields

Example 3: Magnetic Maxwell equations in matter
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Outline

Interpolation on manifolds

(FE for manifolds)

Optimization on manifolds

Open questions/Outlook



Interpolation:
Review of 
historic approaches
(for Reissner-Mindlin shell)
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Interpolation: Review of existing approaches

Example 1: Angles

• The unit sphere can be parameterized with an angle pair

WIKIPEDIA (2008) CC BY-SA 3.0 

• Singularities, violates objectivity, unit length constraint violated  

• The resulting interpolation is, e.g. RAMM (1976)

RAMM (1976), ARGYRIS(1982), BAŞAR ET AL(1992), 

WRIGGERS & GRUTTMANN (1993)
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Interpolation: Review of existing approaches

Example 2: Direct interpolation of the nodal directors

• Standard interpolation formula  for finite elements in vector spaces

HUGHES & LIU (1981), BATHE & BOLOURCHI (1980), 

BETSCH & STEINMANN (2002), BENSON ET AL (2010)

• Interpolated value does not lie on the unit sphere

• Simple straightforward interpolation

• Objective
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Interpolation: Review of existing approaches

Example 3: Generalized Spherical Linear interpolation (SLERP)

• SLERP: Interpolation between two unit vectors

• Generalization for four vectors in 2D

• Complicated interpolation

AREIAS (2013)

Directors have unit length

• Objective
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→ Non-objective and path-dependent for elastic problems as proven in

Interpolation: Review of existing approaches

Example 4: Interpolating increments

SIMO ET AL (1990), BÜCHTER & RAMM (1992), DORNISCH ET AL (2016)

SIMO ET AL (1990), DORNISCH ET AL (2016)

CRISFIELD & JELENIĆ (1999) 

• Only incremental rotations are interpolated

• Rotation matrices are updated at each IP

• Directors at GPs have unit length
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• Objective

• Singularity-free

• Interpolated value stays on the manifold

• Useable for arbitrary polynomial order

• Generalizable from 1D

• Invariant to node numbering

• No artificial path-dependence

Interpolation: Desired Properties



Suitable 
interpolation schemes 
for the director field
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GFE define a class of finite elements to interpolate on manifold

• Consider the following interpolation scheme

• Euclidean distance can be generalized for the manifold

Suitable interpolation schemes for the director field

Geodesic Finite Elements SANDER (2012)

• objective since distances are a priori rotational invariant

• Directors have unit length

• Implicit interpolation by minimization problem → Nonlinear minimization problem at each integration point

• Since:

Identical to 

standard interpolation!
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Suitable interpolation schemes for the director field

Projection-Based Finite Elements

Projection-based interpolation is a special kind of geodesic finite elements

• In contrast to the GFE definition

GROHS ET AL (2019)

• PB finite elements use the distance of the embedding space

• objective since distances are a priori rotational invariant

• Directors have unit length

• Implicit interpolation by minimization problem
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Suitable interpolation schemes for the director field

What does all that mean for the unit sphere?

Example with two directors:

• Geodesic Finite Elements (GFE):

• NFE/Standard interpolation:

SANDER (2012)

• Projection-Based (PBFE): GROHS ET AL (2019)
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Suitable interpolation schemes for the director field

What does all that mean for the unit sphere?

Example with two directors:
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Comparison of 

interpolation schemes 
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Interpolation: Numerical experiments

Roll-up of clamped beam

AM, BISCHOFF (2022): A CONSISTENT FINITE ELEMENT FORMULATION OF THE

GEOMETRICALLY NON-LINEAR REISSNER-MINDLIN SHELL MODEL, DOI

http://dx.doi.org/10.1007/s11831-021-09702-7


University of Stuttgart, Institute for Structural Mechanics 20

Interpolation: Numerical experiments

Roll-up of clamped beam

• Reference plane → Reference interpolation identical

• Q1 shell elements,     -continuity between elements

AM, BISCHOFF (2022): A CONSISTENT FINITE ELEMENT FORMULATION OF THE

GEOMETRICALLY NON-LINEAR REISSNER-MINDLIN SHELL MODEL, DOI

http://dx.doi.org/10.1007/s11831-021-09702-7
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• Reference plane → Reference interpolation identical

• Quadratic B-spline shell elements,     -continuity between elements

Interpolation: Numerical experiments

Roll-up of clamped beam

Convergence order degenerates!

AM, BISCHOFF (2022): A CONSISTENT FINITE ELEMENT FORMULATION OF THE

GEOMETRICALLY NON-LINEAR REISSNER-MINDLIN SHELL MODEL, DOI

http://dx.doi.org/10.1007/s11831-021-09702-7
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• Reference plane → Reference Interpolation identical

• Quartic B-spline shell elements,     -continuity between elements

Interpolation: Numerical experiments

Roll-up of clamped beam

1 load step

Convergence order degenerates!

AM, BISCHOFF (2022): A CONSISTENT FINITE ELEMENT FORMULATION OF THE

GEOMETRICALLY NON-LINEAR REISSNER-MINDLIN SHELL MODEL, DOI

http://dx.doi.org/10.1007/s11831-021-09702-7
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• Geometric (PBFE and GFE) satisfy all the desired properties

• Objective

• Singularity-free

• Interpolated value stays on the manifold

• Useable for arbitrary polynomial order

• Generalizable from 1D

• Invariant to node numbering

• No artificial path-dependence

• Drawbacks

• Maybe expensive to evaluate

Interpolation: Desired Properties

Geometric (PBFE and GFE) satisfy all the desired properties
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Interlude: 

Function 

spaces
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Interlude: Test function spaces

• First order geometric finite element functions satisfy

• Discrete test functions live in the tangent bundle 

• Manifold

• Vector space

SANDER O (2016)

SANDER O (2012) 
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Outline

Interpolation on manifolds

(FE for manifolds)

Optimization on manifolds

Open questions/Outlook
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Optimization on manifolds

Literature

ABSIL PA, MAHONY R, SEPULCHRE R (2008) OPTIMIZATION

ALGORITHMS ON MATRIX MANIFOLDS. PRINCETON UNIVERSITY PRESS, 

DOI:10.1515/9781400830244

BOUMAL N (2020) AN INTRODUCTION TO OPTIMIZATION ON SMOOTH MANIFOLDS. AVAILABLE ONLINE, LINK

Constrained
optimization on an 

unconstrained
space

Penalty

Lagrange 
multiplier 
method

Unconstrained
optimization on a 
constrained space

Direct 
optimization on 

the manifold

https://doi.org/10.1515/9781400830244
http://www.nicolasboumal.net/book
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Optimization on manifolds

(Exemplary) Problem statement
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Optimization on manifolds

Riemannian submanifolds

Metric of the embedding     induces metric     on 

WIKIPEDIA: N-SPHERE

https://en.wikipedia.org/wiki/N-sphere
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Riemannian 

gradient
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Optimization on manifolds

Riemannian Gradient: submanifolds

• No parametrization

• No artificial singularities

• Simple linearization

“For Riemannian submanifolds, the Riemannian 

gradient is the orthogonal projection of the “classical” 

gradient to the tangent spaces.”
BOUMAL N (2020) AN INTRODUCTION TO OPTIMIZATION ON SMOOTH MANIFOLDS.
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Optimization on manifolds

Toy problem, gradient and Riemannian gradient

Euclidean gradient Riemannian gradient
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Riemannian 

Hessian
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Optimization on Manifolds

Riemannian Hessian: submanifolds

Levi-Civita connection:

“[…] This shows that, for Riemannian submanifolds of 

Euclidean spaces, the Riemannian Hessian is the 

projected Euclidean Hessian plus a correction term 

which depends only on the normal part of the Euclidean 

gradient.” 
BOUMAL N (2020) AN INTRODUCTION TO OPTIMIZATION ON SMOOTH MANIFOLDS.
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Algebraic optimization on manifolds

Reduction of dimensions

Gradient and Hessian, example unit sphere

Define a basis of the tangent space in       at  

Resulting optimization algo has only dofs (as the dim. of the manifold) 



Update of 
nodal values
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Optimization on manifolds

Update of nodal values

The exponential map creates the unique geodesic curve starting at      in direction         with constant speed  

Along these geodesics one could perform e.g. gradient descent
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Algebraic optimization on manifolds

Update of nodal values

ABSIL PA , "OPTIMIZATION ON MANIFOLDS: METHODS AND APPLICATIONS", LEUVEN, 18 SEP 2009.

LUENBERGER, D.G. (1973) INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING. ADDISON-WESLEY, BOSTON.

Luenberger (1973), Introduction to linear and nonlinear programming. 

Luenberger mentions the idea of performing line search along geodesics, “which 

we would use if it were computationally feasible (which it definitely is not)”. 

Generalize the concept of the exponential map → Retractions
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Algebraic optimization on manifolds

Update of nodal values

Retractions for the unit sphere
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Algebraic optimization on manifolds

Update of nodal values

Retractions for the unit sphere
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Motivation

Riemannian Newton

Classic Newton Riemannian Newton

Update

Gradient

Hessian

Ingredients:

Tangent space basis
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Algebraic optimization on manifolds

Toy problem: Newton’s method, iteration count vs. gradient norm

#iteration
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Optimization on manifolds

Summary

LAM Penalty Coords Manifold 

optimization

Linearization

Singularities

Search space dimensions 3 2 1 1

Minimization

Iterations
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Outline

Interpolation on manifolds

(FE for manifolds)

Optimization on manifolds                                                 Simulations

Open questions/Outlook
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Simulations

Reissner-Mindlin: Roll-up of clamped beam

• 16 Iterations of Newton’s method to reach equilibrium
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Simulations

Reissner-Mindlin: L-shape

AM, BISCHOFF (2022): A CONSISTENT FINITE ELEMENT FORMULATION OF THE

GEOMETRICALLY NON-LINEAR REISSNER-MINDLIN SHELL MODEL, DOI

http://dx.doi.org/10.1007/s11831-021-09702-7
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Simulations

Reissner-Mindlin: Buckling of a sheared sheet

AM, BISCHOFF (2022): A CONSISTENT FINITE ELEMENT FORMULATION OF THE

GEOMETRICALLY NON-LINEAR REISSNER-MINDLIN SHELL MODEL, DOI

http://dx.doi.org/10.1007/s11831-021-09702-7
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Simulations

Reissner-Mindlin: Buckling of a sheared sheet A
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Simulations

Reissner-Mindlin: Buckling of a sheared sheet A
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Other physical problems

Simulation of micromagnetics

Maxwell’s equation in vacuum and matter
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Other physical problems

Simulation of micromagnetics

Minimizers for cylinder buckling
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Open questions

Other manifolds

Manifold Exponential map Other retractions Tangent space

Unit sphere

Special linear group

Symmetric Special 

linear manifold

Special orthogonal 

group

QR decomposition
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• Geometrically nonlinear beam

• Non-constant mass matrix

• Riemannian Hamiltonian/Lagrangian

• Variational integrators for manifolds

• …

Outlook

Dynamics on manifolds

Apply results
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