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Kurzfassung

Kurzfassung

In der gesellschaftlichen Debatte über zukünftige Querschnittsthemen spielen Nach-
haltigkeit und Ressourcene�zienz eine zunehmend entscheidende Rolle. Im Bauwesen,
aber auch in anderen Disziplinen wie dem Flugzeugbau oder der Raumfahrttechnik,
bieten adaptive Strukturen das Potenzial, diesen Anforderungen gerecht zu werden.
Während manche Tragwerke Kräfte und Verformungen aus sich verändernden Lasten
unter weitestgehender Beibehaltung ihrer Form ausgleichen können, vollziehen andere
Strukturen durch eine entsprechende Aktuierung erhebliche Geometrieänderungen, um
sich an wechselnde Anforderungen während der Nutzung des Bauwerks anzupassen. Dies
ist beispielsweise der Fall bei ausfahrbaren Stadiondächern oder bei Fassadenelementen,
die sich je nach Stand der Sonne verformen und damit das Klima der Innenräume steuern
können. Dabei muss die Struktur oft in der Lage sein große Deformationen ausführen
zu können. Um dies zu ermöglichen, werden flexible Strukturen entworfen, die sich mit
geringem Aufwand in eine bestimmte Richtung verformen können. Unabhängig von der
Geometrie kann aber auch der Verformungsprozess an sich gezielt so gestaltet werden,
um vorgegebene Anforderungen, wie zum Beispiel die Anforderung der E�zienz, zu
erfüllen.

In dieser Arbeit wird ein neuartiger Ansatz zur Gestaltung adaptiver Strukturen vor-
gestellt und schrittweise entwickelt: die Methode des sogenannten Bewegungsentwurfs
(„Motion Design“). Ihr liegt die Tatsache zugrunde, dass je nach Steuerung der Ak-
tuierung der gleiche Deformationszustand einer Struktur durch unterschiedliche Bewe-
gungsabläufe erreicht werden kann. Die Methode des Bewegungsentwurfs ermöglicht
es, optimale Bewegungen mit definierten Eigenschaften zwischen der Anfangsgeometrie
und einer vorgegebenen deformierten Endgeometrie einer Struktur auf rein formalisierte
Weise zu berechnen. Sie kann demzufolge angewendet werden, ohne dass umfassendes
Ingenieursverständnis für die Lösungsfindung eingebracht werden muss. Dabei wird
von quasi-statischem Verhalten ausgegangen, aber beliebig große Deformationen berück-
sichtigt.

Um die E�zienz einer Bewegung strukturmechanisch zu motivieren und zugleich auch
mathematisch quantifizierbar zu machen, werden die sogenannten Deformationskosten
als Zielgröße eingeführt. Diese sind abgeleitet von der dimensionslosen Größe der Tran-
sportkosten aus Bereichen wie der Biologie oder Robotik. Diese Transportkosten stellen
ein Maß zur Quantifizierung der Energiee�zienz verschiedener Transportmethoden dar,
wie zum Beispiel Gehen, Schwimmen, Fliegen eines Tieres oder Bewegung eines Fahr-
zeugs von einem zu einem anderen Ort. Im Kontext dieser Arbeit wird diese Größe hier
auf flexible Strukturen übertragen. Dabei wird exemplarisch zunächst ein Energiekri-
terium auf Basis der inneren Energie verwendet. Um den gesamten Deformationsprozess
berücksichtigen zu können, wird die interne Energie über den Deformationspfad inte-
griert. Die Arbeitshypothese hierbei ist, dass es Aufwand erfordert Verzerrungsenergie
in ein System einzubringen sowie die Struktur in einem verformten Zustand zu halten.
Die so berechneten Deformationskosten ergeben dadurch ein geeignetes Maß für den
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erforderlichen Aufwand, um eine Struktur in einen definierten Deformationszustand zu
verformen. Sie stellen im Sinne der mathematischen Optimierung demnach die Ziel-
funktion für die Methode des Bewegungsentwurfs dar. Die Gültigkeit der mit dieser
Funktion erhaltenen Bewegungen ist daher auf die Fälle limitiert, in denen diese An-
nahmen zutre�en.

Diese Problemstellung zeigt Analogien zum historischen Brachistochronenproblem, wel-
ches eine entscheidende Rolle bei der Entwicklung der Variationsrechnung einnahm.
Deswegen basiert auch die Methode des Bewegungsentwurfs auf einer variationellen
Formulierung mit den Deformationskosten als zugrunde liegendem Funktional und dem
Verschiebungsfeld als gesuchter Funktion. Einer der entscheidenden Aspekte dieser Ar-
beit ist demzufolge die Diskretisierung dieses Bewegungspfades, also letztlich des De-
formationsprozesses. Mithilfe der hier vorgestellten Methodik wird der gesamte Bewe-
gungspfad durch eine Lösung eines einzigen nichtlinearen Problems berechnet und nicht
mehr inkrementell, wie es bei einer klassischen nichtlinearen Strukturanalyse üblich
ist. Durch den speziellen Aufbau des Funktionals, beziehungsweise der Zielfunktion,
können im Rahmen eines Optimierungsalgorithmus analytische Sensitivitäten berech-
net werden. Bei Verwendung der Verzerrungsenergie in den Deformationskosten werden
dafür lediglich Größen benötigt, die ohnehin bereits in Finite-Elemente-Programmen
zur Verfügung stehen, wie zum Beispiel die diskreten inneren Kräfte und die Tangen-
tensteifigkeitsmatrix.

Die Methode des Bewegungsentwurfs wird zunächst anhand von einigen Beispielen ver-
ifiziert, deren Lösung bereits bekannt ist. Zusätzlich werden Strukturen untersucht, die
durch Instabilitätsphänomene, wie zum Beispiel Durchschlagen, gekennzeichnet sind.
Dies ermöglicht einen innovativen Bewegungsentwurf für adaptive Strukturen, bei dem
Instabilitäten auch gezielt zum Zwecke der E�zienz genutzt werden können, anstatt sie
zu vermeiden. Darüber hinaus wird die Anwendbarkeit auf den Entwurf dehnungsloser
Verformungen von Schalen demonstriert. Die vorgestellte Methode eignet sich demnach
besonders gut für die Identifizierung und den Entwurf kinematischer und energiemini-
maler Bewegungsmechanismen, was das Potenzial für die Anwendung bei wandelbaren
Strukturen aufzeigt.

Mithilfe der statischen Gleichgewichtsbedingungen werden in einem Rückrechnungs-
schritt die erforderlichen Lasten berechnet, um auch optimale nicht-kinematische Be-
wegungen e�zient zu realisieren. Das setzt zunächst die Annahme voraus, dass eine
Aktuierung prinzipiell an jedem Freiheitsgrad möglich ist. Für Strukturen, bei denen die
Aktuierung, wie in der Baupraxis üblich, nur durch bestimmte Lastfälle ermöglicht wird,
werden entsprechende Nebenbedingungen in das Optimierungsproblem des Bewegungs-
entwurfs eingebracht („Constrained Motion Design“). Dadurch wird erreicht, dass allein
die vorgegebenen zugelassenen Lasten zur Durchführung der optimierten Bewegung ver-
wendet werden. Auch hier beweisen numerische Experimente die Anwendbarkeit dieser
erweiterten Methode des Bewegungsentwurfs unter Berücksichtigung von Nebenbedin-
gungen. Zusätzlich wird eine Aktorelementformulierung vorgestellt, die einfach in die
Berechnungsmethode integriert und somit auch als spezieller Lastfall zur Aktuierung
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betrachtet werden kann. Außerdem können auch andere Arten von Nebenbedingungen
eingebracht werden, wie zum Beispiel die Einhaltung einer positiv definiten Tangen-
tensteifigkeitsmatrix während der gesamten Deformation. Auf diese Weise wird beim
Bewegungsentwurf automatisch sichergestellt, dass die optimierte Bewegung in einem
lastkontrollierten Prozess stabil ausgeführt werden kann.

Abschließend werden zusätzliche Erweiterungsmöglichkeiten der Methode des Bewegungs-
entwurfs beziehungsweise Kombinationen mit anderen Methoden zur E�zienzerhöhung
von adaptiven Strukturen untersucht. Beispielsweise kann auch die Form der noch un-
deformierten Struktur deutlich zur E�zienz der Bewegung beitragen. Deswegen wird
auch der Einfluss einer Formoptimierung der Anfangsgeometrie analysiert. Mithilfe
von geeigneten Zielfunktionen kann dadurch eine weitere Reduktion der Deformations-
kosten und somit eine noch nachhaltigere und ressourcene�zientere Gestaltung von
adaptiven Strukturen erreicht werden. Während die Art der Aktuierung zunächst immer
vorgegeben war, kann auch sie in den Entwurfsprozess mit einbezogen werden. Dafür
wird der Bewegungsentwurf mit etablierten Methoden zur Aktorplatzierung kombiniert.
Auf diese Weise kann die Position der e�zientesten Einzellasten für eine energieminimale
Bewegung bestimmt werden. Zusätzlich werden unterschiedliche Modifikationen der zu-
grunde liegenden Zielfunktion, also der Deformationskosten, im Rahmen der Methode
aufgezeigt. Unter anderem kann auf einfache Weise die Bewegung mit der kürzesten
Deformationstrajektorie berechnet werden. Dies ist der Ausgangspunkt für die Vorstel-
lung eines inkrementellen Verfahrens für den Bewegungsentwurf, welches sich auch für
komplexere Problemstellungen eignet und dessen Wirkprinzip exemplarisch an einer
biologischen Struktur gezeigt wird.
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Abstract

In the social debate on future cross-cutting subjects, sustainability and e�ciency of
material resources play an increasingly decisive role. In civil engineering and other
disciplines, such as aviation or aerospace, adaptive structures o�er the potential to
meet these requirements. While some structures are able to compensate for forces and
deformations from varying loads mostly retaining their shape, other structures undergo
substantial shape changes via actuation to adapt to alternating requirements during
usage of the building. This is, for example, the case with retractable stadium roofs or
with façade elements, which can deform depending on the position of the sun and, thus,
control the climate of the interior. In doing so, the structure must often be able to carry
out large deformations. For this purpose, flexible structures are designed, which are
capable of deforming in a certain direction with little e�ort. Regardless of the geometry,
however, the deformation process itself can also be designed to meet predetermined
requirements, such as the requirement for e�ciency.

In this thesis, a novel approach for the design of adaptive structures is presented and
gradually developed: the so-called method of motion design. It is based on the obser-
vation that, depending on the control of the actuation, the same deformation state of a
structure can be reached through various motion processes. The method of motion de-
sign allows to calculate optimal deformation paths with defined properties between the
initial geometry and a given deformed end geometry of a structure in a purely formalized
way. It can hence be applied without the need for a profound engineering understanding
of the solution process. Quasi-static behavior is assumed, but large deformations are
taken into account.

In order to motivate the e�ciency of a movement and to make it mathematically quan-
tifiable, the so-called cost of deformation is introduced as a target value. It is derived
from the dimensionless quantity cost of transport from disciplines such as biology or
robotics. This cost of transport represents a measure to quantify the energy e�ciency of
di�erent transport methods, such as walking, swimming, flying of an animal or moving
of a vehicle from one place to another. In the context of this work, this measure is
transferred to flexible structures, where an energy criterion based on the strain energy
is first exemplarily employed. In order to consider the entire deformation process, the
internal energy is integrated over the deformation path. The applied working hypothesis
is that inducing strain energy into a system and maintaining this internal strain state
state requires e�ort. Thus, the cost of deformation calculated in this way provides a
suitable measure of the e�ort required to deform a structure into a defined deformation
state. Consequently, it represents the objective function used for the motion design
method in terms of mathematical optimization. The validity of motions obtained with
this function is therefore limited to cases, in which these assumptions apply.

This problem formulation shows clear analogies to the historical brachistochrone prob-
lem, which played a decisive role in the development of the calculus of variations. Hence,
the method of motion design is developed based on a variational formulation using the
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cost of deformation as underlying functional and the displacement field as the unknown
function. One of the decisive features in this work is the discretization of this motion
path, i. e., the deformation process. As a result of the presented methodology, the entire
motion path is obtained by solving one nonlinear problem instead of applying an incre-
mental procedure, as is usually the case in a classical nonlinear structural analysis. Due
to the special structure of the functional, or objective function, respectively, analytical
sensitivities can be calculated within an optimization algorithm. When using the strain
energy in the cost of deformation, only quantities that are generally already available
in finite element software, such as the discrete internal forces and the tangent sti�ness
matrix, are required.

The method of motion design is first verified using various examples whose solutions are
already known. Additionally, structures characterized by instability phenomena, such
as snap-through, are investigated. This allows an innovative motion design for adaptive
structures, where instabilities can specifically be used for e�ciency instead of avoiding
them. Furthermore, the applicability to the design of inextensional deformations of
shells is demonstrated. The presented method is, therefore, particularly well suited for
identification and design of kinematic and energy-minimal motion mechanisms, which
emphasizes the potential for application to deployable shape changing structures.

By means of the static equilibrium conditions, the required loads to also e�ciently re-
alize optimal non-kinematic motions are calculated in a postprocessing step. This a
priori implies the assumption that any degree of freedom can be controlled and actu-
ated. For structures, where actuation is only possible by certain load cases, as usual in
practical applications, corresponding constraints are introduced into the optimization
problem of motion design. This ensures that only specifically permitted loads are used
to perform the optimized motion. Again, numerical experiments prove the applicability
of this extended motion design method under consideration of constraints. In addition,
an actuator element formulation is presented that allows an easy integration into the
calculation method and can also be considered as a special load case for actuation. Fur-
thermore, other types of constraints can be introduced, such as maintaining a positive
definite tangent sti�ness matrix during the entire deformation. In this way, the motion
design method automatically ensures that the optimized motion can be performed in a
stable manner within a load-controlled process.

Finally, additional enhancement possibilities of the motion design method or combina-
tions with other methods to increase the e�ciency of adaptive structures are investi-
gated. For example, the shape of the yet undeformed structure also has an influence and
can significantly contribute to the e�ciency of the movement. Therefore, the potential
of a shape optimization of the initial geometry is examined. With the help of suitable
objective functions, a further reduction of the cost of deformation and, therefore, a more
sustainable and resource e�cient design of adaptive structures can be achieved. While
the type of actuation has always been predefined at first, it can also be included in the
design process. In this way, the most e�cient position of point loads for actuation of an
energy-minimal motion can be determined. Additionally, several modifications of the
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underlying objective function within the method are demonstrated. Among other things,
the motion with the shortest deformation trajectory can be calculated in a simple way.
This represents the starting point for an incremental method for motion design, which is
suitable for more complex problems, shown on the example of a biological structure.
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„Der Weg ist das Ziel.“

Konfuzius
(Chinesischer Philosoph, 551-479 v. Chr.)
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1
Introduction

1.1 Motivation and current developments

Nowadays, sustainability and energy e�ciency play an increasingly important role in
society and economy. Research, in particular, is continually progressing this aspect
through new technologies and advances in a variety of disciplines. Especially the build-
ing industry, which is responsible for a significant part of the energy consumption as well
as the exploitation of material resources, o�ers great potential in this respect. This in-
cludes, among other things, energy savings in indoor climate regulation, such as cooling
or heating, but also the reduction of non-recyclable material in the supporting structure
of a building. Moreover, by decreasing the amount of construction material, the embod-
ied energy can be decreased. Hence, architects and engineers face the major challenge of
designing exceptionally sustainable and extremely lightweight building structures. One
promising approach to meet this requirement is the development of adaptive structures.
These structures are able to optimally adapt to changing external conditions, typically
by actively changing their shape. Two fundamentally di�erent types of adaptive struc-
tures, both based on the working principle of geometry change, can be distinguished.

The first type of adaptive structure serves the purpose of accommodating to varying
load cases. Usually, conservative structures are designed to guarantee the compliance
with proofs in the ultimate limit state or in serviceability limit state for the “worst-case”
load scenario. Therefore, the supporting structure needs to provide su�cient strength
and sti�ness and is over-dimensioned for most of the time. This leads to excessive use
of material. In contrast, the geometry and sti�ness of an adaptive structure are not
designed for this “worst case” a priori, but rather comprise actuators that allow the
structure to actively adjust to changing loads. This way, it can counteract resulting
deformations and compensate vibrations to ensure serviceability. Furthermore, also
internal forces can be manipulated and the stress distribution can be homogenized by
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actuation. In doing so, the structure can be designed more slender, and eminent material
savings can be achieved while maintaining its performance.

These adaptive structures usually contain sensors measuring changes in the external
conditions or their influence onto the structure, such as the resulting internal reac-
tions. It can then respond to the measurements by adjusting the appropriate actuators.
In this case, the terms smart structures and shape control are very common. This
first type of adaptive structures is, for example, treated in a general way in Zuk and
Clark (1970), Housner et al. (1997), Spencer and Nagarajaiah (2003), Ko-
rkmaz (2011), Sobek (2016) and Senatore (2018). There exist several types of
actuators for use in adaptive structures. In truss structures, discrete actuator elements
are usually incorporated. Such elements can actively increase or decrease their length
and, thus, deform the entire structure or only a part thereof. A continuous actuation
is also possible and can be realized by e. g., piezoelectric or electroactive polymer ac-
tuators, as addressed in Irschik (2002) and Bar-Cohen and Anderson (2019), as
well as shape-memory alloys, as addressed in a review by Mohd Jani et al. (2014).
The actuator behavior is usually controlled through dedicated control algorithms, as
described, for instance, in Preumont (2011). Besides, the question where to place the
actuators for them to be most e�cient plays a major role. The better the choice of
the actuator location, the better the structure can be actuated, and the less energy is
required for actuation. This task is usually investigated with the help of various opti-
mization algorithms. Further literature and studies dealing with objectives and methods
for di�erent actuator placement strategies are provided by Abdullah et al. (2001),
Gupta et al. (2010), Masching and Bletzinger (2016), Wagner et al. (2018)
and Reksowardojo et al. (2020). Examples for this type of adaptive structure are
the so-called SmartShell, as presented in Neuhaeuser et al. (2013) and illustrated
in Figure 1.1a, the “infinitely sti�” cantilever beam introduced by Senatore et al.
(2018) as well as a highrise building, which serves as a demonstrator in a current collab-
orative research project dealing with such adaptive structures, as described in Weidner
et al. (2018). All of these examples are characterized by the fact that only small dis-
placements are necessary for the adaptation, and therefore geometrically linear analyses
are su�cient for their investigation.

The situation is di�erent for the second type of adaptive structures. Here, the struc-
ture is not intended to adapt to varying loads, but to changing requirements during
its operation. To serve this purpose, the individual structural configurations usually
di�er significantly from each other, and actuation is therefore accompanied by major
shape changes. This is often realized by designing deployable and retractable structures.
Prominent examples are the opening and closing of roofs, especially stadiums roofs, such
as the Commerzbank-Arena in Frankfurt, Germany (Göppert and Stein 2007), shown
in Figure 1.1b/c, or the folding and unfolding of adaptive bridges as, for example, real-
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ized in the Kiel Hörn Footbridge in Kiel, Germany (Knippers and Schlaich 2000).
In these cases, one single structure is designed to serve two purposes in two distinct
configurations. Moreover, adaptive façade elements beyond conventional sun-blinds can
be seen as another adaptive structure of this described second type. These can be closed
and opened to regulate the interior climate and daylight intake of a building depending
on the exterior weather conditions. Particularly this fact may significantly contribute
to the building’s energy e�ciency (Del Grosso and Basso 2010). Realizations of
such adaptive façades are e. g., the One Ocean Expo 2012 Pavilion in Korea (Knippers
et al. 2013) and the biomimetic façade elements Flectofin (Lienhard et al. 2011) and
Flectofold (Körner et al. 2018). Furthermore, such adaptive structures play a role
in other disciplines as well. One current research field is the shape change of morphing
wings of airplanes, which is investigated, for example, in Maute and Reich (2006),
Campanile (2006), Santer and Pellegrino (2009) and Vasista et al. (2012) or
the deployment of satellite structures in aerospace applications (Pellegrino 2015).

As already mentioned, the di�erent geometric states of the second type of adaptive
structures, e. g., the closed and opened state of a façade element, strongly deviate from
each other. To enable this significant shape change, the structure must be designed ac-
cordingly. The most common approach to achieve variability in geometry is the targeted
introduction of joints and hinges between sti� elements and the associated defined kine-
matics by unfolding, sliding and similar mechanisms. However, joints often represent
particularly weak spots of the structure and may be prone to failure. Another strategy
for geometrical variability is to use discrete systems with integrated actuators, as it has
also been done in the first type of adaptive structures. In this case, however, they have
to allow for large deformations. They take, for example, the form of trusses, as presented
in Sofla et al. (2009), tensegrity structures (Kmet and Mojdis 2015; Raja and
Narayanan 2009; Sychterz and Smith 2018; van de Wijdeven and de Jager
2005; Veuve et al. 2017) or lattice structures (Friedman and Ibrahimbegovic

a) b) c)

Figure 1.1: Examples for adaptive structures. a) SmartShell in Stuttgart (Sobek (2016),
© ILEK, Stuttgart). b) Open and c) closed roof of the Commerzbank-Arena
in Frankfurt, Germany (Göppert and Stein (2007), Photographer: Heiner
Leiska).
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2013). The individual actuator elements of these structures can change their length so
that the entire geometry is adjusted in an intended manner. This stands in contrast to
an alternative strategy, which is the design of continuous flexible and morphing struc-
tures. The fundamental idea in such structures is to incorporate an overall flexibility
that is distributed throughout the entire structure. Consequently, it may undergo a
smoothly distributed motion as in flexible and shape-changing shells, for example, in
Pagitz and Bold (2013) and Pellegrino (2015). In special cases, even pure bend-
ing deformations, so-called inextensional deformations, are possible. Moreover, there
are approaches to combine discrete flexibility by joints with distributed structural com-
pliance. These so-called compliant structures are characterized by continuous sti�ness
changes and a varying sti�ness distribution within the structure, and, consequently,
specific hinge zones are formed. The compliance enables an e�cient deformation and is
investigated in numerous research contributions such as in Sigmund (1997), Frecker
et al. (1997), Saggere and Kota (1999), Saxena and Ananthasuresh (2000),
Lu and Kota (2003), Lan and Cheng (2008), Hasse and Campanile (2009), San-
ter and Pellegrino (2009) and Masching and Bletzinger (2016). The challenge
here is that, despite its high degree of flexibility, the structure remains strong enough to
withstand loads in all configurations. The concept of multi-stable compliant structures
also represents a possibility to deal with this problem and, at the same time, to keep
the configurations stable without continuously expending e�ort, as described in Santer
and Pellegrino (2008), Oh and Kota (2009) and Zhang et al. (2017).

It has just been described that the design of compliant structures is concerned with
satisfying demands on the structure in the individual geometric configurations, e. g., the
open and closed state. Nevertheless, especially when large changes of the geometry are
involved, the deformation process itself, i. e., the transition between these states, also
has to meet specified requirements. However, an infinite number of di�erent motions
with di�erent properties can be realized that all eventually reach the same final geom-
etry, depending on how the actuators are controlled. Since the majority of motions
cause stress in the structure and accordingly require energy, the motion that meets the
prescribed requirements, such as e�ciency, best can then be selected from this variety
of possible motions. Particularly, the search for the most e�cient motion motivates a
closer look into movement mechanisms in nature, e. g., in plant motions (see Knippers
and Speck (2012), Poppinga et al. (2016) and Poppinga et al. (2020)). These
are presumed to be governed by an e�ciency principle and to require as little energy as
possible. After gaining an understanding of the underlying movement mechanism of a
chosen biological role model (as in Charpentier et al. (2017), Westermeier et al.
(2018) and Sachse et al. (2020)), the mechanism can be transferred to structural en-
gineering and biomimetic structures can be developed, such as the already mentioned
façade elements Flectofin or the Flectofold. However, the individual criteria for the mo-
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tion in biological structures need to be thoroughly investigated. While aspects such as
digestion or growth processes are important in nature, these factors do not play a role in
architectural and engineering structures. Therefore, the underlying movement criteria
of the biological structure and its biomimetic counterpart, i. e., the adaptive structure,
may di�er significantly. Apart from that, the geometry and the motion pattern strongly
depend on the chosen biological role model. This flexibility in the specified requirements
and the design leads to the desire for a more general method for the design of e�cient
motions in engineering structures.

Exactly this problem of finding optimal trajectories between an initial state and a tar-
get state regarding a prescribed objective is addressed in control theory, especially in
optimal control (Liberzon 2012; Sargent 2000), and in motion planning of robots
(Carbone and Gomez-Bravo 2015; Elbanhawi and Simic 2014; LaValle 2006).
The general procedure to design robots and their motions starts with trajectory plan-
ning. This can either be done in a purely geometrical fashion, or the dynamic behavior of
the object can be taken into account in kinodynamic motion planning (Karaman and
Frazzoli 2010). To actually follow the planned trajectory, algorithms from control
theory are used to calculate the required actuation. With the help of sensors and their
feedback about the current state, deviations from the planned motion path can be cor-
rected accordingly. Optimal trajectories between the initial and target states of, e. g., a
robot can be calculated using methods of optimal motion planning and optimal control.
They di�er in the applied algorithms and the applicability of di�erent constraints on the
motion (Bergman and Axehill 2018). However, most investigated and calculated
structures in these research areas are characterized by a discrete kinematic mechanism
and no (or little) elastic deformation. As a consequence, the problem formulation com-
prises fewer degrees of freedom than morphing continuous structures. In the field of
continuum robotics and hyper-redundant manipulators with many actuatable degrees
of freedom, such systems are planned and investigated (see, for example, Chirikjian
and Burdick (1994), Yekutieli et al. (2005) and Bieze et al. (2018)). A review
of this field is given in Rus and Tolley (2015). In these mostly linear robots, the
inverse kinematics problem poses a particular challenge, where suitable geometric states
are to be found for a given end tip location or for certain movements, such as grasping
or wrapping. For this purpose, di�erent geometric descriptions are used. Alongside con-
tinuous mechanical modeling of the beam-like structure, also several simplifications are
typically made. For example, a piecewise constant curvature (PCC) model is introduced
to capture the kinematics as described in Webster and Jones (2010). This allows
the control of such systems and the solution of the inverse kinematics problem, where
the required curvatures for a given end position are calculated. However, the applied
methods highly depend on the specific robot and must be adapted to its characteristics
in terms of form and actuation (Rus and Tolley 2015). Due to the considerable num-
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ber of involved degrees of freedom, the general realization of the desired motion remains
the main di�culty. Mechanical quantities, such as strain and stress, can be calculated
without any problems, but do not form the basis for an optimized motion. Nonethe-
less, planning and optimal control methods for continuous robots without restrictive
simplifications in the kinematics remain a challenging research task.

However, there exist studies, where the mechanics and analysis of structures are com-
bined with control and motion planning strategies, especially with regard to tensegrity
structures (Masic and Skelton 2005). On the one hand, robots are being constructed
as tensegrity structures as in Graells Rovira and Mirats Tur (2009). On the other
hand, the methods in control theory are adapted to civil structures as in a deployable
bridge (see Veuve et al. (2017) and Sychterz and Smith (2018)). Furthermore,
Ibrahimbegovic et al. (2004) successfully combined an optimal control algorithm
with nonlinear structural mechanics of a beam to achieve a deformed end configuration
with certain properties.

To sum up, the first type of adaptive structure adjusts to di�erent load cases through
actuation. Since this is usually possible with relatively small deformations, it is mostly
su�cient to assume a linear description of the underlying kinematics. However, this is
no longer possible for the second type of adaptive structure, which adapts to changing
requirements during operation. Because the shape has to adjust noticeably in this case,
large deformations have to be taken into account. In order to design such compliant
structures, a measure for their flexibility is optimized. This allows them to deform in
a certain direction with little e�ort. But since the motion direction already needs to
be predefined, the focus is laid on the design of the geometry rather than the motion.
To design the motion itself to be e�cient, a biomimetic approach can be followed,
where biological motion mechanisms are transferred to adaptive structures. However,
the underlying motion criteria might di�er in the two scenarios. Moreover, the freedom
in the design of the initial and end geometry, as well as the motion pattern, are limited
due to the biological role model. Other methods that allow finding optimal motion paths
between two given states of a structure are optimal control algorithms and motion
planning. There are, in general, no restrictions on the individual states using these
methods, but limitations arise regarding the manageable number of degrees of freedom.
This does not pose a problem for typical applications in the field of robotics since the
kinematics are usually clearly defined. Once a flexible and continuous structure is used,
however, considerably more degrees of freedom are involved, and significant challenges
in applying the methods arise. Therefore, the research in this area mostly concentrates
on enabling the envisaged motions rather than optimizing them.
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1.2 Objective and outline of this work

Based on the preceding observations, the objective of this thesis is to find a new method
for designing optimal deformation trajectories between two (or more) predefined ge-
ometric states of a flexible structure. Therefore, a formalized optimization approach
should be developed to identify optimal motions of any kind of flexible structure per-
forming large elastic deformations, as occurring in architectural and civil engineering
structures as well as other disciplines. In contrast to the existing concepts reviewed
above, the focus here is not laid on the properties of the individual initial and target
geometries of the structure, but the entire motion path is considered. In this context, it
should become possible to plan the motion in advance without a control algorithm and
related sensory equipment. The idea is to design optimal shape transitions based on
a variational formulation, while taking geometrically nonlinear structural behavior into
account. A quasi-static process is assumed such that no inertia e�ects are considered.

This thesis is structured as follows:

First, in Chapter 2, the historical background and developments as well as the mathemat-
ical foundations of the calculus of variations are presented. Due to its close correlation
to the objectives in this work, the brachistochrone problem, being one of the first prob-
lems solved by variational principles, is employed to motivate the use of a variational
approach.

In Chapter 3, the basics needed for the mechanical analysis of a structure are described.
Therefore, the quantities and principles required for the understanding of the following
chapters are explained in the context of continuum mechanics, and the finite element
method is introduced as the method of choice for discretization and numerical solution.

Afterwards, the novel method of motion design is introduced in Chapter 4. At first, the
problem statement and its basic assumptions are clarified, and the underlying objective
function, i. e., the functional, is presented. The method is derived with the exemplary
objective of minimizing the integral of the strain energy along the entire motion path,
which represents a measure for the cost of deformation and serves as a proof of concept.
Next, the motion design procedure is developed step by step by means of the calcu-
lus of variations. Motion design is based on a discretization of the motion path with
finite elements, in addition to the usual spatial discretization, along with a Newton-
Raphson solution algorithm, which is a second-order optimization scheme. Due to the
path discretization, analytical sensitivities can be calculated by making use of standard
components of the classical finite elements used for spatial discretization, e.g., the tan-
gent sti�ness matrix. The concept of the proposed method is first studied and verified
through simple benchmarking examples, i. e., using problems with known analytical so-
lutions. Next, additional numerical experiments, including instability phenomena and
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inextensional deformations of shells, are investigated in order to gain a more profound
understanding of the functional principle, beneficial features and further potential of the
method.

In Chapter 5, the previously presented basic method of motion design is extended to-
wards including additional constraints into the problem. After a short introduction
into constraint enforcement techniques, various types of constraints that the resulting
motion needs to satisfy are investigated. While it has previously been assumed that
point loads could potentially be applied at every degree of freedom, this can now be
restricted such that the optimized motion may only be realized with certain predefined
load cases. The applicability of this constrained motion design approach is demonstrated
with several numerical experiments. In order to also design motions of structures that
include discrete actuator elements, an actuator element formulation is derived. It en-
ables a straightforward integration into the motion design method. Apart from this,
a positive determinant of the tangent sti�ness matrix can be enforced throughout the
motion, which is illustrated by the introduction of inequality constraints. This leads to
the design of motions that remain stable during an entire load-controlled deformation
process. Finally, it is shown that the di�erent types of constraints can be combined
within one motion design procedure.

Chapter 6 serves to demonstrate possibilities to combine motion design with other con-
cepts to increase the e�ciency of a flexible moving structure. For example, the initial
geometry has a significant influence on the objective function. This is already studied
in compliant structures, as described above. Therefore, motion design is combined with
shape optimization of the initial geometry, and its positive influence is evaluated. Here,
the focus is laid on the choice of possible objective functions. Furthermore, the most
e�cient load cases or actuator locations for the motion can be identified by means of
existing methods for optimal actuator placement. Additionally, several modifications of
the underlying objective function within the method are demonstrated and an approach
for an incremental motion design procedure is presented.

Finally, the method of motion design as well as its further potentials are evaluated
conclusively in Chapter 7, and the findings of this work are summarized.
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2
Fundamentals of the Calculus of
Variations

The goal of motion design, formulated in a more general way, is to find a trajectory
or path between two states that minimizes a particular property of the entire motion.
From this perspective, the objective recalls a historical and groundbreaking problem in
the development of current methods in mechanics. In the year 1696, Johann Bernoulli
(Figure 2.1a) posed a problem to the scientific community of that time. He asked for the
curve of quickest descent, which went down in history as the brachistochrone problem,
from the Greek word brachistos – shortest and chronos – time. The solutions submitted
by important mathematicians formed the basis for today’s calculus of variations and
already contained first approaches to a kind of finite element method, which is today
the method for the calculation of structures.

In this chapter, first, the brachistochrone problem and a short overview of the historical
developments around the published task itself, the involved scientists and their solu-
tion approaches are given. Next, the problem is formulated and the functional of the
brachistochrone is derived. In order to solve this problem, the basics of the calculus of
variations are introduced and finally, the problem is solved analytically.

2.1 Historical background

Here, only a brief summary of the relevant and also interesting events around the brachis-
tochrone problem during that time is given. More detailed information on the his-
tory and the individual approaches can be found in Sussmann and Willems (1997),
Knobloch (2012) and Stein (2018).
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a) b) c) d)

Figure 2.1: Involved scientists in the brachistochrone problem. a) Johann Bernoulli
(1667-1748). b) Gottfried Wilhelm Leibniz (1646-1716). c) Isaac Newton
(1643-1727). d) Jacob Bernoulli (1655-1705).

The occurrences began in the year 1696 with Johann Bernoulli’s “Invitation to all math-
ematicians to solve a new problem” in Figure 2.2 (Bernoulli 1696). He published it in
the journal edited by Gottfried Wilhelm Leibniz (Figure 2.1b), the Acta Eruditorum:

“If in a vertical plane two points A and B are
given, then it is required to specify the orbit AMB
of the movable point M, along which it, starting
from A, and under the influence of its own weight,
arrives at B in the shortest possible time. So that
those who are keen of such matters will be tempted
to solve this problem, is it good to know that it is
not, as it may seem, purely speculative and with-
out practical use. Rather it even appears, and this
may be hard to believe, that it is very useful also
for other branches of science than mechanics. In
order to avoid a hasty conclusion, it should be remarked that the straight line
is certainly the line of shortest distance between A and B, but it is not the
one which is traveled in the shortest time. However, the curve AMB – which
I shall divulge if by the end of this year nobody else has found it – is very
well known among geometers.”

Figure 2.2: Johann Bernoulli’s invitation to solve a new problem (Bernoulli 1696).

In addition to the describing text, he also added a sketch, where he illustrated the
problem. The task was to find the curve between two points A and B on which a mass
point M requires the least time to move frictionlessly from A to B due to gravity.

Bernoulli has set the deadline for the publication of his solution to the end of the year.
However, Leibniz answered him with a letter, where he explained that the problem
“had attracted him against his will and that he hesitated because of its beauty like
Eve before the apple” (Knobloch 2012). At the same time, he also suggested him
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to extend the deadline since the publications reach other countries with a delay of a
couple of months. Bernoulli agreed with the proposal, reformulated and published the
problem again. This time, his task reached more attention than before. Isaac Newton
(Figure 2.1c), who received the problem half a year later, was taken by it. His solution
was published anonymously in the journal Philosophical Transactions in January 1697
(Anonymous 1697). Nevertheless, Johann Bernoulli directly identified the handwriting
“from the claw of a lion (ex ungue leonem)” (Knobloch 2012) as Newton’s.

After the deadline expired, Leibniz published all the received solutions in the May issue
of the Acta Eruditorum (Leibniz 1697). Even though Johann Bernoulli introduced the
brachistochrone problem as a “new problem”, Leibniz discovered that it already had
been solved by Galileo Galilei in the year 1638 in his Discorsi (Galilei 1638). He
discussed Galilei’s solution along with a total of seven submitted solutions from famous
mathematicians. Johann Bernoulli himself presented two solutions with geometrical
and analytical ideas based on a light path in a medium with linearly increasing den-
sity. Due to Leibniz’s confident request, Johann Bernoulli’s always competing brother
Jacob Bernoulli (Figure 2.1d) has also solved the brachistochrone problem using a first
version of the calculus of variations. Leibniz published his own solution as well. It
furthermore included a sketch of another idea, which he did not elaborate further due
to the similarity to Jacob Bernoulli’s approach. Additionally, the publication included
two other solutions from Guillaume de l’Hôpital and Ehrenfried Walther von Tschirn-
haus as well as Newton’s solution, which was reprinted. Here, a special focus is put on
the solution of Jacob Bernoulli and the sketched idea of Leibniz. Bernoulli had already
broken down the problem into a discrete problem in order to get a finite number of
problems of infinitesimal calculus. Furthermore, he introduced triangular test functions
between neighboring points, as can be seen in his original illustration in Figure 2.3a.
For the limit of the distance between the points converging to zero, the solution to the
brachistochrone problem is a cycloid. Leonhard Euler took Bernoulli’s solution as a
basis and extended it to generalized functions using triangular test functions as well.

a) b) c)

Figure 2.3: a) Original illustration from Jacob Bernoulli (Leibniz 1697), b) Leibniz’ orig-
inal figure for his discrete solution (taken from Stein (2018)), c) Illustration
in Schellbach’s publication Schellbach (1851)
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He presented his method in his book from 1744, where he introduced the calculus of
variations (Euler 1744). The idea with the sketch from Leibniz (cf. Figure 2.3b) was
not pursued, but it also contained the division of the continuous problem into a discrete
one. Schellbach took up this idea again in 1851 and finally realized it (Schellbach
1851). His solution, and therefore also Leibniz’ idea, already revealed approaches to a
kind of finite element method, which can be recognized in Figure 2.3c.

2.2 Formulation of the brachistochrone problem

The task, presented by Bernoulli, is to find a curve between two points A and B that
minimizes the required time for a mass point to move from A to B under its own weight.
To solve this minimization problem, a formula is needed that comprises the function for
the curve y(x) as well as the time T . This is achieved by taking the conservation of
energy as a starting point. It requires that the potential energy �pot,A at point A equals
the total energy, i. e., the sum of the kinetic energy �kin and potential energy �pot,
throughout the entire motion

�pot,A = �kin + �pot . (2.1)

By using the definition for the kinetic energy and the potential energy

�kin = 1
2mv2, (2.2)

�pot = mgy(x) , (2.3)

including the mass m, the velocity v and the gravitational constant g, the conservation
of energy can be transformed to

mgyA = 1
2mv2 + mgy(x) (2.4)

with yA being the vertical coordinate of the starting point A and mgyA = const. defining
the reference energy. This can then further be resolved for the velocity

v =
Ú

2g
1
yA ≠ y(x)

2
. (2.5)

Another equation for the velocity is its definition as the derivative of the arc length s
with respect to the time t

v = ds
dt . (2.6)
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The transformation and combination of these two definitions in eq. (2.5) and eq. (2.6)
provides the infinitesimal time

dt = 1
v ds = 1

Ú
2g

1
yA ≠ y(x)

2 ds , (2.7)

and, therefore, the equation for the total required time T

T =
sB⁄

sA

1
Ú

2g
1
yA ≠ y(x)

2 ds . (2.8)

The arc length s still represents an unknown parameter in this equation. This is why it
is calculated with the help of the Pythagorean theorem and the infinitesimal triangle in
the curve as seen in Figure 2.4:

ds =
Ò

dx2 + dy2 =
Û3 dx

dx

4
2

+
3 dy

dx

4
2

dx =
Ò

1 + y Õ(x)2 dx . (2.9)

Furthermore, this step also establishes a relationship between the arc length s, the curve
y(x) and the variable x as well as their infinitesimal increments. By application of the
rules for the substitution of an integral, the total required time can finally be expressed
as

T =
sB⁄

sA

1
Ú

2g
1
yA ≠ y(x)

2 ds =
xB⁄

xA

ı̂ıııÙ
1 +

1
y Õ(x)

2
2

2g
1
yA ≠ y(x)

2 dx . (2.10)

Eq. (2.10) represents the functional of the brachistochrone problem. The peculiarity in
this equation is that the variable itself is a function, namely the function of the solution

A

B

y

x

dy
ds

dx

s

Figure 2.4: Arc length of the brachistochrone curve.
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curve, which is to be found. In the meantime, the well-established method to solve
this type of problem is the calculus of variations, which is presented in the following
section.

2.3 Introduction to the calculus of variations

The calculus of variations is a mathematical tool that enables the calculation of extreme
values of integral quantities. In the following, the basics of the calculus of variations are
presented in order to solve the brachistochrone problem. For more detailed explanations,
it is for example referred to Elsgolc (1970), Clegg (1970) and Gelfand and Fomin
(2000).

The functional of the brachistochrone problem in eq. (2.10), which needs to be mini-
mized, includes the classical characteristics of such functionals. A functional J is a
function that does not only depend on a scalar parameter x , but also on a function y(x)
and its derivative y Õ(x). The argument is, therefore, a function itself. In addition, it
contains an integral and returns a scalar value. Even for multidimensional problems,
the result remains scalar and the functional value for various functions can be compared
directly. The generalized form of a simple functional J is

J{y(x)} =
xB⁄

xA

F
3

x ,y(x),y Õ(x)
4

dx æ min (2.11)

with the boundary conditions

y(xA) = yA , (2.12)
y(xB) = yB . (2.13)

For the problem to be solvable the function y(x) has to be di�erentiable twice between
the bounds xA and xB. A neighboring function ỹ(x), as seen in Figure 2.5 is now
introduced. It di�ers from the solution by the variation ”y(x) of the function y(x),
multiplied by a factor Á:

ỹ(x) = y(x) + Á”y(x) . (2.14)

The variation vanishes at the bounds and must also be twice di�erentiable. As a
consequence, the neighboring function ỹ(x) fulfills the same boundary conditions as
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2.3 Introduction to the calculus of variations

A

B

y

x

y(x) ỹ(x)

Á”y(x)

Figure 2.5: Neighboring function ỹ(x) with the variation ”y(x).

y(x). The functional, depending on the neighboring function, is then defined as

J{ỹ(x)} = J (Á) =
xB⁄

xA

F
3

x ,y(x) + Á”y(x),y(x)Õ + Á”y Õ(x)
4

dx . (2.15)

As the function y(x) represents the solution of the minimization problem, the minimum
is found when Á = 0. The first derivative of the functional with respect to Á, evaluated at
that point, should, therefore, be zero. It is defined as the variation ”J of the functional
J and is calculated using the rules of di�erential calculus

”J := dJ (Á)
dÁ

-----
Á=0

= lim
Áæ0

J{ỹ} ≠ J{y}

Á
= 0 . (2.16)

As in di�erential calculus, the calculus of variations deals with the question of how a
functional behaves in the vicinity of a point. The derivative of a function in di�erential
calculus corresponds to the variation of a functional in the calculus of variation, which
should be zero for extremal values. With the chain rule, it follows that

”J =
xB⁄

xA

S

WWU
dF

3
x ,ỹ(x),ỹ Õ(x)

4

dÁ

T

XXV dx =
xB⁄

xA

C
ˆF
ˆx

ˆx
ˆÁ

+ ˆF
ˆỹ

ˆỹ
ˆÁ

+ ˆF
ˆỹ Õ

ˆỹ Õ

ˆÁ

D

dx (2.17)

and with the evaluation of the individual terms, the variation simplifies to

”J =
xB⁄

xA

C
ˆF
ˆy ”y + ˆF

ˆy Õ ”y Õ
D

dx . (2.18)
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2 Fundamentals of the Calculus of Variations

To move the di�erential operator away from the variation, the second term is partially
integrated

xB⁄

xA

C
ˆF
ˆy Õ ”y Õ

D

dx =
C

ˆF
ˆy Õ ”y

DxB

xA

≠

xB⁄

xA

C
d
dx

A
ˆF
ˆy Õ

B

”y
D

dx . (2.19)

Just like the variation, the boundary term also vanishes, which further simplifies the
variation to

”J =
xB⁄

xA

C
ˆF
ˆy ≠

d
dx

A
ˆF
ˆy Õ

BD

”y dx . (2.20)

Next, the fundamental lemma of the calculus of variations can be applied. It states that
if a function f (x) is continuous in the interval xA Æ x Æ xB and if the condition

xB⁄

xA

f (x)”y(x) dx = 0 (2.21)

is valid for every continuously di�erentiable function ”y(x) with the boundary conditions
”y(xA) = 0 and ”y(xB) = 0, it follows that f (x) = 0 applies for the whole interval. This
leads to the definition of Euler’s equation

ˆF
ˆy ≠

d
dx

A
ˆF
ˆy Õ

B

= 0 , (2.22)

which was first introduced in Leonhard Euler’s book from 1744 (Euler 1744). Expand-
ing the second term

d
dx

A
ˆF
ˆy Õ

B

= ˆ

ˆx

A
ˆF
ˆy Õ

B
ˆx
ˆx + ˆ

ˆy

A
ˆF
ˆy Õ

B
ˆy
ˆx + ˆ

ˆy Õ

A
ˆF
ˆy Õ

B
ˆy Õ

ˆx (2.23)

leads to another form of Euler’s equation

ˆF
ˆy ≠

ˆ2F
ˆxˆy Õ ≠

ˆ2F
ˆyˆy Õ y

Õ
≠

ˆ2F
ˆy Õ2 y ÕÕ = 0 . (2.24)

The function that satisfies this di�erential equation represents the solution to the vari-
ational problem. Like this, the minimization problem in eq. (2.11) is transformed into
a partial di�erential equation. The constants that occur in the calculation can then be
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2.4 Solution to the brachistochrone problem

solved by the application of the constraints

y(xA) = yA , (2.25)
y(xB) = yB . (2.26)

In most engineering applications, functionals come along with constraints. These are
conditions that are imposed on the functions that occur in the functional, which have
to be fulfilled by the solution either at the boundaries or in the entire domain. In the
case of problems in mechanics, which are discussed in the course of this work, these can,
for instance, represent geometric boundary conditions.

2.4 Solution to the brachistochrone problem

With the help of the introduced calculus of variations, a tool to solve minimization
problems, such as the brachistochrone problem, is now available. In this chapter, the
historical brachistochrone problem (cf. Figure 2.2) is solved analytically. It can be
formulated with the previously derived functional in eq. (2.10) as

T =
xB⁄

xA

ı̂ıııÙ
1 +

1
y Õ(x)

2
2

2g
1
yA ≠ y(x)

2 dx æ min .

The starting point for the solution is Euler’s equation (2.24). As the functional only
depends on the function y(x) and its derivative y Õ(x), but not on the variable x itself,
Euler’s equation can be further simplified to

ˆF
ˆy ≠

ˆ2F
ˆyˆy Õ y

Õ
≠

ˆ2F
ˆy Õ2 y ÕÕ = 0 . (2.27)

The multiplication with y Õ(x)

dy
dx

A
ˆF
ˆy ≠

ˆ2F
ˆyˆy Õ y

Õ
≠

ˆ2F
ˆy Õ2 y ÕÕ

B

= d
dx

A

F ≠ y Õ ˆF
ˆy Õ

B

= 0 (2.28)

and a subsequent integration lead to the simplified Euler-equation

F ≠ y Õ ˆF
ˆy Õ = C , (2.29)
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2 Fundamentals of the Calculus of Variations

also called the Beltrami identity. Applying it to the functional of the brachistochrone
problem yields

ı̂ıÙ 1 + y Õ2

2g(yA ≠ y) ≠ y Õ y Õ
Ò

2g(yA ≠ y)(1 + y Õ2)
= 1

Ò
2g(yA ≠ y)(1 + y Õ2)

= C1 , (2.30)

which can be solved for y Õ

y Õ =
Û

1
2gC 2

1 (yA ≠ y) ≠ 1 =
ı̂ıÙ1 ≠ 2gC 2

1 (yA ≠ y)
2gC 2

1 (yA ≠ y) . (2.31)

To solve this di�erential equation, a substitution is necessary. A clever choice is a
combination of trigonometric functions, such as

2gC 2

1
(yA ≠ y) = sin2

A
t̄
2

B

= 1
2

1
1 ≠ cos(t̄)

2
. (2.32)

The resulting equation for y

y = yA ≠
1

2gC 2
1

sin2

A
t̄
2

B

= yA ≠
1

4gC 2
1

1
1 ≠ cos(t̄)

2
(2.33)

represents the ansatz for y, which can then be inserted into eq. (2.31)

y Õ =
ı̂ııÙ

1 ≠ sin2

1
t̄
2

2

sin2

1
t̄
2

2 =
cos

1
t̄
2

2

sin
1

t̄
2

2 = dy
dx (2.34)

to enable the substitution

dx =
sin

1
t̄
2

2

cos
1

t̄
2

2 dy . (2.35)

Additionally, the derivative of y with respect to t̄ is still required

dy
dt̄

= 1
2gC 2

1

sin
A

t̄
2

B

cos
A

t̄
2

B

. (2.36)

The transformation for dy

dy = 1
2gC 2

1

sin
A

t̄
2

B

cos
A

t̄
2

B

dt̄ (2.37)
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2.4 Solution to the brachistochrone problem

can now be inserted into eq. (2.35)

dx =
sin

1
t̄
2

2

cos
1

t̄
2

2 dy =
sin

1
t̄
2

2

cos
1

t̄
2

2
1

2gC 2
1

sin
A

t̄
2

B

cos
A

t̄
2

B

dt (2.38)

= 1
4gC 2

1

1
1 ≠ cos(t̄)

2
dt̄ . (2.39)

As a result, the equation for x and y can be obtained by integration of eq. (2.39) and
eq. (2.37).

y = yA ≠
1

2gC 2
1

sin2

A
t̄
2

B

= yA ≠
1

4gC 2
1

1
1 ≠ cos(t̄)

2
, (2.40)

x = 1
4gC 2

1

1
t̄ ≠ sin(t̄)

2
+ C2 . (2.41)

These equations are the solution to the brachistochrone problem in a parametric form
and represent the equations of a general cycloid. A cycloid is defined as the trajectory
of a point on a rolling circle. It must be noted that the variable t̄ neither represents the
time nor the arc length parameter s, but it is the angle through which a rolling circle
has rotated, a point of which generated the curve (x(t̄),y(t̄)). However, the substitution
in eq. (2.32) already required some knowledge about the solution.

The constants C1, C2 as well as the parameter value t̄end at point B are derived by the
boundary conditions of the starting point A and the end point B

x(t = 0) = xA , (2.42)
x(t̄ = t̄end) = xB , (2.43)
y(t̄ = t̄end) = yB . (2.44)

These boundary conditions represent nonlinear functions themselves that need to be
solved iteratively. Only the condition y(t̄ = 0) = yA is fulfilled by definition of the
problem. Exemplary values are given for the starting point xA = 1.0, yA = 5.0 and the
endpoint xB = 10.0, yB = 2.0 (calculated for simplicity with a rounded gravitational
constant g = 10)

C1 = 0.116 C2 = 1.0 t̄end = 4.05 (2.45)

The corresponding curve with the prescribed points A and B is given in Figure 2.6.

The focus of this chapter was set on the calculus of variations, its historical development,
its fundamentals and the solution of one of the best-known problems, the brachistochrone
problem. First, the history of this problem was presented, where Johann Bernoulli,
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2 Fundamentals of the Calculus of Variations

A

B

y

x

Figure 2.6: The cycloid as the solution of the brachistochrone problem.

Gottfried Leibniz and Jacob Bernoulli played a crucial role. The latter provided in his
solution of the brachistochrone problem the basis for the development of the calculus
of variations by Leonhard Euler. Thereupon, the functional of the brachistochrone
problem was derived employing the conservation of energy. After the fundamentals of
the calculus of variations were introduced and the derivation of Euler’s equation was
presented, the brachistochrone problem could be solved analytically with a di�erential
equation.

This problem formulation of the brachistochrone can be taken as a simplified template
for what is intended to be done in motion design. The goal is to find a path between
two configurations, e. g., the points A and B or an open and a closed geometry of an
adaptive element, that fulfills specified demands like minimization of the total required
time, energy or e�ort for traversing from A to B, or any other objective for the entire
path. In the case of the brachistochrone, it was solved with the calculus of variations.
This method is also used for the motion design of structures, which will be explained
in detail in Chapter 4. The two configurations are the initial geometry of the structure
and a desired final geometry.
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3
Fundamentals of Continuum
Mechanics and Finite Element
Formulation

This chapter deals with the fundamentals for the analysis of structures that are needed
for the formulation of the motion design method. First, the boundary value problem
is presented with basic concepts of continuum mechanics. This includes the kinematic
equations, the relations to various stress measures, the constitutive equations as well
as the governing equations for the static equilibrium of structures. Since an analytical
solution to the resulting di�erential equations can only be found in exceptional cases,
the finite element method is afterwards introduced as a numerical solution method.
It is based on the division of both the solution and the structure into elements, the
discretization. The finite element method nowadays represents the most widely used
method for the solution of the governing equations for the analysis of structures.

3.1 Continuum mechanics and boundary value problem

Here, a brief introduction into the basics of nonlinear continuum mechanics is given.
Furthermore, the boundary value problem as a starting point for further derivations is
presented. Continuum solid mechanics describes the deformation of a solid body due
to external forces and correlates this deformation and the strains with the resulting
stresses by a material law. In the following, the kinematic equations, which describe
the kinematics and deformation of a solid body in space, as well as the stress measures
and material law, are described. Next, the static equilibrium equation together with
the boundary conditions are presented. These equations represent the boundary value
problem of solid mechanics. As its weak form is more accessible to methods of numerical
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3 Fundamentals of Continuum Mechanics and Finite Element Formulation

solution techniques, it is derived by the method of weighted residuals. This leads to the
definition of the principle of virtual work. Alternatively, it can also be obtained from
the minimum potential energy principle by a variational formulation.

This chapter is not intended to provide extensive insight into the topic, but rather to
give an overview of the relevant quantities and equations for the investigations of this
work. For further literature, the reader is referred to Marsden and Hughes (2012),
Holzapfel (2010) and Belytschko et al. (2014).

3.1.1 Kinematics

In continuum mechanics, the correct representation of large deformations plays a sub-
stantial role. Here, the kinematic relationships that describe the deformation are pre-
sented here. Figure 3.1 shows a body in its reference configuration � with the boundary �
and the deformed current configuration �c. For the representation of the deformation
process in the three-dimensional space, a Lagrangian point of view is usually chosen. In
doing so, the kinematics and deformation of a body are described via the position of its
material points throughout the deformation process.

The position of a material point is defined by the position vector X in the reference
configuration and x in the current configuration, respectively. The displacement vector u
represents the connection between these configurations and is calculated by the di�erence
of their position vectors

u = x ≠ X . (3.1)

e1

e3

e2

X

x

u

Reference configuration
Current configuration

�

�c

�

�c

Figure 3.1: Reference and current configuration of a solid body in space.
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3.1 Continuum mechanics and boundary value problem

In this work, the total Lagrangian approach is pursued, in which all quantities are defined
with respect to the reference configuration. Therefore, the position vector X represents
an independent variable and the problem is solved for the unknown displacements u.

The fundamental quantity to describe the resulting strains in solid mechanics is the
deformation gradient F. It is defined as the partial derivative of the position vector in the
current configuration with respect to the position vector in the reference configuration

F = ˆx
ˆX = I + ˆu

ˆX (3.2)

with the identity tensor I. It can also be interpreted geometrically as the factor of the
length change of an infinitesimal line element between the two configurations, i. e.,

dx = F · dX . (3.3)

Similarly, the relationship between infinitesimal volume elements can be established by
the deformation gradient as

dv = det F dV = J dV . (3.4)

The transformation happens with the determinant of F, the so-called Jacobian determi-
nant J . In addition to the mapping of lengths and volumes, the deformation gradient
also allows for the mapping of oriented infinitesimal area elements. These can be in-
terpreted as vectors dA, which are defined as the area dA multiplied with the normal
vector N onto the area. This leads to dA = dAN for the reference configuration
and da = dan for the current configuration, respectively. The transformation can be
conducted with Nanson’s formula

da = JF≠T
· dA . (3.5)

Consequently, the deformation gradient plays a significant role as a strain measure.
However, it is not invariant with respect to rigid body motions, which leads to the need
for another strain measure. Since this work primarily deals with problems with large
deformations, but small strains, the Green-Lagrange strain measure, a commonly used
strain measure in solid mechanics, is chosen. With the help of the deformation gradient,
the Green-Lagrange strains are defined as

E = 1
2(FTF ≠ I) . (3.6)

When the nonlinear terms of the Green-Lagrange strains are neglected, they reduce to
the common linear engineering strains.
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3 Fundamentals of Continuum Mechanics and Finite Element Formulation

3.1.2 Stress measures and constitutive laws

External forces and the resulting deformation lead to internal stresses. These can be
correlated to the traction on an area element of a body by the Cauchy theorem

t = ‡ · n . (3.7)

It includes the traction vector t acting on an area with the normal vector n and the
Cauchy stress tensor ‡. The latter contains all the information about the internal stress
state. In the case of the Cauchy stress tensor, this stress state is also referred to as the
true stress state, because the involved quantities are related to the current configuration
– the current force on the corresponding area element of the current configuration.
Alternative stress measures refer to quantities of the reference configuration. The first
Piola-Kirchho� stress tensor P, for example, maps the current force onto an area element
in the reference configuration. It is derived with the help of Nanson’s formula (eq. 3.5)
from the Cauchy stress tensor

P = J‡ · F≠T . (3.8)

Similarly, the second Piola-Kirchho� stress tensor S additionally maps the force into
the reference configuration and is related to the other stress measures by

S = JF≠1
· ‡ · F≠T = F≠1

· P . (3.9)

The Cauchy stress tensor as well as the second Piola-Kirchho� stress tensor are sym-
metric. This symmetry follows from the balance of angular momentum. Unlike the
Cauchy stress, the values of the first and second Piola-Kirchho� stress tensor can not
directly be physically interpreted. A so-called push forward operation, a transformation
of the quantities from the reference to the current configuration, is required to obtain
the Cauchy stress and, therefore, the true stress state.

The relationship between the stress and the strain measures is established by the consti-
tutive law, also known as material law. Despite the numerous stress and strain measures,
however, they can not be combined arbitrarily. They form pairs that are energetically
conjugated to each other. The value of the strain energy needs to be the same for every
energetically conjugate pair of stress and strain measures. As already mentioned, the
Green-Lagrange strain is chosen as strain measure in this work. The energetically con-
jugate stress measure is the second Piola-Kirchho� stress tensor. They can, for example,
be related by the linear elastic St. Venant-Kirchho� material law

S = C : E (3.10)
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3.1 Continuum mechanics and boundary value problem

with the fourth-order material tensor C. It results from the internal strain energy
density

Wint = 1
2⁄(tr E)2 + µE : E (3.11)

as the second derivative with respect to the Green-Lagrange strain

C = ˆ2Wint(E)
ˆEˆE . (3.12)

Due to the symmetry of S and E as well as the use of an isotropic material, the material
tensor C only contains two independent parameters. These are the Lamé parameters ⁄

and µ, which correlate with the commonly used Young’s modulus E and Poisson’s ratio
‹ via

⁄ = E‹

(1 + ‹)(1 ≠ 2‹) and µ = E
2(1 + ‹) . (3.13)

Beside the linear St. Venant-Kirchho� material model, there also exist other, more
complex, nonlinear hyperelastic material models. With the general concept of variational
motion design being independent of the choice of the particular constitutive law, also
such hyperelastic models could be used. However, these are not implemented within the
scope of this work and, therefore, not further presented at this point.

3.1.3 Static equilibrium equation and boundary conditions

The initial boundary value problem of nonlinear solid mechanics can now be formulated
with the help of the introduced kinematic and stress quantities. The equilibrium equa-
tion, which relates the external and internal forces acting on a body, forms the basis for
the formulation. It can be derived from the balance of linear momentum. In this work,
only static problems are considered. Thus, the inertia terms are neglected and the static
equilibrium equation on the whole domain is

Div P + b̂ = 0 , (3.14)

with the vector of the external body forces b̂. In addition to static equilibrium, initial
and boundary conditions have to be satisfied. In static problems, the definition of
boundary conditions is su�cient. They are applied on the boundary � of the domain,
which is divided into the disjoint Neumann boundary �N and Dirichlet boundary �D
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3 Fundamentals of Continuum Mechanics and Finite Element Formulation

with the relations

�N fi �D = � and �N fl �D = ? . (3.15)

The Neumann boundary conditions are also referred to as traction boundary conditions.
With the application of the Cauchy theorem (eq. 3.7) in the reference configuration and
the given traction vector t̂, they take the form

P · N = t̂ on �N . (3.16)

On the other hand, displacements are prescribed on the Dirichlet boundary

u = û on �D . (3.17)

The boundary conditions in eq. (3.16) and eq. (3.17), together with the static equilibrium
in eq. (3.14), represent the boundary value problem. The combination of these three
equations is considered as the strong form of the problem as it is enforced at every point
of the entire domain.

3.1.4 Principle of virtual work and minimum potential energy
principle

An analytical solution of the boundary value problem in its strong form can only be
found in special cases. This leads to the need for a numerical solution method. The finite
element method, which is further explained in Section 3.2, represents such a solution
method, but it requires a weak form of the boundary value problem. The weak form
can be derived from static equilibrium (eq. 3.14) and the Neumann boundary conditions
(eq. 3.16) by applying the method of weighted residuals. In this method, the involved
equations are cast into a residual form, multiplied with a test function ”u, the virtual
displacements, and integrated over the domain

”� =
⁄

�0

(Div P + b̂) · ”u d� +
⁄

�N

(t̂ ≠ PN) · ”u d� = 0 . (3.18)

This is also the definition of the principle of virtual work. It states that a geometri-
cally compatible virtual displacement field on a mechanical system in equilibrium does
not cause any virtual work. Using partial integration, Gauss’ divergence theorem, the
transformation of the first to the second Piola-Kirchho� stress and the definition of the
Green-Lagrange strain, the principle of virtual work from eq. (3.18) can alternatively be
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3.1 Continuum mechanics and boundary value problem

written as

”� = ≠

⁄

�0

”E : S d�

¸ ˚˙ ˝
”�int

+
⁄

�0

”u · b̂ d� +
⁄

�N

”u · t̂ d�

¸ ˚˙ ˝
”�ext

= 0 . (3.19)

Here, the internal virtual work ”�int and external virtual work ”�ext can be identified.

Another derivation of equilibrium results from the minimum potential energy principle.
It states that the total energy, i. e., the sum of the internal and the external energy, of
a mechanical system becomes minimal in the state of equilibrium

�tot = �int + �ext = min . (3.20)

With the definition for the internal and external energy

�int = ≠

⁄

�

1
2S : E d� , (3.21)

�ext =
⁄

�

u · b̂ d� +
⁄

�N

u · t̂ d� (3.22)

the potential energy, which needs to be minimized, can be derived as

�tot = ≠

⁄

�

1
2S : E d� +

⁄

�

u · b̂ d� +
⁄

�N

u · t̂ d� = min . (3.23)

This is the functional of the potential energy and contains the typical main characteris-
tics of a functional as explained in the previous chapter. One of them is the argument,
which represents a function instead of a scalar parameter. In the case of the poten-
tial energy functional, this function, which needs to be solved for, is the displacement
field u. Following the methods of variational calculus, the variation with respect to the
displacement u has to be zero

”�tot = ≠

⁄

�

”E : S d� +
⁄

�

”u · b̂ d� +
⁄

�N

”u · t̂ d� = 0 . (3.24)

By a transformation of the variation in eq. (3.24), the equilibrium in eq. (3.14) and the
Neumann boundary conditions in eq. (3.16) the boundary value problem can, in turn, be
derived. In doing so, it can be seen that the Neumann boundary conditions are directly
introduced into the minimum potential energy principle by taking the boundary term
in the external energy into account. The Neumann boundary conditions are natural
boundaries as they result automatically from the solution of eq. (3.24). The Dirichlet
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boundary conditions, however, represent essential boundary conditions and need to be
considered in the further derivation.

The derived variation in eq. (3.24) also corresponds to the principle of virtual work from
eq. (3.19). The two principles are therefore equivalent, but with the condition that the
minimum potential energy principle can only be derived for problems in which such a
potential �tot actually exists. The principle of virtual work, on the other hand, can also
be applied for problems without a potential, as in cases that include plasticity, frictional
sliding or non-conservative loading. It is therefore more general.

Both derivations, however, lead to the weak form of the boundary value problem, where
the equilibrium, as well as the Neumann boundary conditions, are fulfilled in an integral
way. Furthermore, in the weak form, the highest degree of derivative reduces compared
to the boundary value problem itself. This leads to lower requirements regarding the
di�erentiability of the solution function u for a subsequent numerical solution. All in
all, the weak formulation of the boundary value problem in solid mechanics can be
reformulated in a compact manner as: Find the displacement field u, representing the
solution function, such that ”�(u) = 0 for any test function ”u.

3.2 Spatial discretization and finite element formulation

The equations of the boundary value problem in the weak form are so far continuous.
This means that a displacement field u is searched for that satisfies the weak form for
any test function ”u. If such a displacement field is found, then the corresponding
di�erential equations are fulfilled exactly at each material point. Since in the field
of mechanics, an analytical solution can be found only in very few cases, numerical
methods are applied for the solution of the underlying partial di�erential equations.
In this work, the finite element method (FEM) is used to solve the boundary value
problem or, in this case, the weak form of the boundary value problem from eq. (3.19)
or eq. (3.24). In this numerical method, the domain, as well as the solution function,
is discretized. Thus, the continuous function is converted into a discrete problem with
a finite number of evaluation points, the nodes, where discrete unknown variables are
defined and solved for by algebraic equations. Between these points, the values are
interpolated and approximated by so-called shape functions. Within the scope of this
work, displacement-based finite elements, where only the displacements u are the sought-
after solution functions, are primarily used.

In this section, the discretization of the domain and the displacement field within the
isoparametric concept is introduced. Next, the requirements for the shape functions
to guarantee convergence of the finite element method are presented. Afterwards, the
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chosen nonlinear solution technique, the Newton-Raphson method with a linearization
of the residual, is described. Further literature on the finite element method is for
example given in the textbooks by Hughes (2000), Zienkiewicz and Taylor (2006)
and Belytschko et al. (2014).

3.2.1 Isoparametric concept

As already mentioned, the basic idea of the finite element method is to transform the
continuous problem into a discrete problem with a finite number of degrees of freedom.
For this purpose, the domain � is divided into a finite number nele of subdomains �e,
the so-called finite elements

� ¥ �h =
nele€

e=1

�e . (3.25)

Herein, �h represents the discrete approximation of the whole domain by the subdo-
mains �e, which are assembled using the assembly operator t. Each finite element is
defined by a number nnd,ele of nodes per element. The individual elements are connected
via these nodes that are shared by neighboring elements. Between the nodes, the nodal
values of the discrete functions are interpolated by nnd,ele shape functions N within the
element. Consequently, the approximation of the unknown displacement field u within
an element is

ue(X) ¥ ue,h(X) =
nnd,eleÿ

k=1

Nk(X)dk = N(X)de . (3.26)

This defines a discrete approximation of the displacement field inside each element, the
ansatz function. The vectors dk are the nodal values of one element. In the case of the
displacement approximation, they represent the nodal displacement values, the degrees
of freedom, which are located at the nodes of the elements. The matrix N and the
vector de collect the shape functions, or the degrees of freedom, respectively, of one
element. Usually, the shape functions are defined in a natural coordinate system ›

of a single reference element or a group of reference elements, a so-called patch. The
mapping between the natural coordinate system and the Euclidian coordinate system,
in which the whole domain is defined, is represented by a Jacobian matrix Je = ˆXe

ˆ› .
The approximation of u then transforms into

ue,h(›) =
nnd,eleÿ

k=1

Nk(›)dk = N(›)de . (3.27)
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In addition to the solution functions, the test functions also need to be discretized. In
the Bubnov-Galerkin approach that is pursued in this work, the virtual displacements
”u are approximated with the same shape functions

”ue,h(›) =
nnd,eleÿ

k=1

Nk(›)”dk = N(›)”de . (3.28)

Finally, the geometry of the reference configuration is discretized as well. Within the
isoparametric concept, this is performed with the same shape functions

Xh(›) =
nnd,eleÿ

k=1

Nk(›)Xk = N(›)Xe . (3.29)

If these three discretizations of the displacement field, the virtual displacement field and
the geometry are carried out, all further quantities, e. g., the strain and stress measures,
can also be described in a discrete form. To obtain a system of equations that contains all
degrees of freedom D of a given problem, the nodal values of the elements are assembled
via the previously introduced assembly operator

D =
nele€

e=1

de . (3.30)

The isoparametric concept builds the basis for most finite element formulations in sci-
entific and commercial software. Especially the definition of the shape functions in
the natural coordinate system, i. e., the parameter space, has proven to be e�cient.
It enables a simple description of distorted element shapes by the Jacobian and has
advantages in numerical integration.

Special attention is also paid to the type of shape functions. Mainly Lagrange shape
functions with trilinear or bilinear functions are widespread due to e�ciency reasons.
However, also shape functions of higher order are used, among others, in the field of p-
FEM. In recent years, a strong development concerning the isogeometric concept, where
Non-Uniform Rational B-Splines (NURBS) are used as shape functions, is recognizable
(Cottrell et al. 2009). These allow for a better approximation of the geometry as
well as the solution functions attributable to a higher degree of continuity. The men-
tioned shape functions di�er in e�ciency, their approximation capability, polynomial
degree and di�erentiability. Depending on the problem, they must meet specific re-
quirements. Their continuity within and between the elements plays an important role,
which will be explained in more detail in the next section.
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3.2 Spatial discretization and finite element formulation

3.2.2 Convergence requirements

In the previous section, the isoparametric concept within the finite element method was
presented. Here, an approximated numerical solution of a di�erential equation is found
by employing a discretization of the domain with finite elements. With the number of
elements also the number of degrees of freedom increases. A numerical method is called
convergent if the numerical solution approaches the analytical solution of the underlying
di�erential equation. Thus, with a constant polynomial degree p, a more and more
accurate solution and approximation are expected with an increasing number of degrees
of freedom. The theorem of Lax-Wendro� states that convergence of a finite element
method is ensured if it is consistent and stable. The first requirement, consistency, is
guaranteed by completeness and compatibility. These two factors, in particular, impose
requirements on the shape functions. A decisive factor here is the variational index n.
It is defined as the highest derivative of the unknown function occurring in the weak
form.

Completeness means that the shape functions are able to exactly reproduce functions
up to a polynomial order of p = n.

Compatibility, on the other hand, requires at least C n-continuity within the element and
at least C n≠1-continuity between the elements.

A function, whose nth derivative is continuous, is called C n-continuous. For the most
standard displacement-based elements, based on the principle of virtual work, the varia-
tional index is n = 1, as only first derivatives appear in the weak form. The shape func-
tions should, therefore, contain at least linear polynomials. Additionally, C 0-continuity
is required between the elements. The functions should thus have the same value at
connecting nodes and along a connecting edge, but are allowed to have a kink at the
element transition. The requirements on shape functions change according to the type
of structural theory and, therefore, according to the weak form.

Stability is secured by a su�cient integration order and a regular element shape, which
is characterized by a positive Jacobian determinant.

If the conditions for stability are not met, zero energy modes can occur. On the other
hand, particularly the rule of su�cient integration order can be relaxed to avoid unde-
sired unphysical e�ects, such as locking. More information on these e�ects can be found
in Boffi et al. (2013).
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3.2.3 Discretized weak form, linearization and solution procedure

With the discretization and the shape functions, which satisfy the described require-
ments, an approximated solution of the weak form of the boundary value problem can
be found. In the following, tensor notation is replaced by matrix notation in a Voigt-
representation of the main quantities for an improved readability. For reasons of com-
prehensibility, the principle of virtual work (eq. 3.19) or the variation of the potential
energy (eq. 3.24) is repeated here in matrix notation:

”�tot = ≠

⁄

�

”ETS d� +
⁄

�

”uTb̂ d� +
⁄

�N

”uTt̂ d� = 0 . (3.31)

By applying the St. Venant-Kirchho� material law from eq. (3.10), which establishes a
relationship between the Green-Lagrange strains and the second Piola-Kirchho� stress
tensor, the following representation is obtained

”�tot = ≠

⁄

�

”ETCE d� +
⁄

�

”uTb̂ d� +
⁄

�N

”uTt̂ d� = 0 . (3.32)

This is the variational formulation of the problem that is to be solved for the unknown
displacements. The solution is carried out with a transformation from the continuous
form into a set of algebraic equations by the discretization of the displacements (eq. 3.27)
and their variations (eq. 3.28).

Discretized form of the equilibrium equation

In order to obtain the discretized form of the equilibrium equation, the variations of the
discretized quantities are derived with the rules of calculus of variations. Due to the dis-
cretization, the nodal values of the displacements d represent the unknown parameters.
For the discretized virtual displacements, it therefore follows

”u =
3

ˆu
ˆd

4
”d = N”d , (3.33)

”uT = ”dT

3
ˆu
ˆd

4
T

= ”dTNT . (3.34)

The variation of the strains is also required for the first term, which contains the internal
virtual work. The strains depend in turn on the displacements and are derived with the
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same rules

”E =
3

ˆE
ˆd

4
”d = B”d , (3.35)

”ET = ”dT

3
ˆE
ˆd

4
T

= ”dTBT . (3.36)

The derivative of the strains with respect to the displacement values is defined as the
strain-displacement-operator B. The discretization also divides the integration domain.
Therefore, the integration takes place on element level. Accordingly, the weak form of
the boundary value problem is transformed into

neleÿ

e=1

A ⁄

�e

”dTBTCE d� ≠

⁄

�e

”dTNTb̂ d� ≠

⁄

�N,e

”dTNTt̂ d�
B

= 0 . (3.37)

The Dirichlet boundary conditions, which specify the displacements on the displacement
boundary �D, are introduced here by the choice of the ansatz functions. They are defined
such that they satisfy the boundary conditions, i. e., ”d = 0 and d = d̂ on �D. As the
nodal values of the displacements only contain discrete values and no functions, they
can be extracted from the integrals

neleÿ

e=1

”dT

A ⁄

�e

BTCE d�

¸ ˚˙ ˝
fint

≠

⁄

�e

NTb̂ d� ≠

⁄

�N,e

NTt̂ d�

¸ ˚˙ ˝
≠fext

B

= 0 . (3.38)

Herein, the internal and external forces on element level can be identified as

fint(d) =
⁄

�e

BTCE(d) d� , (3.39)

fext =
⁄

�e

NTb̂ d� +
⁄

�N,e

NTt̂ d� , (3.40)

which can be assembled via the assembly operator to the global vectors of internal and
external forces

Fint(D) =
nele€

e=1

fint(d) and Fext =
nele€

e=1

fext . (3.41)

The internal forces depend nonlinearly on the displacements, whereas the external forces
are independent of the displacement field in a conservative loading situation. Similarly,
the values on element level are assembled to the global vector of degrees of freedom D.
With these definitions, eq. (3.37) can be written, using the global vector of degrees of
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freedom, as

”DT(Fint(D) ≠ Fext) = 0 . (3.42)

The values of the virtual nodal displacements ”D may take any value. Therefore, the
static equilibrium condition can be expressed in the discretized residual form as

R(D) = Fint(D) ≠ Fext = 0 , (3.43)

and thus represents a set of nonlinear algebraic equations.

Linearization and system of equations

In this thesis, the Newton-Raphson method is applied for the solution of the nonlinear
equation (3.43). It is an iterative method that is based on a linearization of the nonlinear
algebraic equations of the residual and on a solution of the resulting linear system of
equations. The unknown quantities, in this case the nodal displacements, are iteratively
updated until a prescribed convergence criterion is met.

The starting point is the linearization of the residual. This corresponds to a Taylor
series expansion with a truncation after the linear term, i. e.,

LIN R = R + ˆR
ˆD�D = 0 . (3.44)

The required derivative of the residual is defined as the tangent sti�ness matrix. As the
external forces do not depend on the displacements in conservative loading situations,
the derivative can be restricted to the internal forces. On element level, it follows for
the element tangent sti�ness matrix

kT = ˆfint

ˆd =
⁄

�e

3
BTCB + ˆB

ˆd S
4

d� . (3.45)

Therein, two terms can be distinguished and interpreted. The first term

keu = ke + ku =
⁄

�e

BTCB d� (3.46)

is the combination of the elastic sti�ness matrix ke and the so-called initial displace-
ment sti�ness matrix ku. The elastic sti�ness matrix corresponds to the sti�ness of the
undeformed reference configuration, whereas the initial displacement sti�ness matrix
includes the sti�ness change resulting from the geometry change by deformation. The
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second term

kg =
⁄

�e

ˆB
ˆd S d� (3.47)

is called the geometric or initial stress sti�ness matrix and takes the sti�ness change due
to the incorporated stresses in the structure into account.

The global tangent sti�ness matrix is obtained from the element tangent sti�ness ma-
trices via the assembly operator

KT =
nele€

e=1

kT . (3.48)

By insertion of the tangent sti�ness into the linearization in eq. (3.44), the global lin-
earized system of equations is derived

KT�D = ≠R . (3.49)

This is the linear system of equations that needs to be solved in each iteration step within
the Newton-Raphson method. The result is the numerically approximated displacement
field for which the resulting internal forces equal the given external forces, i. e., the
deformation satisfying the equilibrium conditions. The converged solution, therefore,
corresponds to an equilibrium point (EP).

Solution techniques for quasi-static problems

For quasi-static problems, it is assumed that the load is applied so slowly that dynamic
e�ects do not play a significant role. Usually, not only the final equilibrium point EPend

of a structure under a certain load is relevant, but also the complete equilibrium path
until the final load is reached is of interest. Furthermore, if only the end point EPend of
the deformation is searched for, the Newton-Raphson method for solving the nonlinear
equation (3.43) may diverge already in the case of moderately nonlinear problems. To
improve convergence, the problem is typically solved incrementally. Here, additional
equilibrium points EPi are computed along the equilibrium path until the sought-after
final equilibrium point is reached. The solution process is illustrated in Figure 3.2.
For every increment, a converged equilibrium point EPi is obtained iteratively with
the Newton-Raphson method. This equilibrium point serves as the starting point, the
predictor, for computation of the next point EPi+1. With this procedure, the equilibrium
path, and thus, the complete deformation process is successively determined. To describe
the progress of the solution process, a scalar parameter, the so-called pseudo-time t is
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Fext

D

EPi

EPend

t = 0

t = 1

EPi+1

equilibrium path

Figure 3.2: Illustration of the incremental determination of the equilibrium path.

introduced. It is zero (t = 0) at the beginning of the deformation and usually takes the
value t = 1 at the end of the deformation.

There exist several path-following methods, where di�erent incremental quantities are
controlled throughout the solution process. In a load-controlled path-following method,
the load is divided into increments, the load steps. For every load step, a corresponding
equilibrium point is computed. Here, the pseudo-time is associated with a load factor,
which describes the subsequent increase of the external load for the solution. On the
contrary, in a displacement-controlled path-following method, it describes the controlled
displacement degree of freedom. When using the arc length method for path-following,
the arc length of the equilibrium path between the evaluated equilibrium points is con-
trolled. However, these methods are not discussed further at this point. Similarly, there
are much more elaborate techniques to obtain a good predictor state for the next load
step. Nevertheless, again, the reader is referred to the corresponding literature for fur-
ther details of such procedures (see Hughes (2000), Zienkiewicz and Taylor (2006)
and Belytschko et al. (2014)).

36



4
Motion Design as a Variational
Formulation

In this chapter, the new method of motion design of structures is presented. First,
the basic concept, including the approach and the assumptions for motion design, is
elaborated. Based on that, the mathematical framework of the method is developed,
starting with the functional and its variation. The solution methods that are used
here are the same as for structural finite elements, but specific di�erences to this kind
of problem need to be considered. Therefore, an additional discretization to the well-
known spatial discretization with finite elements, the discretization of the motion path,
is introduced. Also in the case of motion design, the Newton-Raphson method is chosen
as solution procedure for the nonlinear algebraic equations. It requires a consistent
linearization and leads to a linear system of equations that is to be solved in each
iteration step. Furthermore, numerical experiments illustrate the working principle and
allow for the interpretation of the potential of the motion design method.

4.1 Basic concept of motion design

Motion design is a method to calculate an optimal deformation path between two pre-
scribed geometric configurations of a structure with respect to a given objective function.
For further explanation, this is illustrated with an exemplary two-bar truss, forming a
shallow arc (see Figure 4.1). It is supposed to deform from an initial configuration,
shown in black, to a target configuration, shown in blue. In motion design, the optimal
deformation trajectory (red) that connects these two geometries is searched for. This
scenario is obviously inspired by the bi-stable setup of a snap-through problem. The
blue target configuration, however, is not the stress-free snapped-through configuration
of the black one, but deviates from it by a horizontal shift of the central node. At the
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P
Õ

P

3
.0

3
.0

10.0 9.0

E = 30000
A = 0.1

1.0

Material and cross-section

Figure 4.1: Illustration of the motion design concept with the example of a two-bar truss.

end of the deformation, the midpoint P should therefore have moved downwards and
also sideways to the position P Õ.

This given task resembles a lot the brachistochrone problem, which was introduced in
Chapter 2. The two geometric configurations at the start and the end of the deformation
process correspond to the points A and B (see Figure 2.2). In the brachistochrone prob-
lem, the connection or path between these points that fulfills the prescribed requirement
is searched for. This requirement, i. e., the functional, represented the minimization of
the total time to traverse the connecting path. Also in the case of motion design, the
curve between two configurations that minimizes a particular property is to be found.
Due to this analogy, the same solution method, the variational calculus, is chosen for the
development of the method of motion design. The underlying functional is presented in
the following section.

The problem formulation does not include the equilibrium conditions. However, equi-
librium is enforced within a post-processing step after the optimized deformation path
has been found by motion design. With the resulting deformation, the internal forces
can be calculated for the entire deformation process. To ensure equilibrium, these are
then identified with the external forces, which in turn represent the loads required to
realize the optimized deformation path obtained by motion design. One output of the
method is, therefore, the evolution of the external loads throughout the deformation
process that are required to follow the optimized motion trajectory.

In the exemplary two-bar truss from Figure 4.1, the structure contains two unconstrained
degrees of freedom at the midpoint, the horizontal and the vertical displacement. It is
therefore assumed that forces can be applied on both of them, i. e., a vertical point
load as well as a horizontal point load, to reach the end configuration. More generally
speaking, the basic motion design method is based on the assumption that a point
force can potentially be applied at every degree of freedom. However, when considering
real structures, e. g., in civil or aerospace engineering, there may be severe restrictions
on the number of degrees of freedom to which external forces can actually be applied,
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since some form of actuator is required at each such degree of freedom. This is why an
extension of the basic motion design method will be introduced in Chapter 5, in which
this limitation will be handled and resolved. Furthermore, the method and applications
in this work are restricted to quasi-static problems, where inertia e�ects are neglected.
The following contents in this chapter are closely related to the publication Sachse
and Bischoff (2020).

4.2 Formulation of the motion design functional

At the beginning of the motion design process, the objective function, i. e., the func-
tional, needs to be defined. This functional defines the property that shall be assigned
to the entire motion. A lot of possible objective functions can be specified. Keeping
in mind that the method of motion design is developed to be applied for an e�cient
deformation or movement of adaptive structures, energy considerations represent a rea-
sonable approach for a potentially suitable objective function. The advantage of such
considerations regarding the energy is that they are also qualified for analyses of plant
movements, as energy e�ciency plays a crucial role in motions in nature.

For example, a measure for the e�ort to deform a structure can be defined and mini-
mized with the presented motion design method. Such a measure is comparable to the
dimensionless quantity cost of transport that is used in various disciplines like biology
or robotics. It represents a measure to quantify the cost or energy e�ciency of various
transport methods, i. e., walking, swimming or flying of an animal or moving a vehicle
from one location to another location. In this context, it is transferred to a cost of
deformation for flexible structures, where also an energy criterion based on the internal
strain energy is utilized. This cost of deformation is intended to represent a quantity for
the required e�ort to deform a given flexible structure. It is defined in the following and
taken as exemplary functional for the development of the motion design method in this
section. In a next step, Euler’s equation of a simple motion design problem is solved,
following the approach of variational calculus.

4.2.1 Integrated internal energy as cost of deformation

One point that greatly contributes to a structure’s e�ciency is how much the material
is stretched and, therefore, also stressed. The energy measure that gives a quantifiable
information about this is the internal strain energy �int in eq. (3.21). However, the
internal energy is path-independent and only depends on the current deformation of the
structure. In order to still have a measure that takes the entire deformation process into
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account, the integrated internal energy over the complete motion path s is chosen as
the relevant objective function in this work. Thereupon, the functional to be minimized
is

J =
⁄

s
�int ds æ min . (4.1)

If it is assumed that it requires e�ort to deform a structure and maintain the deformed
configuration and the associated internal stress state, this functional in eq. (4.54) pro-
vides an intuitive measure for the described cost of deformation. Incidentally, it is
pointed out that this functional serves as a proof of concept and can be replaced by
other objectives for a designed motion.

With the definition of the internal energy by a conjugate pair consisting of the Green-
Lagrange strain tensor E and the second Piola-Kirchho� stress tensor S, as well as the
insertion of a linear elastic St. Venant-Kirchho� material law for the assumption of small
strains (but large displacements and rotations) in matrix notation, the functional follows
as

J =
⁄

s

⁄

�

1
2ETS d� ds =

⁄

s

⁄

�

1
2ETCE d� ds æ min . (4.2)

In the example of the two-bar truss, the point P follows the trajectory (red) until it
arrives at the end position P Õ, as can be seen in Figure 4.2a. Figure 4.2b shows a
diagram, where the internal energy is plotted over the two displacement degrees of
freedom D1 and D2. Here, the yet unknown trajectory of the point P (red) can be
identified within the plane that is spanned by the axes D1 and D2. The corresponding
internal energy throughout the entire deformation process is obtained by a projection of

D1

D2

�int

D2

D1

J

P
P

Õ

trajectory of P

P
Õ

P

trajectory of P

a) b)

Figure 4.2: Exemplary two-bar truss. a) Initial and end configuration with trajectory of
point P. b) Visualization of the functional.
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the trajectory onto the plotted surface. The area that is spanned by the projection can
then be identified as the value of the functional. Consequently, motion design aims at
finding the trajectory that minimizes this area and, therefore, the cost of deformation.

4.2.2 Motion path and normalized arc length

The deformation is described by the displacement field u (cf. Figure 4.3). The length of
the path, along which the internal energy of the structure is integrated, can be associated
with the arc length of this displacement field of the underlying motion, which in turn is
a function of the position X of the structure as well as the progress of the motion, the
pseudo time t

u(X,t) =

S

WWU

u1(X,t)
u2(X,t)
u3(X,t)

T

XXV . (4.3)

In order to consider the motion in its entirety within the functional, the internal energy
is integrated over the deformation path s. This deformation path s represents a scalar
measure that indicates how much the structure has already moved and deformed. Unlike
the pseudo-time or the physical time t, it does not proceed independently, but is directly
coupled to the deformation. Consequently, it is defined here as the arc length of the
displacement field u(X,t). But since it still depends on the position X, the mean value
of the displacement arc length over the whole spatial domain � is employed. Based on
the same derivation as in the brachistochrone problem (see Figure 2.4 and eq. (2.9)), an
infinitesimal arc length can then be specified for a three-dimensional problem as

ds = 1
V

⁄

�

Ò
du2

1 + du2
2 + du2

3 d� (4.4)

displacement field u

undeformed geometry �

deformed geometry

Figure 4.3: Illustration of the displacement field.
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with V being the total volume of the domain, which can be integrated in order to obtain
the total arc length stot =

s
ds. The arc length of the deformation of an initial geometry

to a deformed end configuration strongly depends on how the resulting displacement field
u changes throughout the motion. In the illustrating example of the two-bar truss, the
arc length is calculated as follows: Because this problem involves only two degrees of
freedom that are located at one node, the arc length represents the trajectory length of
the point P multiplied by half of the length of the connecting bars. Accordingly, the arc
length or trajectory of a direct connection between P and P Õ is di�erent from one that
takes a detour that might be beneficial for the functional value.

However, the internal energy is integrated over the arc length in the functional. As this
arc length is initially unknown, the integration bounds are not fixed, but remain un-
known, as it was the case in the brachistochrone problem. Therefore, another parameter
must be introduced that indicates the motion progress, but provides fixed integration
bounds. As has been discussed in Section 3.2, such a parameter indicating the motion
progress is usually already known in quasi-static structural analysis, namely the pseudo-
time t, which typically runs from t = 0 to t = 1. This idea is adopted in the context
of motion design and the path parameter is re-defined as a normalized arc length of the
deformation path. To distinguish the definition of the pseudo time in motion design
from the real time or other definitions of the pseudo time in path-following methods,
the normalized arc length is referred to as s̄ in the following. At the beginning of the
deformation, it is set to s̄ = 0 and it takes the value s̄ = 1 when the end configuration
is reached. To also use this path parameter as integration parameter, a substitution
becomes necessary

su⁄

0

(. . .) ds =
1⁄

0

(. . .) ds
ds̄ ds̄ =

1⁄

0

(. . .)su ds̄ . (4.5)

The mapping function su can be interpreted as a kind of velocity with respect to the
path parameter s̄ (instead of time t) and is, therefore, referred to as pseudo-velocity. It
can be written in the following ways

su := ds
ds̄ =

1

V
s

�

Ò
du2

1 + du2
2 + du2

3 d�
ds̄

= 1
V

⁄

�

ı̂ıÙ
A

du1

ds̄

B
2

+
A

du2

ds̄

B
2

+
A

du3

ds̄

B
2

d�

= 1
V

⁄

�

Ò
u2

1,s̄ + u2
2,s̄ + u2

3,s̄ d� .

(4.6)
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The minimization problem with the functional then transforms to

J =
1⁄

0

⁄

�

1
2ETCE d�su ds̄ æ min . (4.7)

4.2.3 Solution of Euler’s equation of a motion design problem

As has been done for the brachistochrone problem, the functional of motion design,
where the internal energy is used as the cost of deformation in eq. (4.7), can also be
solved by using Euler’s equation from eq. (2.24). This shall be illustrated with a sim-
ple structure. However, the illustrating example of a two-bar truss from Figure 4.1 is
not used here as the exemplary system. Due to the special character of the problem
that incorporates snap-through in the deformation process, the optimal deformation
path might not be smooth. Therefore, it is not ideally suited for an analytical solu-
tion. Instead, another example is introduced in Figure 4.4, which is more accessible to
analytical solution techniques. The midnode P of the illustrated two-bar truss (black)
is to be moved sideways to arrive at the prescribed end configuration (blue). Here,
the horizontal degree of freedom is defined as the x-coordinate D1 = x . The vertical
displacement degree of freedom can then be described as a function of x as D2 = y(x).
Based on these definitions, the solution curve, i. e., the trajectory of the point P, takes
the form of a classical function.

P P
Õ

D1 = x

D2 = y(x)

1 2

3
.0

4.0

E = 1000
A = 0.1

Bar 1:
L1 = 3, Lx1 = 0, Ly1 = 3

Bar 2:
L2 = 5, Lx2 = 4, Ly2 = 3

Figure 4.4: Illustrating example for the solution of Euler’s equation for motion design.
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4 Motion Design as a Variational Formulation

With the Green-Lagrange strains of both bars

E1 = 1
2

(L1x + x)2 + (L1y + y(x))2
≠ L2

1

L2
1

, (4.8)

E2 = 1
2

(L2x ≠ x)2 + (L2y + y(x))2
≠ L2

2

L2
2

, (4.9)

the internal energy can be determined for this example as

�int = 1
2E1EE1AL1 + 1

2E2EE2AL2 . (4.10)

Due to the formulation of the degrees of freedom D1 and D2 as variable x and a function
of this variable y(x), the infinitesimal arc length can be computed in the same manner
as in the brachistochrone problem as

ds =
Ò

dx2 + dy2 =
Û3 dx

dx

4
2

+
3 dy

dx

4
2

dx =
Ò

1 + y Õ(x)2 dx . (2.9)

Mapping the parameter for the integration is not necessary in this case, as the integration
domain of x from x = 0 to x = 4 is prescribed. The functional then results to

J =
4⁄

0

31
2E1EE1AL1 + 1

2E2EE2AL2

4 Ò
1 + y Õ(x)2 dx . (4.11)

The general form of the used Euler’s equation is repeated at this point for reasons of
clarity and comprehensibility

ˆF
ˆy ≠

ˆ2F
ˆxˆy Õ ≠

ˆ2F
ˆyˆy Õ y

Õ
≠

ˆ2F
ˆy Õ2 y ÕÕ = 0 . (2.24)
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4.2 Formulation of the motion design functional

Application of eq. (2.24) to eq. (4.11) leads to the strong form of motion design for the
problem in Figure 4.4

A

E1EAL1y + y(x)
L1

+ E2EAL2y + y(x)
L1

B Ò
1 + y Õ(x)2

≠

A

E1EAL1x + x
L1

+ E2EA≠L2x + x
L1

B
y Õ(x)

Ò
1 + y Õ(x)2

≠

A A

E1EAL1y + y(x)
L1

+ E2EAL2y + y(x)
L1

B
y Õ(x)

Ò
1 + y Õ(x)2

B

y Õ(x)

≠

A

≠

31
2E1EE1AL1 + 1

2E2EE2AL2

4 y Õ(x)2

Ò
(1 + y Õ(x)2)3

+
31

2E1EE1AL1 + 1
2E2EE2AL2

4 1
Ò

1 + y Õ(x)2

B

y ÕÕ(x) = 0 .

(4.12)

The resulting equation represents a di�erential equation, which can hardly be solved
analytically. Therefore, the method of finite di�erences is used for obtaining a numerical
solution. In this method, the domain of the variable x is divided into multiple parts and
the di�erential quotient is replaced by a di�erence quotient. To get an approximated
curve in a su�ciently high resolution, the domain is divided into 100 parts. Figure 4.5
shows the solution curve (red) on the real system (a) and in a scaled graph (b). The
red solution curve is the trajectory of the midpoint P that minimizes the functional. To
minimize the internal energy throughout the entire motion, it follows an unsymmetric
S-shaped trajectory attributable to the initial unsymmetric configuration with di�erent
bar lengths.

P P
Õ

x

y

1.0 2.0 3.0 4.0
0.00

≠0.05

≠0.10

≠0.15

≠0.20

≠0.25

0.05

a) b)

Figure 4.5: Solution curve of Euler’s equation for motion design. a) Motion path illus-
trated a) in the structure and b) in a scaled graph.
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4 Motion Design as a Variational Formulation

4.3 First variation of the motion design functional

4.3.1 Continuous variation

Following the methods of variational calculus, the first variation of the motion design
functional is derived. The Green-Lagrange strains E as well the pseudo-velocity su are
functions of the unknown displacements. Therefore, the first variation is computed
according to the chain rule with respect to these quantities and set equal to zero

”J =
1⁄

0

A ⁄

�

”ETCE d�su +
⁄

�

1
2ETCE d�”su

B

ds̄ = 0 . (4.13)

The next step is the introduction of the discretization. As this method is to be applied
for motions of flexible structures, the geometry as well as the displacement field are
spatially discretized with finite elements in the following.

4.3.2 Introduction of the spatial discretization

Spatial degrees of freedom

As in structural analyses, the obtained continuous variation in eq. (4.13), representing
a di�erential equation, is solved with finite elements. The spatial discretization has
already been introduced in Section 3.2 and is also applied at this point. However,
there is a significant di�erence: In motion design, the displacement degrees of freedom
are still functions of the normalized arc length s̄, which describes the dependency of
the deformation on the motion progress, i. e., the deformation path. The approximated
semidiscrete displacement field obtained by the spatial discretization can then be written
for one finite element as

ue,h(›,s̄) = N(›)de(s̄) . (4.14)

The global spatial displacement degrees of freedom, which also still depend on the path
parameter s̄, are again obtained by an assembly operation

D(s̄) =
nele€

e=1

de(s̄) . (4.15)

This dependency on the normalized arc length also holds for the variations of the local
and global degrees of freedom ”d(s̄) and ”D(s̄), respectively.
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4.3 First variation of the motion design functional

Pseudo-velocity

The definition of the pseudo-velocity from eq. (4.6) can also be expressed in a spatially
discretized form. As it is defined for the entire spatial domain, not only for one finite
element, the discretized infinitesimal arc length transforms into a function of the global
degrees of freedom D(s̄). First, the lengths of the trajectories of the individual nodes of
the spatial discretization are generated. According to eq. (4.6), the pseudo-velocity of
one node then follows as

su,k =
ı̂ıÙ

ndisp,ndÿ

i
Dik,s̄(s̄)2 , (4.16)

with ndisp,nd being the number of displacement degrees of freedom per node. Simply
building the mean value of all nodal displacement velocities results in a dependency of
the spatial discretization. Therefore, a mean value, in this case the root mean square,
of the nodal trajectory lengths is determined, taking into account the influence volume
Vk of each individual node k, as illustrated in Figure 4.6. The root mean square can
then be computed as

su =
ı̂ıÙ 1

V

nndÿ

k
Vks2

u,k , (4.17)

representing the spatially discretized pseudo-velocity. It can be seen in eq. (4.16) and
eq. (4.17), that the pseudo-velocity depends on the derivative of the displacements and
not on the displacements themselves. Thus, the variation needs to be considered with
respect to the derivative of the global displacement degrees of freedom

”su =
A

ˆsu

ˆD,s̄

B
T

”D,s̄ . (4.18)

influence volume Vk

node k

trajectory of node k

Figure 4.6: Illustration of a nodal trajectory and the influence volume.
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4 Motion Design as a Variational Formulation

It includes the gradient of su di�erentiated after the derivatives of the global displace-
ments. For a concise notation, the following short notations for the derivatives of the
pseudo-velocity with respect to the spatial parameters are introduced as

su := ˆss
u

ˆD,s̄
, (4.19)

Su := ˆ2ss
u

(ˆD,s̄)2
. (4.20)

4.3.3 Semidiscrete variation with a discretization in space

The discretized variations derived above can now be inserted into the continuous varia-
tion from eq. (4.13). The spatially discretized variation then follows as

”J =
1⁄

0

A neleÿ

e=1

⁄

�e

”dTBTCE d�su +
neleÿ

e=1

⁄

�e

1
2ETCE d�(su”D,s̄)

B

ds̄ , (4.21)

with the strain-displacement-operator B = ˆE/ˆd. Again, it has to be kept in mind
that the displacement degrees of freedom d = d(s̄) and their variations ”d = ”d(s̄),
included in the Green-Lagrange strains E, are still functions of the path parameter s̄.
By rearranging the equation, the internal forces Fint and the internal energy �int, both
still continuous in s̄ as well, can be identified and the variation results in

”J =
1⁄

0

3
”DTFintsu + (”D,s̄)Tsu�int

4
ds̄ . (4.22)

This represents the semidiscrete variation of the motion design functional.

4.4 Discretization of the motion path

The just derived semidiscrete variation of the motion design functional is already dis-
cretized in space. However, the spatial degrees of freedom D(s̄) are still functions of
the path and still continuous in the deformation process, i. e., in the normalized path
parameter s̄. Therefore, a second discretization, the path discretization, is required for
the development of the motion design method. It can also be denoted as a discretization
of motion. Thus, the fully discretized variation is derived in the following.
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4.4 Discretization of the motion path

4.4.1 Introduction of the path discretization

In the motion path discretization, the deformation path, parametrized by the normalized
arc length s̄ œ [0,1], is subdivided into n̄ele path finite elements in the same manner as
in the spatial discretization

s̄ ¥ s̄h =
n̄ele€

e=1

s̄e . (4.23)

For distinction of the two discretizations, variables referring to the path discretization are
marked with a bar ¯(•). Furthermore, numberings are indicated with a superscript instead
of a subscript. The elements are also defined by n̄nd,ele nodes and the approximated
quantities are interpolated between the nodes by shape functions N̄ as in the spatial
discretization. These shape functions can either be defined in the normalized parameter
space s̄ œ [0,1] or they can be transformed by a Jacobian. In this case, the approximated
functions are the global spatial degrees of freedom D(s̄), which were, until now, still
continuous in the path parameter s̄. At this point, they are discretized in the motion:

De(s̄) ¥ De
h(s̄) =

n̄nd,eleÿ

k=1

N̄ k(s̄)d̄k = N̄(s̄)d̄e . (4.24)

Here, the vector d̄e comprises the local degrees of freedom, located at the nodes of one
path element. The nodes of the path discretization represent the di�erent deformed geo-
metric configurations during the motion. This includes the initial geometry, intermediate
deformed configurations and the end geometry. Consequently, in the motion discretiza-
tion, the deformed configurations are interpolated by the shape functions throughout the
deformation process. Therefore, the nodal degrees of freedom of the path discretization
simply contain the global spatial degrees of freedom of the deformation state s̄k

d̄k = Dk = D(s̄k) (4.25)

and the vector of the local degrees of freedom for a path element results as

d̄e =

S

WWWWWWWWWWWU

D1

D2

...
Dk

...
Dn̄nd,ele

T

XXXXXXXXXXXV

(4.26)
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4 Motion Design as a Variational Formulation

containing n̄nd,ele subvectors. The vector of the global degrees of freedom including both
discretizations is obtained by assembly

D̄ =
n̄ele€

e=1

d̄e (4.27)

and is constructed in this case of n̄nd subvectors

D̄ =

S

WWWWWWWWWWWU

D1

D2

...
Dk

...
Dn̄nd

T

XXXXXXXXXXXV

, (4.28)

where n̄nd is the total number of nodes in the motion path discretization. As a conse-
quence, the number of total degrees of freedom results to

n̄dof = n̄nd · ndof . (4.29)

Accordingly, this path discretization is one-dimensional as it has only one direction, the
motion progress from s̄ = 0 to s̄ = 1. When a natural coordinate ›̄ is used for the shape
functions, a Jacobian J̄ = ds̄/d›̄ needs to be calculated for the derivatives. This happens
in the same way as in the spatial discretization and is explained in Section 3.2. With
an increasing number of degrees of freedom in space, the path forms a one-dimensional
subspace within an ndof-dimensional hyperspace. In general, various types of functions
can be used for interpolation, such as Lagrange polynomials, B-splines or NURBS. Due
to the presence of the arc length in the variation, first derivatives of the approximated
functions are included in the variation and the variational index is n = 1. Therefore, at
least C 0-continuous functions are required.

This motion path discretization is again visualized in the example of the two-bar truss as
shown in Figure 4.7a. Here, the structure contains two displacement degrees of freedom
D1 and D2, which are comprised in the vector Dk of the deformed configuration at the
path node k

Dk =
C
Dk

1

Dk
2

D

. (4.30)

The deformation path is exemplarily discretized with four elements and linear shape
functions. As only the midpoint can move during the deformation, the trajectory of
point P represents the deformation path and is, therefore, approximated with path
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4.4 Discretization of the motion path

elements. The vectors of the degrees of freedom for all four path elements then follow
as

d̄1 =

S

WWWWU

D0

1

D0

2

D1

1

D1

2

T

XXXXV
d̄2 =

S

WWWWU

D1

1

D1

2

D2

1

D2

2

T

XXXXV
d̄3 =

S

WWWWU

D2

1

D2

2

D3

1

D3

2

T

XXXXV
d̄4 =

S

WWWWU

D3

1

D3

2

Dend

1

Dend

2

T

XXXXV
(4.31)

and assembled to the global vector of degrees of freedom

D̄ =
Ë
D0

1
D0

2
D1

1
D1

2
D2

1
D2

2
D3

1
D3

2
Dend

1
Dend

2

È
T

. (4.32)

In the initial configuration, the displacement values are zero (D0

1
= 0 and D0

2
= 0) and

at least a part of the final displacements needs to be prescribed. Here, the values are
given as Dend

1
= 6 and Dend

2
= 1. Thus, the end geometry is completely described and

the internal energy of this configuration is fixed. The method for motion design aims
to modify the displacements of the intermediate configurations such that the resulting
area of the functional J illustrated in Figure 4.7b is minimized.

One issue with the motion design problem described so far is its potential ill-posedness
for special cases. Within the path discretization, nodes may be located anywhere on
the trajectory, while still approximating the same curve. This can easily be understood
when imagining a trajectory in the form of a straight line. A similar issue is well-
known, for instance, in shape optimization and form finding problems of thin-walled
structures, where nodes can be dislocated in-plane without changing the geometry. Thus,
the solution is not unique and the problem needs to be regularized. A corresponding
regularization can be realized by either enforcing a uniform path element size or by

D1

D1

D2

�int

D2 D3

J

Dend

P

P
Õ

D1

D2

D3

Dend

D0

a) b)

Figure 4.7: Exemplary two-bar truss with path discretization. a) Discretized motion
path. b) Visualization of the discretized functional.
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4 Motion Design as a Variational Formulation

controlling the increments of a specified displacement degree of freedom throughout the
deformation process. This aspect is further elaborated in the Section 4.5.3.

At first glance, the motion path discretization might resemble the approach of dynamic
problems with space-time elements, where the time dimension is also discretized by finite
elements. Nonetheless, on closer inspection, these two approaches are fundamentally
di�erent, since the arc length depends on the deformation of the structure, whereas time
remains an independent and autonomous value. Another di�erence lies in the application
of the two approaches. While space-time elements are mostly used to calculate and
represent dynamic problems containing inertia e�ects, the motion path discretization is
developed for quasi-static loading situations and static problems. This influences the
required element size, as dynamic e�ects, which can potentially be missed by using a
too coarse time discretization, do not play a role in motion design problems.

4.4.2 Path-discretized variation of the motion design functional

The semidiscrete variation in eq. (4.22) can now be fully discretized with the motion
path discretization. It also includes the derivatives of the displacements with respect to
the path parameter D,s̄ and their variations ”D,s̄, which are calculated as

De
h,s̄ = N̄,s̄d̄e (4.33)

”De
h,s̄ = N̄,s̄”d̄e . (4.34)

The approximated functions D, their variations ”D and derivatives can now be inserted
into the semidiscrete variation. By setting it to zero, the minimization problem of motion
design follows as

”J =
n̄eleÿ

e=1

⁄

s̄e

3
”d̄TN̄TFintsu + ”d̄TN̄T

,s̄su�int

4
ds̄ = 0 . (4.35)

Transforming the equation by removing the discrete variables ”d̄ from the integral and
applying the discrete fundamental lemma of variational calculus yields the local residual
rmd,e of motion design for each path element

re
md

(d̄) =
⁄

s̄e

3
N̄TFintsu + N̄T

,s̄su�int

4
ds̄ . (4.36)
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4.5 Solution procedure for motion design problems

It has to be noted that this local residual is defined for the whole spatial domain, but
only on one path element. Through assembly

Rmd =
n̄ele€

e=1

re
md

, (4.37)

the total residual Rmd for the entire motion path is obtained, which is set equal to zero

Rmd(D̄) = 0 . (4.38)

This represents the nonlinear residual equation that needs to be solved in motion design.
The solution process is explained in the following section.

4.5 Solution procedure for motion design problems

The resulting discretized residual of motion design in eq. (4.38) was just derived from
the functional and its variation. This nonlinear equation resembles a lot the residual
equation for equilibrium in eq. (3.43), which has been solved with the Newton-Raphson
method. Because of the similarity of both residual equations, the solution of the mo-
tion design problem is obtained with the same method. The following derivations are
closely related to those in Section 3.2. Consequently, the nonlinear residual equation is
solved iteratively by linearization and repeated solution of the resulting linear system
of equations until convergence is reached.

4.5.1 Linearization and global system of equations

The residual is linearized by carrying out a Taylor series expansion and truncating it
after the linear term

LIN Rmd = Rmd + ˆRmd

ˆD̄
�D̄ = 0 . (4.39)

In the equilibrium residual, the gradient with respect to the discrete displacement pa-
rameters represents the tangent sti�ness matrix KT of the structure. Here, a di�erent
residual is di�erentiated with respect to di�erent displacement parameters and the gra-
dient in eq. (4.39) can, therefore, not be interpreted as a sti�ness. However, there are
familiar terms due to the relatedness of some expressions. As the global spatial displace-
ment parameters depend on the parameters of the path discretization, the chain rule is
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4 Motion Design as a Variational Formulation

applied for the terms

ˆFint

ˆd̄
= ˆFint

ˆD
ˆD
ˆd̄

= KTN̄ , (4.40)

ˆ�int

ˆd̄
= ˆ�int

ˆD
ˆD
ˆd̄

= FintN̄ , (4.41)

ˆsu

ˆd̄
= ˆsu

ˆD,s̄

ˆD,s̄

ˆd̄
= suN̄,s̄ , (4.42)

ˆsu

ˆd̄
= ˆsu

ˆD,s̄

ˆD,s̄

ˆd̄
= SuN̄,s̄ . (4.43)

The gradient on path element level, representing a Hessian matrix for motion design
kmd = ˆre

md
ˆd̄ , then follows as

ke
md

=
⁄

s̄e

3
N̄TKTsuN̄ + N̄TFintsuN̄,s̄ + N̄T

,s̄suFintN̄ + N̄T

,s̄�intSuN̄,s̄

4
ds̄ . (4.44)

By standard assembly operations, the Hessian matrix on the global level Kmd is deter-
mined

Kmd =
n̄ele€

e=1

ke
md

. (4.45)

These definitions lead to the linearized system of equations

Kmd�D̄ = ≠Rmd . (4.46)

Within the framework of the Newton-Raphson method, this linearized system of equa-
tions is built and solved in each iteration until the parameters do not show a significant
change anymore, the residual norm is close to zero and thus, convergence is reached.
Note that with this system the entire problem is solved monolithically, instead of incre-
mentally proceeding along the path. On convergence of the iterative solution method,
all intermediate configurations along the path are obtained in one go.

This system depends on the employed spatial finite element formulation as it includes the
tangent sti�ness matrix of the structure and the internal forces. However, all ingredients
can be combined in a modular manner. Thus, it does not pose any problem to use various
element types, like mixed elements or elements with isogeometric spatial discretizations.
Additionally, also the matrix N̄ with the shape functions for the path discretization
can include any shape functions, not only linear Lagrange polynomials, as displayed
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4.5 Solution procedure for motion design problems

in Figure 4.7a, but also B-splines. These can often better approximate the path with
fewer points and therefore save degrees of freedom, which is attributable to their higher
continuity.

Furthermore, the question may arise whether the method of motion design could also
be carried out with independent and constant path increments, i. e., not considering
the displacement arc length. This would then resemble the time incrementation within
space-time finite elements. However, such an approach would fundamentally a�ect the
structure of the functional. In particular, the internal energy would not be integrated
over the arc length s of the displacement field anymore, as it has been the case in
eq. (4.54), but directly over a dimensionless path parameter. In other words, the map-
ping function su would therefore not be included in the functional and the path pa-
rameter would represent a totally independent path discretization instead. Due to its
constant and independent definition, this dimensionless parameter would not contain
any information about the actually covered deformation of the structure per path ele-
ment. However, since it is integrated over this parameter, the odd result would be a
motion that is squeezed into just one single path element, while the remaining path ele-
ments would not contribute to the motion anymore. Of course, this would also lead to a
minimization of the functional. Still, the fundamental goal of motion design would not
be met, because the path increments would not adequately resolve the motion. There-
fore, the arc length with its real information about the deformation must be included
in order to obtain physically meaningful results.

4.5.2 Verification and interpretation of resulting optimized motions

This section serves as proof of concept for demonstrating the e�ectiveness of the path
discretization as well as for verifying and understanding the resulting motions. To keep
things simple, the example setups already introduced before will be revisited.

Path-discretized brachistochrone problem

The principle of path discretization can also be applied to the solution of the brachis-
tochrone problem, which was presented in Section 2.2 and already solved analytically
with Euler’s equation in Section 2.4. The obtained result now serves as a reference so-
lution. The solution of the brachistochrone problem represents a special case of motion
design. Since no spatial discretization is required, the motion design problem and the
application of the path discretization simply reduces to a finite element solution of the
underlying variational formulation. In this case, the unknown approximated functions
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4 Motion Design as a Variational Formulation

are the coordinates x and y of the solution curve. This requires the functional, i. e., the
total required time in eq. (2.11), to be formulated in a parametric form

T =
sB⁄

sA=0

1
Ú

2g
1
yA ≠ y(s)

2 ds , (4.47)

The parameter s again represents the path parameter, while the upper integration
bound, i. e., the length of the resulting curve, is unknown. Therefore, the mapping
parameter s̄, the normalized arc length, is used and the mapping function is derived for
the brachistochrone problem as

su =
Ò

x Õ(s̄)2 + y Õ(s̄)2 . (4.48)

Inserting this into the functional yields

T =
1⁄

0

ı̂ıÙ x Õ(s̄)2 + y Õ(s̄)2

2g
1
yA ≠ y(s̄)

2 ds̄ . (4.49)

The variation of this functional is formulated with respect to the unknown functions
x(s̄) and y(s̄) as well as their derivatives and is set to zero:

”T =
1⁄

0

Q

a
ı̂ııÙ

x Õ2 + y Õ2

8g
1
yA ≠ y

2
3
”y + x Õ”x Õ + y Õ”y Õ

Ú
2g

1
yA ≠ y

21
x Õ2 + y Õ2

2”x Õ

R

b ds̄ = 0 . (4.50)

It represents the weak form of the brachistochrone problem. The next steps follow the
standard procedure of a finite element formulation. First, a discretization for x and y
as well as their variations ”x and ”y are introduced

x ¥ xh = N̄x , ”x ¥ ”xh = N̄”x , (4.51)
y ¥ yh = N̄y , ”y ¥ ”yh = N̄”y , (4.52)

where the matrix N̄ contains the path element shape functions and the vectors x, y, ”x
and ”y comprise discrete nodal values of the unknown functions x and y, respectively.
In this case, all functions are discretized with the same number of finite elements and
shape functions, following the Bubnov-Galerkin approach. Inserting the discretization
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into the variation yields the discretized weak form of the brachistochrone problem

”T =
1⁄

0

Q

a
ı̂ııÙ

(N̄Õx)2 + (N̄Õy)2

8g
1
yA ≠ N̄y

2
3

N̄”y + N̄ÕxN̄Õ”x + N̄ÕyN̄Õ”y
Ú

2g
1
yA ≠ N̄y)

21
(N̄Õx)2 + (N̄Õy)2

2

R

b ds̄ = 0 .

(4.53)

By moving the vectors ”x and ”y out of the integral and applying the discrete form of
the fundamental lemma of the calculus of variations, a residual equation is obtained.
After linearization, it can be solved iteratively using the Newton-Raphson method for
the nodal values x and y, which provide an approximation for the solution functions x
and y in a parametric form. Here, path discretization does not represent a deformation
path, of course, but instead the required trajectory of the mass point to minimize the
required time to move from A to B.

Starting point of the solution process is the predictor, which represents in this and the
following cases a simple linear interpolation between the points A and B or between the
initial and end configuration, respectively. During the iterations within the Newton-
Raphson scheme, this linear curve converges towards the illustrated solution curve. Fig-
ure 4.8a shows the solution curve with a path discretization with linear Lagrange shape
functions and 15 elements. As the parametrization of the curve, and thus, the placement
of the nodes along the solution curve, is not unique, equal length of the path elements
is enforced to regularize the problem formulation. The additional constraint is enforced
by Lagrange multipliers. This aspect is further elaborated in Section 4.5.3. It can be
seen that the solution with finite elements and linear shape functions approximates well
the exact reference curve (grey) obtained in Section 2.4, but, due to the C 0-continuous
linear shape functions, it still contains kinks. The number of degrees of freedom is twice
the number of internal nodes (x- and y-coordinate at each node). An improvement of
the approximation is possible by using an interpolation with B-spline-functions. This
can be seen in Figure 4.8b, where the solution for a discretization with two path ele-

A

B

y

x

b)
A

B

y

x

a)

Figure 4.8: Solution to the brachistochone problem with finite elements. Solution curve
with a) linear Lagrange shape functions and b) B-splines.

57



4 Motion Design as a Variational Formulation

ments and cubic shape functions is illustrated. The higher continuity enables a better
approximation without kinks and fewer internal nodes, thus resulting in fewer degrees
of freedom.

Study on a kinematic bar structure with rigid body rotations

The new variational approach for motion design, especially the influence of the path
discretization, is now studied on a simple bar structure. Specifically, one single truss
element (Young’s modulus E = 100000, cross-section area A = 1, length L =

Ô
2) is

modeled and supported at one node (see Figure 4.9). The other node remains uncon-
strained such that the structure can perform a kinematic motion, i. e., a rigid body
rotation around the supported node. In this example, the vertical displacement of the
second node is prescribed and also controlled throughout the motion to assure the re-
quired regularization. Furthermore, the horizontal displacement remains variable during
the motion as well as in the target configuration. Thus, it can adapt such that a quar-
ter circle can be followed. Accordingly, the exact analytical solution of the presented
motion design method with the underlying functional represents a circular trajectory of
the moving point. This motion does not cause any deformation of the bar, no internal
energy is built up, and consequently, the functional value of the optimized motion cor-
responds to J = 0, which is to be expected for a pure rigid body movement. Therefore,
the analytical solution of motion design is known for this example and the setup can be
interpreted as a benchmark test.
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J = 6.38 J = 0.36 J = 0.02

a) b) c)

Figure 4.9: Convergence study of the path discretization. Motion path discretized with
a) four, b) eight and c) sixteen elements.
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4.5 Solution procedure for motion design problems

Resulting motions with di�erent path discretizations are illustrated in Figure 4.9a-c,
where the path discretization is refined from left to right. All motions are computed
with path elements approximated by linear shape functions. It can be observed that the
unsupported node in the intermediate configurations does not lie directly on the exact
trajectory (red). This especially happens when using a coarse discretization, since the
minimum of the internal energy over the motion path is only fulfilled in an integral way.
However, a finer discretization using more path elements leads to a better approximation
of the exact solution curve, the prescribed arc. Also, it can be seen that the functional
value converges to zero with an increasing number of path elements.

This qualitative convergence study illustrates the approximation behavior of the motion
path discretization. It is further extended and supported by a quantitative analysis in
Section 4.7.5, while other kinematic structures are investigated in Section 4.7.1.

Comparison with the semi-analytical solution obtained by Euler’s equation

In Section 4.2.3, the motion design problem was solved semi-analytically for a simple
example with two bars (see Figure 4.4). The strong form of the motion design functional
of this example was calculated by Euler’s equation and solved numerically by finite
di�erences. In doing so, a reference solution was obtained. At this point, this shall be
compared to the solution obtained with the presented motion design method.

For this purpose, the path is discretized by five, ten and twenty elements with linear
Lagrange shape functions. As the points of the path discretization can be placed any-
where on the trajectory and still approximate the same curve, the distance between the
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Figure 4.10: Comparison of numerical motion design solutions to the analytical reference
curve. Discretized motion path illustrated a) in the structure and b) in a
scaled graph.
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4 Motion Design as a Variational Formulation

points in the x-direction, the horizontal displacement of the midpoint, is fixed while the
vertical displacement can be varied.

It can be seen in Figure 4.10 that the point P follows the same trajectory as in the
reference solution for every path discretization. The more path elements are used, the
better the reference solution is approximated. This serves as a qualitative verification of
convergence of the proposed motion design method. A quantitative convergence study
of this structure will be carried out in Section 4.7.5.

Optimized motion of the exemplary two-bar truss

At the beginning of this chapter, the illustrating example of a two-bar truss was intro-
duced in Figure 4.1. To solve this problem using the motion design method, the path is
discretized with 14 linear finite elements. As already indicated in the brachistochrone
problem in Subsection 4.5.2, a predictor needs to be chosen for the solution process.
The simplest possible choice of a predictor represents a linear interpolation between the
initial and final geometry as seen in Figure 4.11a, whereas other predictors may also be
selected. Since one evaluation of the problem results in the entire path, the predictor
must also correspond to a complete motion. The linearly interpolated motion yields a
functional value of J = 491.

Using the motion design method, an optimized motion path is found within nine it-
erations and a convergence tolerance of 10≠8 in the L2-norm of the residual in the
Newton-Raphson loop, while equal length of the path elements is enforced by Lagrange
multipliers. In terms of the integrated internal energy, it is apparently more advanta-
geous to first enforce a purely vertical snap-through, followed by a horizontal movement
(as opposed to following the straight path of the linear predictor motion), as is illus-
trated in Figure 4.11b. The functional value reduces to J = 183. This is visualized in
the two diagrams in Figure 4.11c/d. In the three-dimensional plot, which has already
been introduced in Figure 4.2b and Figure 4.7b, the internal energy is plotted over the
two spatial degrees of freedom. Here, the two di�erent midpoint trajectories of the pre-
dictor motion as well as the optimized motion are identified in the D1-D2-plane. The
resulting spanned areas between these trajectories on the bottom plane and their corre-
sponding internal energy represent the values of the functional. The plot demonstrates
the di�erence between the two motions: The spanned area of the optimized motion is
much smaller than the area of the predictor motion, thus illustrating the decrease of the
functional value. Furthermore, the diagram in Figure 4.11d shows a projection of these
surfaces, where the internal energy is plotted versus the respective total arc length. It
can be seen that the total arc length of the two motions di�er because the midpoint
trajectories vary in their lengths. However, even though the arc length of the optimized
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4.5 Solution procedure for motion design problems

motion is larger than in the predictor motion, this proposed detour actually leads to
a smaller accumulated internal energy throughout the motion. Therefore, the motion
design method yields an optimized motion in a purely formalized way without the need
to put any engineering expert knowledge into the analysis.

The snap-through characteristics can also be detected in the progress of the internal
energy for the final solution. After snap-through, the internal energy vanishes, because
the length of the bars now matches the length in the initial configuration. Since the
whole end geometry is prescribed, the last value of the internal energy is the same in
the predictor state and the solution state. With the method for motion design, it is
not possible to influence the internal energy in the end configuration (in case it is fully
prescribed), but only what happens until the desired end configuration is reached.

In order to realize the prescribed deformation that results from motion design, in prac-
tice, forces need to be applied. These are evaluated after convergence from the internal
forces and equilibrium of internal and external forces. This means that for the particular
case considered so far, where a point load can potentially be applied at every degree of
freedom, the equilibrium conditions are not needed for the solution of the motion de-
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Figure 4.11: Solution of the illustrating two-bar truss. a) Predictor motion. b) Opti-
mized motion. Visualization of the functional in c) a three-dimensional plot
and d) as a projection in form of a plot of the internal energy over the total
arc length.
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4 Motion Design as a Variational Formulation

sign problem. The equilibrium equations are only used for post-processing of the nodal
forces.

4.5.3 Convergence aspects of motion design problems

The derived nonlinear problem needs to be solved iteratively. In motion design, the
degrees of freedom are all spatial degrees of freedom in every single configuration. Some
configurations are known, such as the initial, starting geometry and at least a part of the
final, target geometry. The displacements of the deformed intermediate configurations
and eventually the rest of the target geometry are solved for in one step. As was already
presented in the current and previous sections, the entire motion is obtained by one
monolithic solution of the nonlinear problem. Therefore, the predictor describes an
entire motion path between a known initial geometry and a (partly) prescribed end
geometry.

Due to these characteristics of motion design problems, two aspects regarding the prob-
lem definition and the convergence behavior arise. There is a need for a regularization
of the problem and, furthermore, a method to improve the convergence behavior of the
Newton-Raphson method is required.

Regularization of the motion path discretization

In all three problems solved in Section 4.5.2, the path elements discretize either the tra-
jectory of a mass point moving from A to B (brachistochrone problem) or the trajectory
of a point in a spatially discretized deformable structure. As was already mentioned in
Section 4.4, the nodes of the path discretization can be placed at every point on the
resulting trajectory while still approximating the same curve. The parametrization of
the curve, and thus, the placement of the nodes along this curve, is not unique, which
can be visualized with the example of a straight one-dimensional line. This leads to an
ill-posed problem. Therefore, motion design problems need to be regularized by addi-
tional control procedures. Either the progression of one (or multiple) spatial degrees of
freedom can be prescribed by e. g., constant increments between the deformed configu-
rations throughout the deformation process, or equal lengths of the path elements can
be enforced with the help of the Lagrange multiplier method. Even though this e�ect
was explained on problems, where only one trajectory had to be discretized, it also holds
for multi-dimensional problems.
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4.5 Solution procedure for motion design problems

Convergence behavior of the Newton-Raphson method

Due to the additional path discretization in motion design problems, a large number
of variables, i. e., the displacement (spatial) degrees of freedom in every intermediate
load configuration as described in Section 4.4, is usually involved. This may lead to an
inferior convergence behavior compared to other nonlinear problems, such as geomet-
rically nonlinear static analyses. As the di�erence between the predictor motion and
the final result may also be significant, the solution process sometimes su�ers from con-
vergence problems and the Newton-Raphson method occasionally diverges after several
iterations. Furthermore, there is no straightforward analogy to incremental-iterative
solution procedures with the option to decrease the size of the increments (such as the
load step size in nonlinear analyses) to improve convergence behavior.

This aspect is elaborated here, and various methods that will be applied in this work
for improving the convergence behavior are presented. These can be combined for an
e�cient solution procedure depending on the specific underlying problem. However, the
methods discussed here only represent an extraction of many other possible methods
that can reach and improve the convergence behavior of motion design problems.

Fewer degrees of freedom by path approximation with B-splines

It was observed that motion design problems with fewer degrees of freedom show im-
proved convergence behavior. As the motion design method is primarily intended to pro-
vide information on the conceptual design of an adaptive structure, a coarse discretiza-
tion of the spatial domain and the path is often appropriate. However, the coarseness
has its limits, because a certain accuracy of the solution is required in motion design,
too. One way of reducing the number of degrees of freedom and still achieve a good
approximation of continuous deformation processes is to approximate the motion path

P
Õ

P P
Õ

Pa) b)

Figure 4.12: Di�erent path discretizations with a) linear elements and b) B-splines.
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by B-spline functions, as has already been mentioned in Section 4.4. This is illustrated
in Figure 4.12, where the motion path is approximated with either ten linear elements
(a) or with three cubic elements described by B-spline functions (b). In the latter case,
the reference solution is well approximated by only three control points, which results
in only six variables in total compared to 18 variables in the approximation with ten
linear elements.

Better predictor based on a preanalysis

The number of required iterations in a solution process of a nonlinear problem often
severely depends on the quality of the first guess, the predictor. One way of improving
the convergence behavior, therefore, lies in the improvement of the predictor. Since a
linear interpolation (which is typically chosen as predictor here due to its simplicity)
between the initial and end configuration might represent an unphysical motion, a pre-
ceding geometrically nonlinear analysis can be carried out instead. The loads needed
for this nonlinear analysis are received by a post-processing step, where the internal
forces in the prescribed deformed end configuration are first calculated and then set as
external forces. The resulting equilibrium path represents the deformation for a linear
incremental increase of the forces. Nonetheless, to approach a feasible motion, this ob-
tained deformation can be used as a predictor. It is most probably di�erent from the
force evolution in an optimized deformation path but might be closer to the solution
path due to the improved physical plausibility of the predictor motion.

Hierarchically improved predictor from solution with coarse path discretization

The methods described until now are based on the reduction of variables and the im-
provement of the predictor. Now both methods are combined within a hierarchical
approach. Here, the motion is first coarsely discretized by a small number of path el-
ements, which already improves the convergence behavior. However, the path might
still be too coarsely approximated. Afterward, the solution of the first motion design is

Optimized motionPredictor motion Predictor motion Optimized motion
a) b)

Figure 4.13: Illustration of the hierarchically improved predictor with a) first and b)
second step.
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interpolated and used as a predictor for a subsequent motion design with a finer path
discretization, as seen in Figure 4.13. This process can be repeated several times, de-
pending on the desired smoothness of the resulting deformation path. More generally,
a hierarchically modified predictor improves convergence.

Modification of the Newton-Raphson method with a relaxation factor

Alternatively to reducing the number of variables or improving the predictor, the Newton-
Raphson method as such can be modified. One way is to apply a relaxation factor that
prevents an o�-shooting from a possible solution in those iterations, where the norm of
the residual increases. This method is presented in Albanese and Rubinacci (1992)
and further investigated and developed in Fujiwara et al. (1993).

4.6 Generalized motion design for any objective function

So far, the minimization of the internal energy integrated along the path, as presented in
Section 4.2, was used as a proof of concept for the proposed motion design framework.
However, in principle, any functional or objective function can be used and incorpo-
rated into this method in a straightforward manner. Here, a general quantity F , which
is a function of the displacement field u and is to be minimized over the motion, is
introduced. The minimization problem with the general functional then follows as

J =
⁄

s
F(u) ds æ min . (4.54)

The problem can be solved in the same manner as with the exemplary objective func-
tion containing the internal energy. Introducing the pseudo-velocity and the spatial
discretization as well as the motion path discretization yields the variation

”J =
n̄eleÿ

e=1

⁄

s̄e

3
”d̄TN̄TF,Dsu + ”d̄TN̄T

,s̄suF
4

ds̄ = 0 (4.55)

with the partial derivatives of the chosen quantity with respect to the spatial degrees of
freedom F,D. Linearization leads to the residual vector of one path element

rmd,e(d̄) =
⁄

s̄e

3
N̄TF,Dsu + N̄T

,s̄suF
4

ds̄ (4.56)
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and the Hessian matrix for motion design

kmd,e =
⁄

s̄e

3
N̄TF,D,DsuN̄ + N̄TF,DsuN̄,s̄ + N̄T

,s̄suF,DN̄ + N̄T

,s̄FSuN̄,s̄

4
ds̄ . (4.57)

With this procedure, the nonlinear problem and the linearized system of equations for
any objective function can be built. The minimized quantity must depend on the dis-
placements to apply this method for motion design as derivatives need to be calculated.
However, they could as well be calculated numerically. Using other optimization algo-
rithms asides the classical Newton-Raphson approach, the residual and its derivative
can be used as analytical sensitivities, i. e., the gradient and Hessian matrix, for an
optimization of the motion.

In many cases and problem types, stresses or strains represent a reasonable choice for
the measure F . These are calculated in an analysis anyway and are therefore readily
available in standard finite element codes.

4.7 Numerical experiments

To further verify the method of motion design and demonstrate its potential, numerical
experiments are carried out and presented in this section. Di�erent kinds of problems
are investigated. Kinematic structures with rigid body motions serve as verification
of the method, while more complex problems that incorporate instability phenomena
or inextensional deformations of shell structures highlight the capabilities and future
potential of the presented method.

As already mentioned in the previous section, the corresponding quantities of various
available finite element formulations can simply be plugged into the system of equa-
tions for motion design without additional e�ort. Therefore, also various element types
(e. g., truss, shell, 2D and 3D continuum elements) are used in the following numerical
experiments.

4.7.1 Rigid body motions as benchmark for motion design

In Section 4.5.2, one exemplary numerical solution has already been compared with the
analytical reference solution obtained by applying Euler’s equation to the functional
for motion design. However, there are no established benchmark tests yet for such a
problem formulation. In order to generate further benchmark problems for quantitative
verification of the resulting motions, rigid body motions of kinematic structures can
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be investigated. Here, motions can be performed that work purely by a kinematic
movement without any distortions and, thus, without any internal energy. Therefore,
the integrated internal energy, i. e., the value of the functional, is also expected to be
zero. As a consequence, it is anticipated that the new motion design method should be
able to formally identify these “optimal” solutions in the case of kinematic structures.
This hypothesis is examined in the following experiments below.

Kinematic truss system

The first example is a kinematic truss system with four nodes, three bars and two
supports, as shown in Figure 4.14a. This kinematic system allows for a purely energy-
free rigid body movement during which the lengths of the bars do not change. However,
it strongly depends on the problem formulation and the prescribed end geometry whether
the rigid body motion can actually be obtained. If the whole end geometry is fixed, it
might not correspond to a configuration that can be attained without any length changes
of the bars except for special configurations such as the mirroring of the geometry.
Accordingly, the final geometry must be given a certain level of freedom to adjust and
meet the expectation of a rigid body motion. Pretending that the target configuration
is unknown, it is su�cient to specify only the vertical displacement of the second node.
The other displacements are expected to adjust to allow the kinematic movement and,
therefore, to minimize the functional of motion design.

To perform a motion design, the path is discretized by 14 elements and approximated
by shape functions with polynomial degree p̄ = 1. This results in n̄dof = 42 degrees
of freedom. For regularization, as explained in Section 4.5.3, the increments of the
vertical displacement of the second node are prescribed throughout the motion. The
intentionally naive first guess, the predictor motion, is a linear interpolation between
the initial and the prescribed end configuration for the upper left node, while the upper
right node does not move at all, as seen in Figure 4.14b. As this motion obviously does
not represent a rigid body motion, forces are needed to enforce it, which are shown as
red arrows. In the case of only one predefined end displacement, the predictor appears
to be far o� the expected solution and the functional takes the value of J = 12843.

Figures 4.14c and Figures 4.14d show a comparison of eight snapshots, i. e., every second
intermediate configuration, of the converged optimized motion and the predictor motion.
It can be seen that the solution obtained from motion design reflects the expected rigid
body motion despite the naive predictor. Furthermore, the correct final configuration is
adjusted such that the bars do not undergo any length changes. The functional value of
the optimized motion reduces to J = 0.05, which is not precisely zero. The reason for
that lies in the error from the chosen, rather coarse path discretization with 14 linear
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elements. In the exact rigid body motion, the second point ought to move along a
perfect arc. However, this arc is approximated by linear elements in the discrete motion
design solution. Therefore, a small length change of the bars occurs between two nodes
of the path discretization. By refining the motion with more path elements, as seen
in Figure 4.15a/b, the approximation quality increases and the value of the functional
approaches zero as can be expected by a well-posed finite element formulation.
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Figure 4.14: Kinematic bar structure for benchmarking. a) Problem setup. b) Predic-
tor motion. c) Optimized motion. d) Sequence of the two motions. An
animation of the motion can be found in the digital version of this work.
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a) J = 0.0028

n̄ele = 28, n̄dof = 84

b) J = 0.00015

n̄ele = 56, n̄dof = 168

c) J = 0.00013

n̄ele = 10, p̄ = 3, n̄dof = 42

Figure 4.15: Convergence study for the kinematic truss structure. Path discretization
with a) 28 elements with linear Lagrange shape functions, b) 56 elements
with linear Lagrange shape functions and c) 10 elements with B-spline shape
functions.

Alternatively, the path can also be approximated by higher-order shape functions en-
abling an even better approximation of the arc. This can be done by either Lagrange
shape functions or B-spline shape functions, both of them meeting di�erent continuity
requirements. However, the path discretization with higher-order shape functions is
carried out in the following with B-splines. Here, the path is approximated with cubic
B-splines. Like this, the functional value reduces drastically with fewer required degrees
of freedom compared to a path discretization with linear elements. This qualitative
convergence study of the path discretization and its influence, therefore, explains the
slight inaccuracy of the functional value obtained initially.

Kinematic folding motion with quadrilateral elements

Another kinematic structure, as shown in Figure 4.16a, is examined in the next example.
Here, four square discs are supported and connected by hinges either on the upper
or on the lower corner in such a way that they can perform a fold-like motion. This
enables mirroring of the geometry solely by rigid body translations and rotations. Every
disc is discretized by only one displacement-based 4-node quadrilateral element with
bilinear shape functions (Q1-element). This very coarse discretization is adequate as
no distortions of the elements and, therefore, no strains or stresses are expected in the
solution. In this case, the path is approximated by six quadratic elements with B-
spline shape functions. Again, the target geometry is assumed to be unknown. Only
the vertical displacement of the upper second and fourth node is prescribed and the
vertical displacement increments of these nodes are controlled during the deformation
process. Therefore, the predictor of the motion as a linear interpolation between the
initial and end configuration exhibits an unphysical movement with self-penetration of
the elements, see Figure 4.16b.
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Applying the method of motion design for this problem, the physically expected kine-
matic motion without any internal energy is found (see Figure 4.16c). Specifically, the
functional value of the optimized motion takes a value of J = 0.03, thus being close to
zero and only a fraction of the initial, very naive estimation of J = 41244.

The motion design of the two exemplary kinematic structures proves that the proposed
new method finds the expected rigid body movements, which minimize the internal
energy over the motion path. The displacement values of the degrees of freedom that are
not prescribed or controlled during the motion adjust such that the kinematic motion
is performed. This even holds for cases, where the predictor or first guess, a linear
interpolation of the motion, turns out to be far o� the actual solution.
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Figure 4.16: Kinematic folding motion with Q1-elements. a) Problem setup. b) Predic-
tor motion. c) Optimized motion. d) Sequence of the two motions. An
animation of the motion can be found in the digital version of this work.
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4.7.2 Exploring motions with instability problems

Another interesting aspect to further understand and validate the properties of the pro-
posed motion design method is the analysis of structures and motions where instability
phenomena such as snap-through or bifurcation can occur. Thus, various structures
with potential instabilities are investigated. The first example, a shallow arc modeled
with two bars undergoing a snap-through process, has already been presented during
the derivation of the method in the current chapter (cf. Figure 4.11). The following nu-
merical experiments aim to further establish an understanding of the method concerning
instability problems.

Motion design with multiple snap-through processes

Since a snap-through phenomenon with bar elements has already been investigated in
detail, a study on the combination of several interdependent snap-through processes
is carried out at this point. The combination of three pairs of hinged bars, shown in
Figure 4.17a, represents a system for which the equilibrium path may exhibit multiple
limit points, i. e., horizontal tangents, where snap-through occurs.

Two shallow arcs with bar cross-sections A1 are modeled separately. The midpoints
of these serve as supports for a third shallow arc with larger cross-sections A2. For
the motion of interest, the midpoint of this third arc is to be moved downwards. This
vertical displacement also represents the controlled degree of freedom for motion design.
All three shallow arcs can, therefore, potentially undergo a snap-through. To enhance
the convergence behavior, the predictor is calculated and updated hierarchically from a
solution obtained with a coarse path discretization, as it was explained in Section 4.5.3.
A first solution is calculated with eight linear path elements and then further refined in
two additional motion design steps to obtain a solution with 32 path elements. Thus,
the linear interpolation between the initial and the end geometry with this final number
of elements does not represent the actual predictor motion because of the application of
the hierarchically modified predictor strategy. However, the solution is compared to a
linear interpolation between the initial and a mirrored geometry, as seen in Figure 4.17b,
which is expected to represent a better approximation than the naive linear interpolation
of only the upper central node to its target position. This results in a motion dominated
by global snap-through.

The result of motion design provides a di�erent type of motion, as can be seen in
Figure 4.17c. When the two lateral structures do not perform the snap-through simul-
taneously, the upper arc does not show a pronounced snap-through deformation and
internal energy can thus be “saved”. This e�ect can also be detected in the progress
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of the internal energy over the total arc length, which is plotted in Figure 4.17d. The
bulges in the diagram indicate the snap-through processes during the deformation. The
resulting end configuration is found to be the horizontally mirrored geometry, which
reduces the internal energy back to zero. The value of the functional decreases signifi-
cantly from J = 440 to J = 11, as is illustrated in Figure 4.17d as well (note the two
di�erent scales of the y-axis in the plot of the internal energy).
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Figure 4.17: Motion design with a combination of multiple snap-throughs. a) Prob-
lem setup. b) Linear interpolation. c) Optimized motion. d) Functional
visualization with a plot of the internal energy over the total arc length.
e) Sequence of the two motions. An animation of the motion can be found
in the digital version of this work.
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Motion design in a bifurcation problem

In addition to a snap-through problem, a bifurcation problem is now analyzed. Stick-
ing to simple truss examples, such phenomena can also be investigated by a two-bar
structure. In the shallow arc examples presented up to now, only limit points are
present, which induce a snap-through deformation while the midpoint is moved down-
wards. However, if the height-to-total-span ratio of such a structure exceeds a value
of

Ô
2/2, an additional critical point, a bifurcation point, occurs before the limit point

(snap-through) is reached. Therefore, a higher arc with a ratio of 2/3 is modeled as
illustrated in Figure 4.18a. The midpoint shall be moved downwards to arrive in a
mirrored, vertically flipped geometry.

The motion path is discretized by twenty linear elements, where the vertical displacement
increments during the motion of the midpoint are controlled. For the vertically flipped
geometry as target configuration, the linear interpolation describes a purely vertical
snap-through motion (see Figure 4.18b). Indeed, this happens to represent a stationary
point for the functional of motion design. However, it provides a relative maximum
of J , not a minimum, meaning that it is a worst-case scenario. This can be detected
by a slight modification of the predictor and an observation of the functional value
throughout the iterations. Therefore, the predictor needs to be modified significantly to
improve convergence of the motion design algorithm to the desired solution. Due to the
system symmetry, the direction in which the modification of the predictor is applied,
plays a crucial role in the solution. It determines whether the midpoint moves to the left
or the right side. For example, instead of a linear interpolation, a combination of the
primary path – up to the critical point – followed by an arbitrarily chosen branch of the
secondary equilibrium path, describing the deformation after buckling of the structure,
can be used as predictor.

The optimized motion found on the basis of this predictor is shown in Figure 4.18c
and yields a functional value of J = 779, which is reduced significantly compared to
the value of J = 1449 obtained from the linear interpolation, the worst-case scenario
mentioned above. But it is also superior to the value J = 845 obtained for the improved
predictor based on the secondary path (see Figure 4.18d), which confirms the virtue of
the method of motion design.

It can be observed, however, that the maximum value of the internal energy during
deformation is higher for the optimized motion than for the secondary path (diagram in
Figure 4.18f). The fact that the functional value is still lower for the optimized motion
follows from two aspects: During the first phase of the deformation process, the internal
energy value is higher in the predictor than in the optimized motion and the deformation
path is slightly longer. These aspects are dominant and lead to the reduction of the
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functional value, even though the maximum value of internal energy is higher in the
optimized solution.

Yet an alternative predictor is the so-called critical path, as illustrated in Figure 4.18e.
It is defined as the path that connects configurations for which the determinant of the
sti�ness matrix is zero, i. e., det KT = 0. It leads to a functional value of J = 956,
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Figure 4.18: Analysis of a two-bar truss with bifurcation and motion design. a) Problem
setup. b) Linear interpolation. c) Optimized motion. d) Secondary path. e)
Critical path. f) Functional visualization with a plot of the internal energy
over the total arc length. An animation of the motion can be found in the
digital version of this work.
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which is worse than both the optimal solution and the solution obtained from follow-
ing the secondary path. Nevertheless, it would also be a valid predictor for obtaining
convergence of the motion design algorithm.

A main di�erence between the di�erent paths are the required loads for the resulting
deformation. The linear interpolation as well as the secondary path are equilibrium
paths for loading by a sole vertical force at the midnode and therefore do not allow
horizontal loading. On the other hand, the optimized motion requires a vertical as well
as a horizontal force to follow the path. These forces are recovered after the optimized
path is found. This also holds for the case of the critical path, where again two forces
are needed.

Snap-through of a curved arc

The last example with a snap-through phenomenon is a shallow arc, which is modeled as
a two-dimensional continuum structure under plane strain conditions using quadrilateral
finite elements, as shown in Figure 4.19a. The fully prescribed end geometry is the
artificially chosen (approximately) mirrored geometry of the initial configuration. The
path is discretized by five cubic elements with B-spline functions as shape functions and
the vertical displacement of the midpoint is controlled for motion design.

First, purely displacement-based bilinear quadrilateral elements are used for spatial
discretization. The predictor motion is again a linear interpolation between the initial
and end configuration and represents a symmetric snap-through-dominated motion (see
Figure 4.19b).

With this problem setup and element type, an antisymmetric swaying motion is found by
the new motion design approach, as can be seen in Figure 4.19c. It decreases the value
of the functional from J = 1263 to J = 144. In this symmetric example, the horizontally
mirrored deformation is equivalent to the calculated solution and there is no preferred
side for the lateral motion. The resulting motion to the right is only attributable to
numerical imperfections.

Nonetheless, it is well-known that displacement-based finite elements su�er from locking.
As a consequence, this e�ect is also incorporated into the resulting motion computed by
motion design using these elements. Usually, the e�ects of locking become apparent as
too small displacements due to an artificially increased tangent sti�ness or oscillations
in the a�ected stress measures. However, as the deformed configuration is prescribed
in motion design, locking e�ects do not results in the displacement values being too
small, but in the predicted forces required to realize this deformation being too large.
The influence of locking on the resulting motion is exemplarily studied here by applying
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4 Motion Design as a Variational Formulation

quadrilateral elements with an Enhanced Assumed Strain (EAS) formulation, proposed
by Simo and Rifai (1990). In the EAS-element formulation, shear locking and volu-
metric locking can be e�ectively treated by adding four strain parameters per element.
The resulting sti�ness matrix and internal forces of this element formulation can again
simply be plugged into the derived system of equations for motion design. Solving this
system results in a di�erent optimized motion that is not a�ected by locking phenomena
and is illustrated in Figure 4.19d. Already in the snapshots of the motion, the di�erence
in the results obtained with finite elements that su�er from locking and locking-free
elements is visible, although the overall character of the motion seems to be similar.
Even though locking is not dominant in this example, it can be observed that the EAS-
elements exhibit more bending throughout the motion. The artificial energy that results
from locking e�ects increases the internal energy along the path and acts as a penalty for
bending modes. In slightly simplified terms, locking causes an unphysical penalization
of bending deformations attributable to the occurrence of so-called parasitic stresses.
When the penalization of bending due to the artificial sti�ness is eliminated by using
a locking-free element formulation, the finite elements can undergo a physically more
meaningful motion including more pronounced bending deformations. Locking-free el-
ement formulations avoid this penalty and the value of the functional of an optimized
motion with these elements decreases significantly from J = 144 to J = 58.
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Figure 4.19: Arc with quadrilateral elements and the influence of locking on motion
design. a) Problem setup. b) Linear interpolation. c) Optimized motion.
d) Optimized locking-free motion. An animation of the motion can be found
in the digital version of this work.
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The proposed motion design method automatically makes full use of such an improve-
ment in finite element modeling. For example, in the given scenario, a further improved
motion is found that is not a�ected by spurious locking phenomena.

Shear locking e�ects play a more significant role in more slender structures and the
penalization for bending modes throughout the deformation increases. It might also
increase to such an extent that even completely di�erent motions are found by motion
design. A similar e�ect has been observed for shape optimization problems for locking-
free elements and elements a�ected by locking in Camprubí et al. (2004). It can be
attributed to the shifted sti�ness and energy relationship between membrane, shear and
bending modes. However, it is essential to point out that this is not a weakness of the
corresponding motion design or shape optimization methods, but is entirely connected
to the employed finite element formulation.

4.7.3 Specification of intermediate configurations

Beyond the possibility to specify initial and target configuration, also intermediate con-
figurations can be included as an objective for motion design. Figure 4.20a shows a
three-dimensionally curved cantilever beam, discretized by trilinear volume elements
(i. e., 8-node hexahedra).

In addition to the end configuration, two intermediate configurations are defined and the
motion design process is carried out in three stages. This procedure is used due to the
relatively large amount of variables and the expected non-smooth deformation result.
In problems with fewer degrees of freedom, such a procedure might not be needed to
reach convergence.

First, a cantilever with a tip that is rotated by 90¶ around the z-axis is specified as end
geometry (Configuration 1). The path is approximated with B-spline shape functions
and three quadratic elements. For stabilization, the displacement in the y-direction of
a node at the cantilever tip is controlled. A first motion design (Stage 1) is carried out
to find a motion between the initial configuration and Configuration 1.

In the next stage, Configuration 1, which was previously defined as end configuration,
is set as an intermediate configuration. The newly defined end configuration represents
a straight beam (Configuration 2), but this end geometry has to be reached by go-
ing through the (now intermediate) Configuration 1 first. The path discretization now
changes, as more elements are added. Thus, the entire motion path is now approxi-
mated with 3 + 3 = 6 quadratic elements. In this case, the C 1-continuity of the path
discretization is reduced to a C 0-continuity at the node, where Configuration 1 is set
to enable a kink in the motion path. The resulting motion of the second motion design
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phase is shown in Figure 4.20b, Stage 1 + Stage 2. Nonetheless, it is also possible
to maintain the continuity of the motion path discretization. This would significantly
a�ect the designed motion and its smoothness as no kink is enforced anymore. Then,
the interpolatory property of B-spline functions needs to be considered.

The final stage can be carried out in the same manner. While now Configuration 1 and
Configuration 2 are defined as detours, Configuration 3 is set as end configuration. The
path discretization is now built up by 3 + 3 + 3 = 9 elements. The solution of a third
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Figure 4.20: Specification of intermediate configurations on a volume cantilever beam. a)
Problem setup. b) Illustration of total and sequential motion. An animation
of the motion can be found in the digital version of this work.
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motion design and the optimized motion consisting of Stage 1, Stage 2 and Stage 3 are
given in Figure 4.20b.

4.7.4 Inextensional deformations of shells

Motion design can also be performed with shells. One particularly attractive option in
this context is a modification of the functional by replacing the total internal energy by
the membrane energy only. From a mechanical point of view, this provides an opportu-
nity to compute motions that try to avoid membrane strains during deformation while
bending deformation remains without any penalization. The results are then charac-
terized by nearly inextensional deformations or even purely inextensional deformations,
if the geometry is able to perform this kind of motion. Inextensional deformations of
surfaces are defined as deformations that preserve lengths and angles of infinitesimal line
elements at each point. Gaussian curvature remains constant during inextensional defor-
mations. For thin shells (and beams), inextensional deformations can also be classified
as pure bending deformations.

In the following examples, isogeometric Kirchho�-Love elements, as presented in Kiendl
et al. (2009), are used. However, as only the membrane energy is considered in the
functional, the employed sti�ness matrix for the system of equations for motion design
corresponds to the tangent sti�ness matrix of a membrane element formulation.

It has to be noted that these elements still su�er from membrane locking, although by
integrating the internal energy, strain oscillations are leveled out to a certain extent.
However, when recovering the forces required to realize the resulting deformation, the
e�ect of membrane locking emerges in the form of much higher loads that are required
to enable the prescribed displacements, which are attributable to artificial sti�ening
e�ects.

Deformation of a cantilever beam

Typically, thin developable structures with Gaussian curvature being equal to zero can
undergo inextensional deformations, e. g., bending of a cylinder to a flat plane. Due
to the Gaussian curvature that is equal to zero, the geometry can deform to another
geometry with the Gaussian curvature being zero again, while the midsurface does not
have to undergo any length changes.

The deformation of a cantilever beam illustrated in Figure 4.21a represents the same
phenomenon in a simple two-dimensional configuration. The left side is clamped and
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the final location of the tip is prescribed in the target configuration. It is defined in a
way that allows the final configuration to form a perfect half-circle.

Initially, the beam is discretized with only two quadratic isogeometric elements to im-
prove convergence due to the low number of degrees of freedom. The path is discretized
by two quadratic elements with B-spline shape functions. Starting again with a linear
predictor (see Figure 4.21b), the inextensional deformation is actually found by motion
design, i. e., the straight cantilever is bent to a half-circle while preserving its length as
illustrated in Figure 4.21c.

However, despite the good geometry approximation by NURBS shape functions, this
finite element mesh is too coarse to provide reasonable results in terms of stress and
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Figure 4.21: Motion design of a cantilever with shell elements and corresponding in-
extensional deformations. a) Problem setup. b) Linear interpolation. c)
Optimized motion. d) Refined optimized motion. An animation of the
motion can be found in the digital version of this work.
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strain and, thus, the internal energy. Therefore, the geometry is better approximated
with twelve quadratic isogeometric shell elements in the following. The motion that is
obtained in the previous motion design with only two shell elements is used as a predictor
for the next motion design with a refined mesh. The resulting motion still resembles the
inextensional deformation (see Figure 4.21d) that is found in the previous motion design
analysis with a coarse mesh. However, the functional value decreases from J = 1132 in
the linear interpolation to J = 4.8 and further to J = 0.01 with the refined mesh.

In this numerical experiment, it has to be noted that the solution is not unique. Any
deformed geometry having the same cantilever length as the original flat configuration
(with the restriction of the position of the nodes at the tip) can be reached by an
inextensional deformation. Accordingly, the described problem is ill-posed, attributable
to the uniaxially curved geometry. Nonetheless, it regularizes itself and one valid solution
is found with apparently no numerical problems. This can be traced back to the applied
displacement-based standard Galerkin finite element formulation without any measures
to avoid locking. For the problem at hand, the e�ect of membrane locking plays a
significant role. For the given discretization with 12 quadratic elements, the e�ect is not
very strong. However, the corresponding parasitic non-zero membrane strains are large
enough to have a regularizing e�ect on the process of motion design.

Transformation of a helicoid to a catenoid

Another classical inextensional deformation is the transformation of a helicoid to a
catenoid, as shown in Figure 4.22a. It is a rare example from the field of analytical
di�erential geometry for which an analytical solution for large inextensional deformations
exists in the case of Gaussian curvature being non-zero. Like the cantilever beam bent
to a semi-circle, also these geometries allow for an inextensional deformation, which is,
however, far less intuitive. First, the helicoid is discretized with 4◊4 cubic isogeometric
shell elements with B-spline shape functions.

For the target geometry, not the whole catenoid is prescribed, but only the final position
of the upper and lower edges (A-B,C -D). The path is again coarsely discretized with
two quadratic elements and B-spline shape functions. For motion design, the vertical
displacement of a point at the upper edge C -D is controlled.

Since the final geometry is, therefore, only vaguely defined, the predictor, which again
has been chosen based on a linear interpolation of the prescribed displacement values
(see Figure 4.22b), must be characterized as a relatively poor first guess with partly even
unphysical deformation states. Nonetheless, the solution of this motion design problem
determines not only the correct inextensional deformation, but also the correct final
geometry, the catenoid, as shown in Figure 4.22c. The value of the functional is reduced
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from J = 591 to J = 0.2, which is almost zero and corresponds to the expected final
result in accordance with possible discretization inaccuracies.

X Y

Z

6.3

3.4
A

B

C

D

A’, C’

B’, D’

a)

Material and geometry Path discretization

E = 1000 n̄ele = 2
‹ = 0.0 p̄ = 2
t = 0.1

b) J = 591
t = 0.0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

c) J = 0.2
t = 0.0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

Figure 4.22: Transformation from a helicoid to a catenoid with a motion design analysis.
a) Problem setup. b) Linear interpolation. c) Optimized motion. An
animation of the motion can be found in the digital version of this work.

82



4.7 Numerical experiments

4.7.5 Path refinement and convergence studies

In addition to the already presented numerical experiments, convergence studies regard-
ing path discretization shall be carried out at this point by uniformly increasing the
number of path elements. Selected benchmark problems, which were already investi-
gated in the previous sections, are exemplarily chosen and re-used for this purpose. In
some cases, for example for the kinematic arc, a qualitative study of this type has al-
ready been carried out. Truss structures have deliberately been chosen over shell or
continuum element formulations to eliminate the influence of spatial discretization.

First, two kinematic benchmark examples, specifically the kinematic single supported
bar from Section 4.5.2 and the kinematic truss structure of Section 4.7.1, are further
investigated. For both structures, the analytic solution of the internal energy over the
motion path is zero, i. e., J = 0. The convergence diagrams for two di�erent polyno-
mial degrees of the path discretization are shown in Figure 4.23. Here, the order of
convergence is observed to be O(h̄2(p+1)) with h̄ being the characteristic path element
length. However, such kinematic structures represent special cases, which is why also
structures that incorporate elastic deformations during the motion process are studied.
For this purpose, the example of the two-bar truss that was first solved semi-analytically
in Section 4.2.3 is taken up again. While a qualitative study of the motion path ap-
proximation was already carried out in Section 4.5.2, it is quantitatively evaluated here.
The same is done with the truss system including multiple snap-throughs from Sec-
tion 4.7.2. Reference solutions are obtained with a very fine path discretization and are
then compared to the results with fewer motion path elements. It can be seen from
the convergence diagrams in Figure 4.24 that the functional value converges in these
non-kinematic cases with order O(h̄2p), if uniform mesh refinement is applied. A more
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Figure 4.24: Convergence study of the path discretization on di�erent non-kinematic
examples. Convergence diagram for a) the semi-analytic reference problem
and b) the instability problem with multiple snap-throughs.

detailed analysis of the mathematical background and, therefore, of the reasons for the
observed convergence orders is beyond the scope of this thesis.

4.8 Interim conclusion on the motion design method

In this chapter, the theoretical foundation and algorithmic building blocks of the novel
motion design method have been presented. Motion design allows to compute an optimal
deformation path between two prescribed geometrical configurations of a structure and
the evolution of the required loads to realize this optimized motion. First, the basic
concept was introduced, including the assumptions and the functional that represents
the quantity referred to as cost of deformation. This functional serves as proof of concept
for the motion design method, but may also be replaced by a di�erent objective function.
In order to be able to consider the entire motion in this functional, the relevant measure
is integrated over the deformation path. Here, with a focus on structural analysis, this
measure represents the internal strain energy.

A decisive point in the development of the motion design method is the additional dis-
cretization of the motion path. In order to map the progress of the motion to a scalar
quantity, the path parameter is introduced. It represents the arc length of the displace-
ment field. As the resulting displacement field is initially unknown, a normalized arc
length is proposed. Furthermore, its dependency on spatial discretization is removed
by using the quadratic mean value of the arc length of the nodal trajectories. This dis-
cretization is always one-dimensional, and its nodes represent di�erent deformed states
throughout the deformation process, which are interpolated by suitable shape functions
over the entire motion.
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This leads to a system of equations whose solution directly incorporates all deformation
states. Thus, the motion path is not solved iteratively, as usual in nonlinear structural
analyses, but in just one step as a whole. This comes with the price of a large number of
degrees of freedom that are solved for in the process. However, the method is intended
to provide more of a first concept design. For this reason, the application of a coarse
mesh in the spatial discretization as well as the path discretization is usually su�cient.
The solution then serves as a basis for further, more in-depth analyses.

Since up to now the equilibrium conditions have not yet been considered in the method,
their satisfaction must be ensured at the end by a post-processing step. For this purpose,
the internal forces are calculated from the resulting displacement field and, therefore, the
required external forces for the system to be in equilibrium can be identified. However,
this procedure of first ignoring equilibrium conditions and then computing the required
external forces by a post-processing is based on the assumption that a force can poten-
tially act on every degree of freedom, which can be a limiting factor for structures in
practice. In the following chapter, this observation will be taken up and, among several
extensions of the method, suitable measures to deal with structures in which only a
limited number of degrees of freedom can actually be actuated will be developed.
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5
Constrained Motion Design Problems

As presented in Chapter 4, the motion design method incorporates the underlying as-
sumption that a discrete point load can potentially be applied at any degree of freedom.
This is illustrated with a new exemplary truss structure consisting of three bars in Fig-
ure 5.1a (E = 30000, A = 0.1). The vertical displacement of the unsupported midpoint
is prescribed such that it moves downward and a snap-through deformation behavior
may occur. There are three spatial degrees of freedom D1, D2 and D3 that are not
constrained by supports. A basic motion design procedure with 16 linear path elements
and a control of the displacement D2 is carried out. Figure 5.1b shows the solution
to such an unconstrained motion design. As can be observed, the resulting optimized
deformation path can only be realized by applying all possible non-zero point loads F1,
F2 and F3 associated with the degrees of freedom. Therefore, one goal of unconstrained
motion design is to calculate how non-zero forces evolve independently from each other
during the deformation process to enable an optimized motion.

Nevertheless, it is quite likely in various real applications that not all forces are at
disposal for designing an optimized motion. For such cases, an extended approach re-
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Figure 5.1: Illustrating truss example for constrained motion design. a) Problem setup.
b) Unconstrained optimized motion. c) Principle of constrained motion de-
sign for discrete loads.
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ferred to as constrained motion design will be proposed in the following. This allows
for limiting the number of non-zero point loads that may be applied in order to follow
the optimal deformation trajectory. When such constraints are taken into account, the
minimal value of the employed functional is generally increased compared to the func-
tional value obtained by an unconstrained motion design. For the presented exemplary
system, this would mean that an optimal motion with respect to the given functional
is to be computed, where e. g., the loads F1 and F2 can adjust freely, while F3 must be
zero throughout the entire deformation path (see Figure 5.1c). Consequently, and in
contrast to the unconstrained motion design, the method of constrained motion design
aims at calculating how selected non-zero forces need to evolve to follow an optimized
deformation path.

In addition to point loads, further load cases can be considered. Hence, the discrete
nodal forces may incorporate dependencies as it is the case in e. g., line loads or surface
loads. Moreover, some adaptive structures contain actuator elements that are able to
potentially induce a motion as well.

However, if the designed motion is to be enabled only with prescribed loads or load
cases, this represents an additional constraint for the resulting optimized deformation
path. Constraints can be introduced into the main functional by various constraint
enforcement methods. Therefore, in this chapter, such methods are first presented along
with complementing methods for numerical di�erentiation. Using these techniques, the
motion design method is extended in such a way that the resulting motion is realized
only by prescribed loads or discrete actuator elements. For the latter, an actuator
element formulation is introduced, allowing a straightforward combination with the
existing motion design method. Furthermore, also other, more complex constraints may
be introduced in this manner, such as the stabilization of a motion by enforcing a positive
determinant of the structural sti�ness matrix. This procedure, as well as a combination
of both classes of constraints, is presented in this chapter. The following contents are
based on the publication Sachse et al. (2021a).

5.1 Enforcing constraints in an optimization problem

When equality constraints need to be considered in an optimization problem, it can be
reformulated as follows:

Find the minimum of the functional J subject to the constraints gi = 0.
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5.1 Enforcing constraints in an optimization problem

This a�ects the minimum that is to be found by the solution procedure, and therefore,
the constraints already have to be included in the functional. Furthermore, certain
constraints can only be formulated as inequality conditions. There exist several methods
to enforce such constraints in an optimization problem. Here, the basics of the Lagrange
multiplier and the penalty method are presented. For further information beyond the
basics and other constraint enforcement methods, the reader is, for example, referred to
Belytschko et al. (2014) or Nocedal and Wright (2006).

5.1.1 Lagrange multiplier method

Within the Lagrange multiplier method, additional variables, the so-called Lagrange
multipliers ⁄i , are introduced for each constraint gi . The constraints are appended to
the functional and multiplied with the corresponding Lagrange multiplier. By collecting
these additional variables and the constraints in the vectors ⁄ and g, respectively, the
extended functional follows as

Ĵ (D,⁄) = J (D) + ⁄Tg(D) æ stat. (5.1)

The stationary value of the functional subject to the prescribed constraints represents
a saddle point. Specifically, the solution is a minimum with respect to the primary
variables D and a maximum with respect to the additional variables ⁄. At the stationary
point, the derivatives with respect to all variables vanish and, with the definition ˆJ

ˆD =
R, they can be expressed as

ˆĴ
ˆD = ˆJ

ˆD + ⁄T
ˆg
ˆD = R + ⁄T

ˆg
ˆD = 0 , (5.2)

ˆĴ
ˆ⁄

= g = 0 . (5.3)

For an application of the Newton-Raphson method as iterative nonlinear solution scheme,
the linearization is required and obtained through a truncated Taylor series expansion
as

R + ⁄T
ˆg
ˆD + ˆR

ˆD�D + ⁄T
ˆ2g

ˆDˆD�D + ˆg
ˆD�⁄ = 0 , (5.4)

g + ˆg
ˆD�D = 0 . (5.5)

For better readability, no Newton iteration index is used and the abbreviations

Gi = ˆgi
ˆD and Hi = ˆ2gi

ˆDˆD (5.6)
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are introduced. The equations (5.4) and (5.5) can then be summarized in the following
linearized system of equations to be solved in each Newton step:

C
K + ⁄iHi GT

G 0

D C
�D
�⁄

D

= ≠

C
R + ⁄TG

g

D

, (5.7)

where G is a matrix that comprises the first derivatives Gi in its rows and the gradient
of R is defined as the matrix K = ˆR

ˆD . With this procedure, as many equations as
variables are at hand and the system can, therefore, be solved for all unknowns, the
primary variables D and the Lagrange multipliers ⁄. The Lagrange multiplier method
has the advantage that the constraints are satisfied exactly, but of course, this comes at
the price of additional variables and an indefinite system matrix.

5.1.2 Penalty method

Another constraint enforcement approach is the penalty method. Just as for the La-
grange multiplier method, the functional needs to be extended. However, in the case of
the penalty method, no additional variables are introduced. Instead, the square of the
constraints is multiplied by a so-called penalty parameter —, which typically represents
a large positive number. With this modification, the stationary value of the functional
remains a minimum, but now the constraints are only approximately satisfied due to
the penalty term. The total functional then transforms into

Ĵ = J + 1
2—gTg . (5.8)

Again, the minimum is characterized by a vanishing first derivative:

ˆĴ
ˆD = R + —gTG = 0 . (5.9)

After linearization for applying the Newton-Raphson method as iterative solution scheme,
the following linearized system of equations is obtained:

(K + —GTG + —giHi)�D = ≠(R + —gTG) . (5.10)

Here, no additional variables are introduced and the system of equations preserves its
original size. However, the constraints are not satisfied exactly and, both the solution
accuracy and the conditioning of the system matrix strongly depend on the chosen
penalty parameter —.
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There also exist other ideas for constraint enforcement that combine the advantages of
both methods presented above, e. g., the augmented Lagrangian method. These methods
are described in more detail in Nocedal and Wright (2006), for example. However,
these are not used within this work and, therefore, not further discussed at this point.

5.1.3 Treatment of inequality constraints

Up to now, the constraints took the form of equality conditions and could easily be
formulated in residual form. But also constraints, where a quantity is enforced to remain
positive or negative are possible. Such inequality conditions can, in general, be expressed
as

gi Ø 0 . (5.11)

Here, it has to be considered that some constraints might already be automatically sat-
isfied, whereas others have to be enforced. Therefore, it has to be distinguished between
the active and inactive set of constraints. One way of dealing with such conditions is
an iterative scheme, where an assumed active set is validated and updated after each
solution of the constrained minimization problem. Another approach is the direct in-
tegration of an active set strategy into the nonlinear problem formulation. Using the
Lagrange multiplier method, so-called Karush-Kuhn-Tucker conditions form the basis
of this approach

gi Ø 0 , ⁄i Ø 0 , gi⁄i = 0 . (5.12)

They state that either the active constraint gi or the Lagrange multiplier ⁄i is zero,
and consequently, the product of both definitely is. This means that the Lagrange
multiplier takes a positive value if the corresponding constraint needs to be enforced or
equals zero for an inactive constraint. The Karush-Kuhn-Tucker conditions equations
can alternatively be expressed compactly as a semi-smooth equation by means of the
so-called nonlinear complementarity function

Ci = ⁄i ≠ max (0,⁄i ≠ cgi) = 0 , (5.13)

which is mathematically equivalent to the Karush-Kuhn-Tucker conditions in eq. (5.12).
The complementarity parameter c has to be positive and regularizes the non-smooth
constrained optimization problem. Also in the resulting system of equations, one has
to distinguish between active and inactive constraints. The appropriate vectors and
matrices are denoted with the subscript a for active and i for inactive, respectively.
Building the variation and linearization yields the following extended system of equations
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to be solved in each (semi-smooth) Newton step:
S

WWU

K + ⁄iHi GT

a
GT

i

Ga 0 0
0 0 I

T

XXV

S

WWU

�D
�⁄a

�⁄i

T

XXV = ≠

S

WWU

R + ⁄TG
ga

⁄i

T

XXV . (5.14)

This linear system of equations must be complemented by an update formula based on
eq. (5.12) to consider possible changes in the active set during the Newton iterations.

5.1.4 Methods of numerical di�erentiation

For the constraint enforcement with either method presented in Section 5.1.1, 5.1.2 and
5.1.3, derivatives of the constraint equations are required. Depending on the problem,
an analytical derivative of the constraints is di�cult to elaborate or sometimes even
impossible to derive. To circumvent this problem of analytical derivatives, they can also
be calculated numerically. For this purpose, the exemplary function to be di�erentiated
f (x), is evaluated at di�erent points and the resulting function values are compared.
There exist various types of numerical di�erentiation. All methods are based on a Taylor
series expansion around a point a. For the simple forward di�erence, this yields

y(x) =
Œÿ

n=0

y(n)(a)
n! (x ≠ a)n = y(a) + y Õ(a)

1 (x ≠ a) + y ÕÕ(a)
2 (x ≠ a)2 + . . . . (5.15)

The Taylor series expansion of a neighboring point with the distance h is

y(x + h) =
Œÿ

n=0

y(n)(a)
n! (x + h ≠ x)n = y(x) + y Õ(x)

1 h + y ÕÕ(x)
2 h2 + . . . (5.16)

or in a simplified and approximated way

y(x + h) ¥ y(x) + h · y Õ(x) + HOT . (5.17)

In numerical methods for di�erentiation, these equations are transformed with respect
to the first derivative to get an approximation. However, two di�erent errors can arise
due to numerical issues. The truncation error is caused by cutting o� higher-order terms
of the Taylor series expansion, whereas the substractive cancellation error, on the other
hand, arises due to the subtraction of two almost equal floating point numbers. With
the methods presented in the following, only an appropriate approximation of the first
derivative is obtained. Nonetheless, it is also possible to compute the second derivative
of a function, but only with substantially higher errors.
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5.1 Enforcing constraints in an optimization problem

Forward and backward di�erence method

Both the forward and backward di�erence method compare the value of y(x) with the
value at a neighboring point at a distance h. In a forward di�erence method, the distance
h is added to x

y Õ(x) ¥
y(x + h) ≠ y(x)

h , (5.18)

whereas the distance is substracted in the backward di�erence method

y Õ(x) ¥
y(x) ≠ y(x ≠ h)

h . (5.19)

With both methods, an approximation of the first derivative is obtained, but it still
incorporates both types of errors.

Central di�erence method

For the central di�erence method, the function is evaluated at two points: One point
where h is added and one point where h is subtracted. The distance between these
points then corresponds to 2h and the derivative approximation from a Taylor series
expansion is

y Õ(x) ¥
y(x + h) ≠ y(x ≠ h)

2h . (5.20)

This method enables a better approximation of the derivative than those of the forward
and backward di�erence method. However, it still contains the truncation error as well
as the subtractive cancellation error.

Complex step derivative

In Martins et al. (2003) the so-called complex step derivative is presented, where the
distance h is added in the complex direction, i. e., the imaginary part. The Taylor series
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expansion then follows as

y(x + ih) =
Œÿ

n=0

y(n)(x)
n! (ih)n (5.21)

= y(x) + y Õ(x)
1 ih + y ÕÕ(x)

2 (ih)2 + y ÕÕÕ(x)
6 (ih)3 + . . . (5.22)

= y(x) + y ÕÕ(x)
2 (ih)2 + i

A
y Õ(x)

1 h ≠
y ÕÕÕ(x)

6 h3

B

+ . . . . (5.23)

The first derivative only appears in the imaginary part. If the imaginary part is resolved
after the derivative, it results in

y Õ(x) ¥
Im(y(x + ih))

h . (5.24)

In the first derivative, the subtractive cancellation error is, thus, completely avoided,
since the expression does not contain any subtraction. The truncation error remains,
but h can freely be chosen.

Directional derivative and complex step directional derivative

The directional derivative y Õ
v(x) of a function y(x) describes the change of the function

value at a point x in the direction of a vector v. It can be expressed via the gradient
and a scalar multiplication

y Õ
v(x) = ˆy(x)

ˆx · v . (5.25)

To evaluate this specific expression numerically, each partial derivative has to be nu-
merically di�erentiated. However, the directional derivative can also be calculated and
approximated in a forward di�erence approach as

y Õ
v(x) ¥

y(x + hv) ≠ y(x)
h . (5.26)

Comparing both equations, eq. (5.25) and eq. (5.26), it can be concluded that the
numerical directional derivative is advantageous regarding numerical e�ciency whenever
a gradient vector needs to be multiplied with a vector v in the further process. By using
the directional derivative in these cases, only one additional evaluation into the direction
v is required instead of a di�erentiation with respect to every entry of x

ˆy(x)
ˆx · v ¥

y(x + hv) ≠ y(x)
h . (5.27)
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Moreover, the directional derivative can be calculated as a complex step derivative

y Õ
v(x) ¥

Im(y(x + ihv))
h . (5.28)

5.2 Restricting the motion to specified load cases

Using the constraint enforcement methods introduced above in combination with the
procedures for numerical di�erentiation, the basic motion design method can be ex-
tended by the constraint that the sought-after motion should be realized with only a
certain number and specific type of load cases. In the following, the strategy for intro-
ducing this condition into the basic motion design method is presented, including the
restrictions that arise for prescribing the target configuration of the motion. Afterward,
this is further illustrated with numerical experiments.

5.2.1 Equality constraints for unloaded degrees of freedom

For the derivation of the method of constrained motion design, the assumption holds
that only external point loads, and not entire load cases, can be applied to the deforming
structure. According to the defined constraint, they should only be placed at prescribed
locations of the structure that are associated with specific degrees of freedom. Accord-
ingly, also an internal force can only occur at these loaded degrees of freedom due to
equilibrium, which must be included at this point. Following the motion design ap-
proach, these can freely evolve and adjust during the deformation process. On the other
hand, the internal forces at the unloaded degrees of freedom are supposed to continually
remain zero. This condition can be expressed as a set of equality constraints on the
motion.

As the described constraints must hold for the entire motion, they are introduced for
each configuration during the deformation process, i. e., the intermediate as well as the
target configuration. They, therefore, represent pointwise constraints, which are not
included in the integral of the main functional and can be expressed in a general way
as

g =
Ë
F1 F2 . . . Fk . . . Fn̄nd

È
T

. (5.29)

Here, the vectors Fk gather the internal forces of the degrees of freedom, where no
load is applied, for each load configuration or node of the motion path discretization k̄.
When using a path discretization with an approximation by B-spline shape functions,
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these constraints should not be imposed on the control points but on the deformation
path itself. For this reason, the constraints are enforced at collocation points, which are
located on the path. In this case, Greville points are used.

For the system presented in Figure 5.1c with 16 linear path elements, the internal force
at the degree of freedom number 3 must be zero in every path increment. Consequently,
the vector of constraints can be written as

g =
Ë
F 2

3
F 3

3
F 4

3
. . . F 16

3

È
T

. (5.30)

The internal force F 1

3
of the initial configuration is suspended as the initial configura-

tion is always assumed to be load-free. If load cases act on multiple nodes or degrees
of freedom, such as distributed line loads or surface loads, the discrete forces of the
individual degrees of freedom directly depend on each other through a scaling factor. In
such cases, a master degree of freedom is selected and the associated forces are coupled
to the load value of this master degree of freedom. Applying the Lagrange multiplier
method as presented in Section 5.1.1 yields the extended system of equations for this
type of constrained motion design problems as

C
Kmd + ⁄iHi GT

G 0

D C
�D̄
�⁄

D

= ≠

C
Rmd + ⁄TG

g

D

. (5.31)

Here, the matrix G contains the first derivatives of all constraints, whereas the Hessian
matrix Hi represents the second derivative of the ith constraint. This means that the
constraints, i. e., the corresponding internal forces Fk , need to be di�erentiated twice
with respect to all degrees of freedom: those of the spatial discretization as well as those
of the path discretization.

The internal force at a degree of freedom j in the load configuration k̄ only depends
on the displacements, i. e., the spatial degrees of freedom, at the associated path node.
However, the tangent sti�ness matrix Kk

T
already incorporates the first derivative of the

internal forces with respect to the relevant degrees of freedom. This circumstance can be
exploited at this point. Accordingly, if only one component Fk

j of the total internal force
vector Fk is di�erentiated, the derivative is provided by the associated column Kk

j of
the sti�ness matrix. Consequently, the vector Gi of first derivatives of the ith constraint
gi follows as

Gi = ˆgi
ˆDk =

ˆF k
j

ˆDk = Kk
j . (5.32)

Additionally, the second derivative of the ith constraint is required for the Hessian matrix
Hi . In this case, this represents the derivative of the associated column of the sti�ness
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matrix. Usually, the relevant column of the sti�ness matrix Kj has to be di�erentiated
with respect to each degree of freedom. This yields for the Hessian matrix of the
ith constraint

Hi =
ˆKk

j
ˆDk . (5.33)

However, the analytical derivative of the tangent sti�ness matrix can only be calculated
in special cases. Using a numerical di�erentiation scheme as presented in Section 5.1.4,
the tangent sti�ness has to be evaluated multiple times to either get an approximation
of the derivative or the exact derivative using complex step approximation (Martins
et al. 2003). This might not be e�cient in terms of the calculation time. Nonetheless,
as only the column j of the sti�ness matrix needs to be di�erentiated, the derivative of
the entire sti�ness matrix can be calculated and the corresponding degree of freedom
can subsequently be extracted by a scalar product with a unit vector Dj in the direction
of j

Hi =
ˆKk

j
ˆDk = ˆKk

ˆDk · Dj . (5.34)

In this way, the derivative in eq. (5.33) is transformed into a directional derivative in
eq. (5.34), which was described in Section 5.1.4. Thus, the advantage of using numerical
di�erentiation regarding numerical e�ciency becomes apparent. Instead of di�erentiat-
ing a single column of the sti�ness matrix with respect to all degrees of freedom and
consequently evaluating it as many times for numerical di�erentiation, the whole sti�-
ness matrix now only has to be computed one additional time in the direction of Dj .
In order to increase accuracy, the numerical derivative is determined with the help of
the complex step approximation. As already explained, the deviation is executed in
the complex direction and, therefore, the first derivative can be calculated numerically
exact.

The derivatives of the system in Figure 5.1 for the first (i = 1) constraint F 2

3
= 0

are exemplarily presented in the following. In this case, the relevant spatial degree of
freedom is j = 3. Thus, the first derivative can be extracted from the total sti�ness
matrix of the current load configuration k̄ = 2, where it represents the third column

G1 = ˆF 2

3

ˆD2
= K2

3
. (5.35)
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The Hessian matrix contains the entire sti�ness matrix of the second configuration and
can be calculated with the help of a directional derivative

H1 = ˆK2

ˆD2
· D3 . (5.36)

With these derivatives, the extended system of equations from eq. (5.31) can be gener-
ated and solved. Thus, an optimized motion can be found, which is realized exclusively
by the defined loads or load cases. The result is the deformation path and the develop-
ment of the load case amplitudes during the motion.

5.2.2 Restrictions for the prescribed end geometry

In the basic motion design method, either the entire end geometry or only parts of
it have to be prescribed. This is similar for constrained motion design problems, but
with one important restriction: As equilibrium should be fulfilled throughout the entire
motion only with the available loads, this should also be the case for the prescribed end
geometry. There are two di�erent strategies to guarantee that this condition is actually
satisfied, depending on the number of given end displacement values:

• If the entire end geometry is prescribed, an optimization is carried out prior to
the motion design process, where a new end geometry is computed. The objective
function to be minimized is the di�erence between the target and the current
geometry with the constraint that the appropriate forces must be equal to zero.

• Another possibility is to prescribe only a part of the end geometry. Like this, the
rest of the geometry can adjust freely to meet the condition of equilibrium with
the available loads. The maximum number of prescribed values of displacement
degrees of freedom strongly depends on the number of load cases. It is not possible
to prescribe more displacement values than load cases, whereas fewer are generally
possible.

5.2.3 Solution and interpretation of the results

Taking into account the described restrictions for the target geometry, the extended
system of equations, as introduced in eq. (5.31), can be solved. In doing so, an optimized
motion path is obtained, while considering the given constraints of an equilibrium state
with only the available loads or load cases. The results for the example in Figure 5.1 with
a varying number of permitted loads and load cases are summarized in Figure 5.2.
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5.2 Restricting the motion to specified load cases

If loads can be applied on every degree of freedom, no constraints are enforced and
the solution is identical to the result from an unconstrained motion design. This is
illustrated in Figure 5.2a, which is similar to the motion in Figure 5.1b. It can be seen
in the load-displacement curves of all three discrete point loads in Figure 5.2b that they
take non-zero values during the deformation process to realize the calculated optimal
deformation path. This motion yields a minimized functional value of J = 600. When
one load is suspended, this optimal deformation path cannot be followed anymore since
all three possible point loads are required for keeping an equilibrium state in these
deformed configurations. Therefore, a di�erent motion is to be found that is enabled by
the remaining loads. The new constrained optimized motion is illustrated in Figure 5.2c
and the corresponding load-displacement curves in Figure 5.2d. Moreover, as only the
vertical displacement of the target geometry is prescribed, the horizontal displacement
adapts such that the additional constraint is met. The introduction of constraints also
influences the minimum of the functional and its value increases to J = 607. If only
one load case is permitted, as shown with the case of two dependent loads F1 = F2

(see Figure 5.2e and f), the result is identical to an equilibrium path obtained by a
nonlinear static analysis with either the arc length method or a displacement-controlled
algorithm. This motion does not represent a “design” in this case because there is no
other equilibrium path (except in the special case of the existence of secondary paths)
under only one possible given load case.
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Figure 5.2: Solutions of the illustrating example with di�erent numbers and types of load
cases. a) Unconstrained motion with all possible point loads and b) load-
displacement curves. c) Constrained motion with two independent loads
and d) load-displacement curves. e) Constrained motion design with two
dependent loads and f) load-displacement curves.
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5.2.4 Numerical experiments for motion design with restricted load
cases

Constrained motion design with multiple snap-through processes

To prove the applicability of the presented method, several numerical experiments are
carried out. First, an example is presented, which was already previously studied in Sec-
tion 4.7.2 in order to demonstrate the di�erence between unconstrained and constrained
motion design. Three two-bar trusses are combined into one truss structure, whereby
the upper two-bar truss with a larger cross-sectional area, and, therefore, also a higher
sti�ness, is supported by two other two-bar trusses (see Figure 4.17). For the motion,
the vertical displacement of the upper node in the end configuration is prescribed and
also controlled throughout the deformation. The result of an unconstrained motion de-
sign procedure with a path discretization with 16 linear elements is already shown in
Figure 4.17c but is depicted again at this point with the corresponding point loads in
Figure 5.3a. As already described in Section 4.7.2, the value of the functional decreases
compared to a simple linear interpolation between the initial and end configuration when
the lateral two-bar trusses perform a consecutive snap-through. The functional value for
this motion is J = 11.1. To realize this optimal motion, point loads need to be applied
on all six degrees of freedom, which can be seen in the load-displacement curves (green)
in Figure 5.3c.

For a constrained motion design, now, only two point loads, a vertical and a horizontal
load at the upper node are permitted to be applied. This results in four constraints
per configuration, which enforce the remaining internal forces at the unloaded degrees
of freedom to become zero. Solving the extended system of equations leads to the
modified motion illustrated in Figure 5.3b. The end geometries of the unconstrained
and constrained motion design variants vary slightly, but the vertical displacement of
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Figure 5.3: Combination of multiple snap-throughs with a) unconstrained motion de-
sign and b) constrained motion design. c) Corresponding load-displacement
curves.
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the upper node coincides in both cases, as this represents the prescribed displacement
value. Furthermore, it can be seen that retaining the last equilibrium state requires
lower forces in constrained motion design. Due to the additional constraints, the value
of the functional increases to J = 12.6, i. e., by approximately 12,5 %. The two resulting
motions from unconstrained and constrained motion design resemble each other, espe-
cially regarding the overall motion pattern with the consecutive lateral snap-through
processes. However, the required loads di�er and there is a significant di�erence in the
magnitude of the forces. The loads to follow the constrained motion are much lower
than the initial loads of the unconstrained motion design (see Figure 5.3c).

To sum up, the restriction to realize the motion with only two point loads instead of all
six possible point loads leads to a slight increase of the functional value, while achieving
a similar appearance of the motion in this particular scenario. Furthermore, the required
absolute load values become much smaller even though the number of loads is decreased
by four.

Snap-through of a shallow arc

The next problem is again the shallow arc, which has already been presented in a di�erent
form in the previous chapter in Section 4.7.2. The arc is modeled with displacement-
based quadrilateral elements, as illustrated in Figure 5.4a, and is to be deformed such
that it ends up in an approximately mirrored position. For this deformation, only the
three visualized point loads may be applied. The end configuration di�ers slightly from
the previously defined end configuration in Figure 4.19a to better illustrate the e�ect of
the applied loads.

Since the target geometry is chosen artificially and is not based on real deformation re-
sults of an analysis with defined load cases, point loads have to be applied at every degree
of freedom to guarantee equilibrium in the prescribed end geometry, see Figure 5.4b.
This stands in contrast to the constraint that the motion shall now be realized with the
three prescribed point loads only. Therefore, the end geometry has to be modified, as
explained in Section 5.2.2. In this example, the complete geometry is prescribed and
not only a part of the displacement values. Thus, an optimization of the final geometry
is carried out prior to motion design. Here, the final nodal displacements represent the
variables and the displacement di�erence between the prescribed and obtained geom-
etry is minimized subject to the constraint that equilibrium is obtained only with the
available loads. The resulting geometry di�ers noticeably from the prescribed geometry,
as displayed in Figure 5.4c.

This newly obtained geometry is then set as the end configuration for motion design.
The deformation path is discretized by 24 linear elements, and an unconstrained motion
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Figure 5.4: Constrained motion design of a shallow arc with three point loads. a) Prob-
lem setup. b) Prescribed end geometry. c) Modified end geometry. d)
Unconstrained motion. e) Constrained motion. f) Deformation obtained by
a static nonlinear analysis.

design yields the motion in Figure 5.4d with a functional value of J = 7.14. It is found
again that a successive snap-through of the lateral parts of the structure leads to a
decrease of the functional value compared to a simple linear interpolation. However,
even though the end geometry can be reached only with the three prescribed loads,
forces are applied at the other degrees of freedom throughout the motion to realize the
resulting optimized deformation path, because this is favorable concerning the integrated
internal energy. This result is di�erent from the motion that is obtained by constrained
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motion design, as illustrated in Figure 5.4e. Here, only the three prescribed point loads
are applied to the structure and during the entire deformation process. Therefore, also
the intermediate configurations are in an equilibrium state with the available loads.
The functional value increases only slightly to J = 7.20, which is attributable to the
additional constraints.

This result from motion design is compared to a classical static nonlinear analysis in
Figure 5.4f, where the loads required for the end configuration are applied. The solu-
tion is calculated with the help of the arc length method as path-following technique
within 24 steps. As all three forces are increased and decreased uniformly, a symmetric
snap-through now appears, and the resulting deformation varies significantly from the
deformation obtained by motion design. Furthermore, the functional takes a value of
J = 8.40, which is higher than those from both unconstrained as well as constrained
motion design. Thus, even though the constraints increase the cost of deformation, it is
still lower than for the conventional approach of a static nonlinear analysis. This is the
consequence of enabling an independent evolution of the di�erent loads or load cases
throughout the deformation process, which is only made possible by the new motion
design procedure and its ability to identify a more e�cient motion.

5.3 Actuator elements

Referring to the previous chapter, one possible load case can also be the actuation of
discrete actuator elements in a truss structure. Actuator elements are able to contract or
expand and thus, enforce a deformation of the entire system. To include such elements
into the motion design method, a new actuator element formulation is introduced. Af-
terwards, it is combined with the previously presented algorithm building blocks of the
motion design method.

5.3.1 Actuator element formulation

The basis of the actuator element is formed by a regular two-dimensional truss element
with a vertical and horizontal displacement degree of freedom at each node (cf. Fig-
ure 5.5a). The actuator element, however, also allows for an independent elongation or
contraction. This is depicted by an additional parameter –, which represents a factor
for the targeted actuator element elongation, as can be seen in Figure 5.5b.
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l–
= (1 + –)Ld2

d1

d3

d4

L

a) b)

Figure 5.5: Parameter in the actuator element formulation. a) Displacement degrees of
freedom. b) Elongation parameter.

In an actuator element, the total strain Ed consists of two parts: the elastic strain Eel

and the strain resulting from the actuation E–

Ed = Eel + E– . (5.37)

The total strain Ed can be obtained by the usual displacement degrees of freedom and
the actuation strain E– is determined with the additional elongation parameter –. This
allows the elastic strain to be evaluated. The stresses are calculated based on the elastic
strain contribution only. Thus, the internal elastic energy is given by simply applying
the linear elastic St. Venant-Kirchho� material law as

�int,el =
⁄

�

1
2EelCEel d� =

⁄

�

1
2(Ed ≠ E–)C(Ed ≠ E–) d� . (5.38)

Taking this as a basis, the internal forces can be derived, thus yielding for a single
actuator element

fint =
⁄

�e

BTC(Ed ≠ E–) d� . (5.39)

The strain-displacement-operator B is defined as the derivative of the elastic strain with
respect to the unknown parameters and is divided into two parts: the derivative with
respect to the local displacement degrees of freedom d and the derivative with respect
to the elongation parameter –. This results in

B =
C
Bd

B–

D

with Bd = ˆEd

ˆd and B– = ≠
ˆE–

ˆ–
. (5.40)

Consistent linearization of the global residual equation for equilibrium yields the sti�ness
matrix. The local sti�ness matrix for the actuator element follows as

kact =
C
BT

d,dCEel + BT

d
CBd B–CBd

BT

d
CB– B–,–CEel + B–CB–

D

=
C
kdd kd–

kT

d– k––

D

. (5.41)

104



5.3 Actuator elements

It includes the tangent sti�ness matrix kdd of a regular truss element in the upper
left corner. The global sti�ness matrix can be obtained by usual assembly operations
for nele elements. These operations can be applied separately for the di�erent sti�ness
components

Kdd =
nele€

e=1

kdd , Kd– =
nele€

e=1

kd– , K–– =
nele€

e=1

k–– , (5.42)

which results in the global linearized system of equations
C
Kdd Kd–

KT

d– K––

D C
�d
�–

D

= Fint ≠ Fext . (5.43)

If the elongation or contraction of one or multiple actuators is given, this can then
be treated as an inhomogeneous Dirichlet boundary condition, i. e., by prescribing the
respective elongation parameter. The same procedure can also be regarded as a load
case with an actuation load vector extracted from eq. (5.39):

fint,act = ≠

⁄

�e

BTCE– d� . (5.44)

Thereupon, the resulting displacements are solved for. This procedure is demonstrated
in the following example: a statically determinate structure, which has already been
introduced in Figure 5.1. The left bar (marked in red) is now replaced by an actuator
element that is to be shortened by 50 %. Thus, the elongation parameter for this
element is set to the value – = ≠0.5. The other two elements still represent regular truss
elements. With the system of equations in eq. (5.43) and a load-controlled geometrically
nonlinear analysis, the resulting nodal displacements can be computed. The solution is
shown in Figure 5.6a. It can be observed that only the actuator element experiences
a length change while the other two bars undergo a purely kinematic deformation and
keep their initial lengths. When replacing one truss element by an actuator element
in this statically determinate structure, no constraints are imposed on the remaining
structure. Due to that, the actuator element reaches exactly the targeted length change
of 50 %. The total strain, therefore, only contains a contribution of the actuation strain
and the elastic strain is exactly zero (Eel). However, such a constraint-free shortening
of the actuator element is only possible to a certain extent and strongly depends on the
structure.

In contrast to that, another structure is investigated, in which only one more bar with
the same cross-sectional area and material properties has been added (cf. Figure 5.6b).
This results in a statically indeterminate system with the degree ns = 1. The same

105



5 Constrained Motion Design Problems

a) b) c)
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l = l–

L
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l2 > l2,–

l2,– = 0.5L2

Figure 5.6: Actuator length change as load case and the resulting deformation of a) a
statically determinate structure with one actuator element, b) a statically
indeterminate structure with one and c) two actuator elements.

actuator element as before is now shortened with the same targeted length change of
50%, thus resulting again in an elongation parameter – = ≠0.5. Due to the static
indeterminacy of the structure in combination with the position of the single actuator
element, its length change encounters resistance by the rest of the structure. Thus, the
actuator cannot shorten anymore without causing stress in the other truss elements.
Consequently, it does not reach the targeted length change as specified. This can also
be explained using the di�erent sti�ness components. As the elongation parameter is
specified, the actuation strain is similar as in the actuator element of the statically
determinate structure. However, due to the resistance of the other bars, the elastic
strain takes a non-zero value. This results in a di�erent total strain than in the previous
example. The deformed structure is illustrated in Figure 5.6b.

When a second actuator element replaces one regular truss element, a constraint-free
actuator length change as well as a kinematic motion is again generally possible. The
resulting deformation is displayed in Figure 5.6c. It appears that the truss elements
still perform a kinematic motion. However, the length changes of both actuators do not
match this specific motion, creating constraints in the actuators and leading to di�erent
length changes than prescribed. Therefore, the kinematic motion is not possible with the
given actuator combination and the prescribed elongation parameters of both – = ≠0.5
as displayed in Figure 5.6c. This short study shows that the combination of actuators,
their elongation parameters and the static indeterminacy of the structure are crucial for
the feasibility of a constraint-free kinematic motion.

These examples illustrate the expected structural behavior and deformation results in
a qualitative manner. Accordingly, the actuator element formulation presented here is
suitable for structural analyses with such actuators.

5.3.2 Motion design with actuator elements

The introduced actuator element formulation allows an easy implementation into the
motion design method. For this purpose, the elongation parameters –i for every actuator
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element i are discretized over the motion path as it has been done with the displacement
degrees of freedom. Thus, the elongation parameters –i (as part of the solution vector)
are directly solved for while optimizing the motion. Again, this is the same process as
for the displacement degrees of freedom. Therefore, the elongation parameters vary ac-
cording to the optimized motion and their evolution throughout the deformation process
represents an output of the motion design method. This is again illustrated with the
same example as given in Figure 5.1, the same prescribed vertical displacement value of
the second node D2 and a path discretization with twenty linear path elements. With
the presented actuator element formulation, the basic motion design method already
includes the actuator load case, i. e., without applying any constraints. However, to en-
sure that only the actuator is used to realize the optimized motion without any discrete
point loads, these point loads are enforced to be zero at every degree of freedom (see
Section 5.2).

First, the statically determinate structure with one actuator element is investigated and
shown in Figure 5.7a. Here, a purely kinematic motion of the rest of the structure is
obtained, which can be identified by the functional value being zero. This motion mini-
mizes the functional, which is defined as the integral of the elastic energy of the regular
truss elements. The main output of motion design is the evolution of the elongation
parameter throughout the deformation process. Thus, the actuator length change, i. e.,
the elongation parameter, adapts to the optimized motion as can be seen in the plot
of the elongation parameter over the displacement D2 in Figure 5.7a (bottom). This
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Figure 5.7: Motion design with actuator elements on a) a statically determinate struc-
ture, b) a statically indeteterminate structure (degree ns = 1) with two ac-
tuator elements and c) a statically indeteterminate structure (degree ns = 2)
with two actuator elements.
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can also be observed in the statically indeterminate structure (degree ns = 1) with two
actuator elements as illustrated in Figure 5.7b. In this case, a suitable combination
of the elongation parameters of both actuator elements is found by the motion design
method such that a purely kinematic motion is obtained. Again, this results in a func-
tional value of J = 0.0. The beginning of the motion is di�erent from the motion in
Figure 5.6c. While the elongation parameters of both trusses (i. e., the two load cases)
uniformly and synchronously increase in such a static nonlinear analysis, they can evolve
independently in the designed motion, thus, enabling the minimization of the motion
design functional.

To also perform a motion design for a motion incorporating elastic energy, and therefore
with an expected functional value greater than zero, another structure with a second
additional truss element is studied (cf. Figure 5.7c). This modification raises the degree
of static indeterminacy to ns = 2 and leads to a slightly di�erent motion with di�erent
evolutions of both elongation parameters. However, the other bars cannot perform a
pure rigid body motion anymore, but build up internal stress throughout the motion.
This is the main di�erence compared to the two previous motion designs and leads to a
functional value of J = 379.

5.3.3 Bridge structure with a traveling load

To show the potential of a combination of motion design with actuator elements, a
more complex example is presented in the following. A bridge is modeled as a truss
structure, as shown in Figure 5.8. Actuator elements are installed in the entire lower
chord, thus resulting in a total of ten such elements. In this example, a parallel actuation
mechanism is employed. This means that in addition to the actuator element, a regular,
passive truss element is installed at the same place. As a result, this passive element is
automatically stressed when the actuator changes its length. This leads to constraints

E = 1000
A1 = 0.1
A2 = 0.05

3
.5

1
.5

12.0 4.04.0

F = 2

Figure 5.8: Problem setup for a bridge structure with traveling load.
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a) b)F = 2

umax = 0.35

F = 2

umax = 0.70

Figure 5.9: Bridge structure with traveling load. a) Deformation due to static central
loading. b) Deformation due to static lateral loading.

during actuation, but represents an option to reflect the resistance of the actuator itself
against a length change. The top chord and the vertical struts have a cross-sectional
area of A1 = 0.1, while the diagonals as well as the actuator elements and the passive
truss elements in the lower chord are built of elements with half the cross-section, i. e.,
A2 = 0.05.

The bridge is loaded by a load F , traveling from left to right. It is to be applied to the
structure such that the loading point always remains at the same height throughout the
entire motion, as indicated in Figure 5.8. In order to realize this task, the structure has
to adapt and undergo large deformations. The required motion should be solely enabled
by the actuators in the lower chord, while also bearing the traveling load. To obtain
an estimation of the e�ect of the magnitude of the applied load, the passive structure
without actuation is first loaded centrally and then laterally with a static point load.
The deformed configurations can be seen in Figure 5.9a und Figure 5.9b, respectively. In
both cases, significant nodal displacements of umax = 0.35 and umax = 0.70 are observed
due to the static load.

To find a suitable motion for the traveling load and to make the deformation process
as e�cient as possible, motion design is carried out in two stages, see Figure 5.10. The
initial configuration of the bridge is the symmetric, unloaded state. The two motion
stages are not solved separately but by one single motion design procedure. However,
they di�er in the controlled and prescribed displacement values described in the follow-
ing. Stage 1 of the motion represents the “picking up” of the point load on the left side.
Therefore, the structure needs to deform sideways until the fourth node of the top chord
(marked in blue) arrives at the starting point of the traveling load. For motion design,
the vertical and horizontal end position of this node are prescribed, and its horizontal
displacement value is controlled throughout the motion of the first stage (Configura-
tion 0 to Configuration 5, cf. Figure 5.10a). In Stage 2, the load travels from the left
side to the midnode of the top chord. To guarantee that it always remains at the same
vertical position, the vertical displacements of the nodes of the top chord are prescribed
in a sequential way throughout the configuration: First, the vertical displacement of the
fourth node are prescribed, second, the vertical displacements of the fourth and fifth
node is prescribed, third, the vertical displacement of the fifth node is prescribed and so
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forth (cf. Figure 5.10b, marked in blue). In the motion design problems described up
to now, at least one end displacement value is prescribed for the motion and one degree
of freedom is controlled throughout the entire motion. This is not the case in Stage 2,
but the nodes with specified vertical displacement values change in every configuration.
However, these specifications still stabilize the motion and, therefore, the motion design
procedure. Furthermore, the traveling load is applied to every node reaching this spe-
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Figure 5.10: Optimized motion of the bridge structure with traveling load. a) Stage 1:
Optimized motion for preparation. b) Stage 2: Optimized motion during
load travel. c) Exemplary evolution of the actuator length change during
the motion.
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cific vertical position. If two nodes are placed at the same height, the load is split and
distributed onto both nodes. The application of these point loads is also included as a
constraint on the motion as described in Section 5.2.

An alternative approach to design a motion is to find the geometry for every single con-
figuration separately with the specific constraints, i. e., displacement values and loading,
by an optimization minimizing the internal energy. These optimized configurations can
then be connected, thus generating an entire motion. These connected optimized ge-
ometries are then used as predictor for motion design. Figure 5.10a and Figure 5.10b
show the optimized motion that results from the solution of the motion design problem
including Stage 1 and Stage 2. Because of the applied constraints on the admissible
point loads, the deformation is solely realized by the actuators. Furthermore, poten-
tial displacements due to the loading are compensated such that the point load can be
kept at exactly the same height during the entire travel. The deformation to the right
side is obtained by symmetry. Using the motion design method, the functional value
reduces from J = 103.2 in the predictor (connection of energy-minimal configurations)
to J = 68.0, i. e., by 34 %. This is due to the fact that the entire motion is considered
in the objective function and not only in separate configurations.

An output of the method are the targeted actuator length changes in the form of the elon-
gation parameters required to realize the optimal motion. Their evolution is exemplarily
illustrated in Figure 5.10c for the first (Actuator 1) and fourth actuator (Actuator 2)
of the lower chord (marked in Configuration 0). It can be seen that the elongation
parameters do not increase monotonously as it would be the case in a nonlinear static
analysis, but can also decrease during the process and develop independently.

Therefore, the motion design method allows to design e�cient motions that are realized
solely by actuator elements. The same advantages of the method as already described
in Chapter 4, such as finding the most e�cient motion by taking into account the
entire deformation process, are also valid for these kinds of structures including actuator
elements.

5.4 Stabilization of a motion

In addition to the presented constraints regarding admissible load cases for the opti-
mized motion, other constraints can be applied to motion design problems, too. One
possibility is to enforce a stabilized motion, where no structural instabilities occur dur-
ing the deformation. Instability phenomena, such as bifurcation or snap-through, are
usually initiated by critical points such as bifurcation points or limit points, respectively,
and followed by unstable equilibrium path segments. An indication for the presence of
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a critical point is given by the determinant of the structural tangent sti�ness matrix. In
quasi-static problems, it is zero when a critical point is reached and becomes negative
when this point is passed. If this happens, the deformed structure is in an unstable
equilibrium state. It has to be noted that this represents the trivial case. Further con-
siderations need to be made when the passing of multiple critical points is expectable.

5.4.1 Introducing the determinant of the tangent sti�ness matrix
as inequality constraint

The basic method for motion design again marks the starting point for constrained mo-
tion design, however, now with di�erent constraint types. To prevent that the structure
follows an unstable equilibrium path after traversing a critical point, a constraint has
to be applied on the determinant of the tangent sti�ness matrix KT. However, there
is a significant di�erence compared to the constraints that were used in the previous
section. Here, the determinant shall not take a specific value, but it is required to re-
main positive to stabilize the deformed configurations. By applying this, the following
of unstable deformation paths during the motion is avoided. Therefore, the constraints
can be formulated and summarized in a vector for all load configurations k, i. e.,

g =
Ë
det K2 det K3 . . . det Kk . . . det Kn̄nd

È
T

, (5.45)

where each entry i of the vector g, i. e., each constraint gi , needs to fulfill the inequality
condition

gi = det Ki Ø 0 . (5.46)

Again, the initial configuration is excluded. Using a path discretization with B-splines,
the constraints are again enforced at the Greville collocation points that are located on
the deformation path, as has been discussed in Section 5.2.

The general approach for enforcing such inequality constraints with Lagrange multipliers
was presented in Section 5.1.3. With the help of the Karush-Kuhn-Tucker conditions
in eq. (5.12) and the complementarity function in eq. (5.13), the extended system of
equations for motion design problems and this type of constraints can be formulated
as

S

WWU

Kmd + ⁄iHi GT

a
GT

i

Ga 0 0
0 0 I

T

XXV

S

WWU

�D
�⁄a

�⁄i

T

XXV = ≠

S

WWU

Rmd + ⁄TG
ga

⁄i

T

XXV . (5.47)
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Herein, a distinction is made between active and inactive constraints and hence, the
active set strategy is taken into account. Also in this case, the derivatives of the con-
straints, i. e., the determinants of the tangent sti�ness matrices in the corresponding
deformation states, are required. Clearly, this is a non-trivial task and the derivative
can typically not be calculated analytically for complex structures. Nevertheless, they
can be derived numerically with the methods described in Section 5.1.4. In particular,
the complex step approximation allows to compute the exact first derivative. In this
way, the matrices Ga and Gi can be evaluated.

Nonetheless, the second derivatives cannot be calculated in this way without substantial
numerical errors and a significant loss of numerical e�ciency, which is attributable to
the large number of required function evaluations. One way of circumventing these
problems is to avoid the calculation of the second derivative by simply suspending it.
This leads to a modified system of equations without the Hessian matrix Hi , viz.

S

WWU

Kmd +
�
�
�H

H
H

⁄iHi GT

a
GT

i

Ga 0 0
0 0 I

T

XXV

S

WWU

�D
�⁄a

�⁄i

T

XXV = ≠

S

WWU

Rmd + ⁄TG
ga

⁄i

T

XXV . (5.48)

Thus, the Newton-Raphson method is transformed into a modified Newton-Raphson
solution scheme, in which the problem is not consistently linearized. This may a�ect
the convergence behavior of the nonlinear problem. It is expected to have an inferior, no
longer quadratic convergence behavior, as compared with the complete system of equa-
tions including the Hessian matrix. Nevertheless, the convergence behavior is expected
to remain acceptable, since Kmd is still updated in each iteration. Due to the correct
residual, the solution still converges to the correct minimal solution, but usually with an
increased number of iterations. Alternatively, another possibility to set up the system
of equations with consistent linearization is to calculate the second derivative exactly
with hyper-dual numbers as proposed by Fike and Alonso (2011).

To demonstrate the stabilization of motions, two simple two-bar structures incorporating
snap-through phenomena as well as bifurcation points are presented in the following.

5.4.2 Numerical experiments with stabilized motions

Snap-through problem in a shallow two-bar truss

The method of stabilized motion design is first investigated on the example of an unsym-
metric two-bar truss, as shown in Figure 5.11a. The asymmetry is chosen to avoid nu-
merical instabilities in the calculation, attributable to multiple possible solution curves.
Here, no constraints are enforced regarding the loads. Thus, two point loads can be
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applied on the midnode in vertical as well as in horizontal direction. This corresponds
to an unconstrained motion design, the result of which is shown in Figure 5.11b for a
path discretization with ten elements and the vertical displacement of the midnode being
controlled. The sign of det KT is indicated in the background of the illustrated motion.
When the structure is deformed in such a way that the midnode is located in the red
zone, the determinant becomes negative. In the unconstrained motion design solution,
the node traverses this “unstable” region. This is also visible in the plot of the determi-
nant of the sti�ness matrix over the displacement D2 in Figure 5.11c. Between vertical
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Figure 5.11: Unsymmetric stabilized two-bar truss. a) Problem setup. b) Unconstrained
unstable optimized motion and c) plot of the sti�ness matrix determinant.
d) Stabilized motion and e) plot of the sti�ness matrix determinant.
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displacement values of D2 ¥ 2 and D2 ¥ 8, the determinant takes a negative value,
which is equivalent to an unstable deformation state in a load-controlled process.

In the constrained motion design variant with a stabilized motion (see Figure 5.11d)
on the other hand, the trajectory of the midnode only “touches” the zone where the
determinant would become negative. It can also be seen that the magnitude of the
forces, especially the horizontal point load at the midnode, changes in order to follow the
alternative deformation path. The motion design functional itself, i. e., the minimum
of the cost of deformation, stays the same, but its value increases drastically from
J = 1492 to J = 6211 due to the necessary detour. However, a stabilization and
a positive determinant are ensured throughout the entire motion (cf. Figure 5.11e).
This is achieved by the initial stress sti�ness and geometrical sti�ness as introduced
in Section 3.2. In a typical snap-through process, this part of the sti�ness becomes
negative and compensates the elastic and initial displacement sti�ness contributions.
This is further investigated in detail for the intermediate configuration highlighted in
bold in Figure 5.11b/d. It represents an unstable deformation state in the unconstrained
motion design variant, but a stable deformation state in the constrained motion design
variant. The associated displacement values of the midpoint are for the unconstrained
motion

Dinstab =
C
0.38
6.00

D

(5.49)

and for the stabilized motion

Dstab =
C
2.88
6.00

D

. (5.50)

The tangent sti�ness matrices evaluated at these deformation states then are

KT,instab =
C
380.82 14.05
14.05 ≠49.40

D

, KT,stab =
C
532.95 26.43
26.43 1.31

D

. (5.51)

Here, it can already be seen that an instability phenomenon is involved in the un-
constrained tangent sti�ness matrix: One of the main diagonal entries takes a negative
value, whereas both are positive in the tangent sti�ness matrix of the stable deformation
state. This becomes even more obvious in the spectral decompositions

KT,instab,eig =
C
381.28 0.00
0.00 ≠49.86

D

KT,stab,eig =
C
534.26 0.00
0.00 10≠8

D

, (5.52)
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where the eigenvalues can be found in the diagonal entries. The matrices of the corre-
sponding eigenvectors are

„T,instab,eig =
C
1.00 ≠0.03
0.03 1.00

D

, „T,stab,eig =
C
1.00 ≠0.05
0.05 1.00

D

. (5.53)

Since the determinant represents the product of the eigenvalues, its value and sign can
be directly determined by this spectral representation. In the unstable deformation
state, det KT becomes negative due to a negative eigenvalue, whereas it is practically
zero in the stable state due to a zero eigenvalue, respectively. Therefore, it becomes
obvious that the deformation state of the stabilized motion represents a limit state.

The tangent sti�ness matrices in both representations consist of two di�erent parts: the
elastic sti�ness combined with the initial displacement sti�ness Keu and the initial stress
sti�ness Kg as introduced in Section 3.2. These parts can also be transformed into the
eigenvector basis of the total sti�ness matrices, thus allowing for a better comparison of
the di�erent sti�ness parts. The elastic and initial displacement sti�ness for both cases
can then be written as

Keu,instab,eig = („T

T
Keu„T)instab,eig =

C
435.61 0.00
0.00 4.48

D

, (5.54)

Keu,stab,eig = („T

T
Keu„T)stab,eig =

C
537.88 0.00
0.00 3.63

D

, (5.55)

and do not di�er significantly in their magnitude. However, it can be noted that the
second main diagonal entry is much lower than the first main diagonal entry. Compared
to that, the initial stress sti�ness matrices are

Kg,instab,eig = („T

T
Kg„T)instab,eig =

C
≠54.34 0.00

0.00 ≠54.34

D

, (5.56)

Kg,stab,eig = („T

T
Kg„T)stab,eig =

C
≠3.63 0.00
0.00 ≠3.63

D

. (5.57)

Especially in these matrices, the di�erence between the two displacement states can be
identified: The absolute values of the initial stress sti�ness in the stabilized state are
significantly smaller. The sum of the two sti�ness parts results in the total tangent
sti�ness matrix in a decomposed form in eq. (5.52):

KT,instab,eig = Keu,instab,eig + Kg,instab,eig , (5.58)
KT,stab,eig = Keu,stab,eig + Kg,stab,eig . (5.59)
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5.4 Stabilization of a motion

For the unstable state, the bottom right entry of Keu,instab,eig is completely compensated
by the corresponding entry in Kg,instab,eig, such that it becomes negative in the total
sti�ness matrix KT,instab,eig. This results in the negative determinant, which in turn
indicates an unstable deformation state. On the other hand, this particular entry is also
compensated by the initial stress sti�ness in the stabilized motion, but only to such an
extent that it becomes zero, thus representing a limit state of the deformation. The
reason for this behavior lies in the sign and magnitude of the normal forces in both
bars

N1,instab,eig = ≠292 N1,stab,eig = ≠753 (5.60)
N2,instab,eig = ≠301 N2,stab,eig = 512 . (5.61)

In the unstable state, only compression forces occur and have a destabilizing e�ect on
the structure, which can be detected in the initial stress sti�ness. However, in the
stable state, this e�ect is compensated by the occurrence of both compressive as well
as tensile forces. The initial stress sti�ness, therefore, does not comprise the discussed
large negative value.

To sum up, this example nicely illustrates that the new motion design approach can be
extended with inequality constraints such that a stable motion path is guaranteed. This
way, a snap-through process could be stabilized even in a load-control problem setting.
Of course, it should be emphasized that the employed strain measure plays a decisive
role in the analyzed values.

Stabilization of a two-bar truss with bifurcation

In order to also investigate the stabilization in bifurcation problems, a high two-bar truss
is studied next (see Figure 5.12a). This problem was already described in Section 4.7.2,
where di�erent solutions and equilibrium paths were compared. The midnode shall
again be moved downwards in order to arrive in a mirrored end configuration.

Figure 5.12b shows the solution from unconstrained motion design. Again, the red zone
indicates the sign of the determinant of the tangent sti�ness matrix det KT. If the
midnode is located in this zone, the determinant becomes negative and the deformed
structure is characterized by an unstable equilibrium state with the corresponding ex-
ternal forces. However, another white zone (det KT Ø 0) is located within the unstable
region. This is a result of the limit point that is only reached after the bifurcation point
has been passed. The two resulting negative eigenvalues of the tangent sti�ness matrix,
again indicating an unstable deformation state, compensate each other. Therefore, the
determinant becomes positive again, although no stable state has been reached. In the
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Figure 5.12: High two-bar truss with a bifurcation point and an unstabilized and stabi-
lized motion. a) Problem setup. b) Unconstrained optimized motion and
c) plot of the sti�ness matrix determinant. d) Stabilized motion and e) plot
of the sti�ness matrix determinant.

unconstrained motion design solution, the unstable region is traversed by the deforma-
tion path, also depicted by the progress of the sti�ness determinant in the corresponding
diagram in Figure 5.12c.

Applying the inequality constraint det KT Ø 0 results in the motion that can be seen
in Figure 5.12d, where the red zone is again only “touched” by the midnode, but not
traversed. The constraint of enforcing a positive sti�ness determinant (cf. Figure 5.12e)
can, therefore, also be successfully applied to problems where bifurcation phenomena
can occur.

Stabilization of a motion with specific load cases

Up to now, the two constraint types of enabling an optimized motion only by prescribed
load cases (equality constraints) and of stabilizing the motion by enforcing a positive
sti�ness determinant (inequality constraints) were treated separately. However, they can
also be combined. The vector g that gathers all constraints then contains entries with
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5.4 Stabilization of a motion

the internal forces gF as well as entries with the determinant of the sti�ness matrix gdet,
and therefore results in

g =
C

gF
gdet

D

. (5.62)

As a consequence, the resulting system of equations is further expanded. This is shown
in the following using the system from Figure 5.1a that has already been presented as an
illustrating example for constrained motion design problems. It is already known at this
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Figure 5.13: Constrained motion design on an exemplary system with di�erent types
of constraints as well as their combination. a) Optimized motion from a
motion design with prescribed loads with load-displacement curves and plot
of the sti�ness determinant. b) Stabilized motion with load-displacement
curves and plot of the sti�ness determinant. c) Stabilized motion with
prescribed loads with load-displacement curves and plot of the sti�ness
determinant.
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5 Constrained Motion Design Problems

point that unconstrained motion design yields the functional value J = 600, as shown
in Figure 5.2a, which represents the reference value for the following modifications.

First, one load, the horizontal force at the free midnode, is suspended and a constrained
motion design is carried out. This leads to the motion in Figure 5.13a. Due to the
constraint, the value of the functional increases to J = 616. Secondly, all possible forces
may again be applied, but a positive determinant of the sti�ness matrix is enforced to
find a stabilized motion. Again, a di�erent motion is found (see Figure 5.13b) and the
functional value increases significantly to J = 1582. In this structure, the horizontal
bar is activated much more in the form of a high compressive force to reduce the snap-
through e�ect of the two other bars. This result incorporates the same considerations
about the initial stress sti�ness as in the previous example of a shallow two-bar truss.
Finally, both constraints can be combined. The result is a stable motion that always
retains a positive determinant of the sti�ness matrix, but is also realizable with only
two point forces, as illustrated in Figure 5.13c.

5.5 Interim conclusion on constrained motion design

Based on the basic motion design method presented in Chapter 4, it has been shown in
this chapter that constraints can be applied to the optimized motion with conventional
constraint enforcement methods, e. g., with Lagrange multipliers or the penalty method
for equality constraints as well as inequality constraints. The required derivatives are
obtained either analytically or with di�erent types of numerical di�erentiation. The
latter enables certain freedom in the choice of the desired constraints. Previously, point
loads were potentially necessary at every degree of freedom for realizing the resulting
deformation. Here, the basic method could be extended by constraints such that only
certain load cases enable the optimized motion. This makes it more applicable to real
actuation situations. Such situations also include the actuation by actuator elements.
For this reason, an actuator element formulation has been derived based on the targeted
length change as an additional parameter, which allows for an easy integration into the
motion design procedure. Numerical experiments showed the general applicability and
that the conditions on the applied loads can be met. The minimal cost of deformation
increases due to these constraints, as is to be expected.

Additionally, inequality constraints can be used to stabilize the resulting motion. En-
forcement of a positive determinant of the tangent sti�ness matrix throughout the entire
deformation yields a motion that always remains stable within a load-controlled process.
In complex structures, the high values of the determinant within the resulting system of
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5.5 Interim conclusion on constrained motion design

equations may lead to its ill-conditioning and numerical instabilities during the solution
procedure. However, the simple examples demonstrate the principle feasibility.

It was further shown that it is possible to combine these two classes of constraints.
Moreover, also other types of constraints are conceivable, e. g., to guarantee the com-
pliance with strength conditions or stability conditions of the structure throughout the
entire deformation process.
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6
Further Potentials of Motion Design

So far, the basic motion design method as well as the constrained motion design method
have been presented. While the first enables the design of the most e�cient motion
between two prescribed geometric states of a structure, the latter allows to realize the
resulting optimized motion with specific load cases only. These two variants of the
motion design approach can be treated as a basis for further extensions and modifications
that follow the principal idea of this work of designing the most e�cient movement.

In addition to the motion itself, the initial geometry plays a significant role and can be
modified in this sense to reach the prescribed end geometry more e�ciently. Another idea
worth investigating is to integrate the choice of the actuating loads into the optimization
procedure. In doing so, the loads that enable the most e�cient motion can be explicitly
selected. Moreover, it should be pointed out once more that the method has so far been
developed using a functional based on the internal energy. However, the internal energy
in the functional can also be modified or replaced by other quantities, thus, opening
up the method for further possibilities and applications in terms of the objective to
be minimized. These points are addressed in this chapter and potential extensions are
described.

6.1 Combination of motion design with a shape
optimization of the initial geometry

6.1.1 Motivation

In the present work, the focus is on designing a motion between two geometric states
in such a way that it is as e�cient as possible. For this purpose, the optimal individual
deformation states, including parts of the final deformed configuration, are computed.
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6 Further Potentials of Motion Design

However, the shape of the initial configuration was never part of the motion design
process so far, although it also significantly influences the e�ciency of the motion and
its cost of deformation. Therefore, not only the motion itself can be designed to be
e�cient, but also the initial geometry can be shaped accordingly in order to meet the
requirement of motion e�ciency and achieve further energy savings. This requires the
initial geometry to be optimized for flexibility or, in kinematic structures, for motility.
In doing so, the structure is made capable of carrying out large elastic deformations
with the lowest possible deformation costs, which is a similar concept as in the design
of compliant structures.

6.1.2 Objective functions for the design of compliant structures

The design and shape optimization of compliant structures represents an established
field of research, where the choice of a suitable objective function is crucial. Some
selected approaches are briefly explained in the following.

In Lan and Cheng (2008) and Masching and Bletzinger (2016), the displacement
of a selected point reflects the compliance of the structure: the greater the displacement
value of this point due to a given load case, the more flexible the structure. Accordingly,
the goal of optimization is to maximize this specific displacement value. Moreover, also
displacement di�erences to a desired deformation state subject to a load are used as
objective function in Saggere and Kota (1999), Lu and Kota (2003) and San-
ter and Pellegrino (2009). In Hasse and Campanile (2009), the eigenvalues of
the sti�ness matrix with their associated eigenvectors are employed for a quantitative
statement about the required energy. On the other hand, Frecker et al. (1997) and
Saxena and Ananthasuresh (2000) pose additional demands on further properties
of compliant structures. Besides flexibility, su�cient system sti�ness is required such
that the structure is able to bear loads. The latter is achieved by a minimization of the
internal energy due to a given load.

However, the described objective functions are not suitable for the combination with
motion design due to the di�erent problem formulation. Instead of a load case, dis-
placement values for the targeted deformed state are given, which means that the motion
design problem formulation already meets the desired displacement values by definition.
Moreover, there is no particular load case defined under which the displacement can
be maximized, but instead, the evolution of the required loads for the deformation rep-
resents an output of the method. Furthermore, exploring detours to achieve optimal
deformation costs is one of the essential benefits of motion design. In case specific di-
rections of the deformation towards a particular displacement value are included in the
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6.1 Combination of motion design with a shape optimization of the initial geometry

objective function, this strength may get lost, and di�erent approaches than those of
compliant structures need to be followed.

6.1.3 Minimization of the internal energy in the end configuration

Since displacement values instead of load cases are prescribed in motion design, minimal
internal energy in the end configuration does not guarantee a high sti�ness anymore.
Here, it rather means that the structural elements exhibit low strains when having
deformed to the desired configuration, which is also the goal of motion design. Therefore,
the minimization of the internal energy in the end configuration is investigated as the
quantity to be minimized for shape optimization of the initial geometry. Consequently,
the initial configuration, for which the deformed target configuration exhibits the least
internal energy, is searched for. The potential for possible energy savings is studied by
employing several examples earlier presented in this thesis.

Kinematic structure

First, the structure from Figure 4.14, where the vertical displacement of the second
node was specified such that it could be reached through a kinematic mechanism, is
re-examined. It was used to verify the working principle of the motion design method.
However, not every displacement state of this structure can be accessed by a rigid body
mechanism. This occurs, for example, when the final position of the second node is
prescribed di�erently than in the original problem. Figure 6.1a shows such a situation,
where the given end configuration cannot be reached by a kinematic motion.

such that it cannot move along the arc shown in Figure 6.1a. Accordingly, motion design
results in a motion with a non-zero functional value and point loads are required for its
realization (cf. Figure 6.1b).
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Figure 6.1: Shape optimization of a kinematic structure. a) Non-optimized initial geome-
try with problem setup and b) resulting non-kinematic motion. c) Optimized
initial geometry and d) resulting kinematic motion.
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6 Further Potentials of Motion Design

Therefore, a shape optimization procedure is carried out, where the vertical coordinate
of the second node remains variable. A built-in unconstrained optimization algorithm
from Matlab (Mathworks, Inc. 2018), based on a quasi-Newton procedure, is applied
for this purpose. Depending on the problem formulation, constrained optimization algo-
rithms may also be employed if the solution is not unique. In this case, the solution to
the optimization problem results in the new initial geometry illustrated in Figure 6.1c.
With this modified initial geometry, the target position of the second node is again
located on an arc and it can, therefore, be reached by a kinematic mechanism (see Fig-
ure 6.1d). Certainly, the choice of the design variables plays a significant role. If, for
example, the coordinates of the third node were chosen to remain variable, no rigid body
motion could be achieved.

Application to inextensional deformations

Next, the objective function of minimizing the internal energy in the end configuration
is applied to the design of inextensional deformations of shells, which were already
investigated in Section 4.7.4. When using the membrane energy instead of the entire
internal energy in the underlying functional, such deformations can also be considered
as a kind of kinematic motion. Consequently, the objective function for the shape
optimization of the initial geometry now changes to minimizing the membrane energy
of the structure in the target configuration.

For studying the potential of such a shape optimization of the initial geometry with
regard to inextensional deformations, the cantilever beam from Figure 4.21 is reconsid-
ered. The initial geometry is a flat cantilever that is to be deformed into a half-circle.
In the preceding example, the final configuration was only partly prescribed, and an
inextensional deformation could be followed. Now, precisely the resulting deformed end

Zb)

X

Y

Z

6.4

15

a) d)

X

Y

Z

6.4

10

c)

Figure 6.2: Shape optimization of a shell structure to deform by inextensional defor-
mations. a) Geometry of long cantilever and b) resulting non-inextensional
deformation. c) Cantilever with matching initial length for d) an inexten-
sional deformation.
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6.1 Combination of motion design with a shape optimization of the initial geometry

geometry from Figure 4.21c obtained by motion design is to be reached. It is, there-
fore, completely prescribed. For shape optimization, the cantilever length is set as a
design variable. Accordingly, a length value of L = 10 as in Figure 4.21a represents
the expected solution. However, to show the working principle of shape optimization,
an increased cantilever length of L = 15 is used as starting value, which is shown in
Figure 6.2a. Motion design with this geometry yields a motion that does not represent
an inextensional deformation (cf. Figure 6.2b). In contrast, a shape optimization of the
initial geometry with the objective to minimize the membrane energy leads to the given
length of the original example, as is illustrated in Figure 6.2d. Therefore, the expected
inextensional deformation can be obtained by motion design (illustrated in Figure 4.21c
and again in Figure 6.2d).

This demonstrates that the chosen objective function is particularly useful for kinematic
motions and inextensional deformations, especially when initially incompatible initial
and target geometries are prescribed. By such an optimization step, the initial geometry
can be adapted in such a way that kinematic mechanisms and inextensional deformations
are potentially enabled and can, therefore, be computed by the motion design method.

Non-kinematic motion of a bridge structure

In the following, the minimization of the internal energy in the end configuration is fur-
ther examined as objective function for the shape optimization of structures performing
non-kinematic motions. For this purpose, a simple bridge truss structure is modeled
as shown in Figure 6.3a. An initially flat bridge is to be deformed to a curved shape.
The targeted vertical displacements of the upper chord are pre-defined, while the dis-
placement of the bottom chord may be adapted. The end geometry is, therefore, not
completely prescribed. A basic motion design of this problem with five linear path el-
ements and the vertical displacement of the midnode of the upper chord is carried out
first. It yields the deformation in Figure 6.3b with a functional value of J = 6.84.

For shape optimization, the horizontal coordinates of the bottom chord nodes are set
as design parameters. This way, the angles of the diagonal truss elements are implicitly
left variable. In order to guarantee a practicable truss structure as an outcome of
shape optimization, the change in the horizontal coordinates compared to the starting
geometry is limited to ±0.5. Moreover, also symmetry of the structure is enforced.
Applying the constrained optimization algorithm to minimize the internal energy in the
end configuration yields the optimized initial geometry, and a subsequent motion design
procedure leads to the optimized motion in Figure 6.3c. It can be observed that it
exhibits a lower functional value of J = 5.46 than the motion in Figure 6.3b, which
can be attributed to the optimized geometry. Thus, the cost of deformation can be
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Figure 6.3: Shape optimization of a truss structure. a) Problem setup. b) Non-optimized
initial geometry and resulting optimized motion. c) Optimized initial geom-
etry by minimizing the internal energy at the target geometry and resulting
deformation. d) Optimized initial geometry by minimizing the cost of defor-
mation and resulting deformation.

improved, even though not the entire path is considered in the objective function of the
shape optimization problem.

To evaluate the e�ect of the applied objective function, i. e., the minimization of the
internal energy in the target geometry, on the cost of deformation, a reference solution
is calculated. For this purpose, a further shape optimization is carried out, in which the
cost of deformation is directly used as objective function. This involves an additional
motion design step with the varying geometry each time the objective function is com-
puted. By doing this, di�erent nodal coordinates are obtained, thus leading to a di�erent
deformed configuration and a slightly reduced cost of deformation of J = 5.41, as shown
in Figure 6.3d. It can, therefore, be concluded that by minimizing the internal energy
in the target configuration, the cost of deformation is reduced, but not yet minimized
in this example. However, the di�erence between the resulting costs of deformation
is not crucial. The reason for this lies in the type of motion: The internal energy is
monotonically increasing, and thus, the last energy level represents a decisive factor for
the cost of deformation. Even though the di�erences between the motions of the three
bridge geometries, especially of the two optimized geometries, are not substantial, this
example shows the general applicability of such an additional shape optimization.

Influence of the objective function in a snap-through problem

A more significant di�erence between the two objective functions used to optimize the
initial configuration for motion design can be detected in structures undergoing snap-
through. For this purpose, a similar problem setup as in the illustrating example for
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6.1 Combination of motion design with a shape optimization of the initial geometry

motion design from Figure 4.1 is given in Figure 6.4a. The midnode of the symmetric
two-bar truss shall again be moved downwards and to the side. However, the targeted
displacements are increased in this case to highlight the di�erence between the results.
A motion design yields the optimized motion in Figure 6.4b (black) with J = 775. It
shows the same motion pattern as the original illustrating example.

The design variable for the optimization of the initial geometry is the horizontal co-
ordinate of the midnode. If both coordinates are left variable and the problem is not
constrained, one outcome may be the trivial solution, where the optimized initial config-
uration corresponds to the target configuration. However, this is excluded by choosing
the design variable as described above and prescribing the vertical component of the
node. Solving the optimization task of minimizing the internal energy in the prescribed
target configuration leads exactly to its mirrored geometry as starting geometry. This
ensures that the element lengths are equal in both configurations. The internal energy
is zero in the end configuration, which represents an optimum of the shape optimization
problem. Nevertheless, it is also clear that a transition from the initial geometry to the
final geometry cannot occur without introducing strain and stress to the structure.

A motion design with this initial geometry provides the expected snap-through behavior,
shown in Figure 6.4b (red). But even though the initial geometry is optimized, the cost
of deformation yields a larger value of J = 798 for the resulting motion compared to the
first optimized motion.

Again, a reference value is computed by using the cost of deformation as objective func-
tion. Using this objective function for shape optimization of the initial geometry leads
to a significant reduction of the functional value of the resulting optimized motion to
J = 708 (cf. Figure 6.4b – green). This is the case even though the target configuration
is not stress-free, as shown in Figure 6.4c.
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6.1.4 Conclusions

It has been shown that shape optimization of the initial geometry for motion design
can lead to additional savings in the cost of deformation. Moreover, the motion design
method has the potential to be applied to the design of compliant structures. However,
the commonly used objective functions are not applicable here, as they often imply a
certain direction of motion. This is precisely what is to be avoided in the motion de-
sign method in order not to restrict the solution space of possible optimized motions
and to benefit from advantageous detours. However, the minimization of the internal
energy in the target configuration of the deformation represents an adequate choice
for the objective function for the intended purpose. It is particularly suited to design
structures that can potentially perform kinematic mechanisms or inextensional deforma-
tions. Furthermore, this objective function may also be employed to design structures
for non-kinematic motions. However, it is not as e�ective as using the cost of defor-
mation directly as objective function, since in the latter, the entire deformation path is
considered in the optimization.

Nevertheless, because an entire motion design must be carried out for each evaluation
of the objective function, the last option turns out to be numerically ine�cient. This
reduction in e�ciency can be limited by various measures for improving the predictor.
The better the first guess, the fewer iterations are needed. Accordingly, the result of a
preceding motion design with the original initial geometry can be used as a predictor
for the subsequent motion designs. This reduces the number of required iterations
to evaluate the objective function within the optimization iterations of motion design.
Besides, it is possible to heuristically adjust and approximate the motion path of a
slightly modified initial geometry based on an already calculated optimized motion.
This way, the cost of deformation can be approximated without performing an additional
motion design. These are strategies that can be applied to improve the predictor and,
therefore, the convergence behavior and e�ciency of the optimization using the cost of
deformation as objective function.

Generally speaking, both studied objective functions, i. e., minimization of the internal
energy in the target configuration and minimization of the cost of deformation, may
be applied to optimize the initial geometry and improve the potential to reduce cost
of deformation. Depending on the specific application, it needs to be evaluated, which
objective function might best serve the desired purpose of the structure.
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6.2 Choice of e�cient actuation

6.2.1 Motivation

In the constrained motion design method presented in Chapter 5, the type and loca-
tion of the loads and actuators were already given. However, this choice of actuation
is decisive for the e�ciency of the movement: The better the choice of the actuator
locations, the less energy is needed for adaptation. In some applications, this choice
is part of the design process and can still be flexibly adapted. In such cases, an ad-
ditional optimization procedure can be employed to get the best possible placement of
the applied point loads and actuators for the least increase of the functional value due
to the constraints. The placement of the actuators already plays a major role in the
e�ciency of adaptive structures and represents an active field of research. The opti-
mal actuator locations are usually calculated by using various optimization algorithms,
where the correct choice of the objective function is a major challenge, as addressed in
Gupta et al. (2010). While Abdullah et al. (2001) used a genetic optimization
algorithm for e�cient structural vibration control, Wagner et al. (2018) optimized
towards an optimal ability to compensate perturbing factors using greedy and inverse
greedy algorithms. Large deformations were already accounted for in Masching and
Bletzinger (2016), where the actuation e�ciency was optimized and included in the
shape optimization of shells. In a similar approach, a multi-objective optimization was
carried out to increase the response to loads for truss structures in Reksowardojo
et al. (2020). However, the listed references represent only an extraction of this field
of research and are not intended to be exhaustive. In this section, an inverse greedy
algorithm as well as a greedy algorithm are applied to find the optimal placement of
possible point loads and actuator elements to realize the most e�cient motion by the
motion design method. The findings and examples are only schematically described
in this section while being published in Sachse et al. (2021b), together with more
detailed explanations and more numerical examples.

6.2.2 E�cient load placement

Application of the inverse greedy algorithm

For the e�cient placement of loads, it is assumed that only point loads are applied
to the structure and that they can generally be placed at every degree of freedom.
To choose the most e�cient loads that are relevant for the specific deformation of the
structure into its target configuration, an inverse greedy algorithm is applied in this
work as introduced in Kruskal (1956) and also used in Wagner et al. (2018). Using
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this algorithm for motion design problems results in the following procedure: First,
all possible point loads at every degree of freedom can be applied for the optimized
motion. Thus, there are no constraints regarding the number of allowed point loads
and an unconstrained motion design is carried out, thus, yielding a minimum of the
functional value. Afterwards, multiple constrained motion design computations are
executed, where the point load at each degree of freedom is suspended separately. The
increase of the functional value attributable to the additional constraints is monitored
for every load suspension. The load that causes the least deterioration in the objective
value is then removed from the permitted load spectrum. This process is repeated until
the desired number of loads is reached. The procedure is demonstrated in the following
example of a statically indeterminate extended two-bar truss in Figure 6.5a. Here, two
shallow arcs are connected by a very sti� element, modeled with a much larger cross-
sectional area. For motion design, the upper midpoint is to be moved downwards, i. e.,
its vertical displacement is prescribed and controlled throughout the motion. There are
four degrees of freedom in total: a horizontal and a vertical degree of freedom located
at the upper as well as the lower midpoint. First, point loads can potentially be applied
to all of them. However, in this example, only the two most relevant forces need to be
chosen.
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.0

Ā

J = 1617 J = 1621 J = 1789a) b) c) d)

Material and geometry
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Figure 6.5: Load placement in an illustrating extended two-bar truss. a) Problem setup.
Optimized motion with b) four point loads, c) three point loads and d) two
point loads.
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First, an unconstrained motion design is carried out and an optimized motion is found
with a functional value of J = 1617. Here, the upper node first rotates around the lower
node and then further moves downwards. Like this, the connecting bar encounters only
minimum strains and a significant increase in internal energy due to its higher sti�ness
is avoided. This motion requires all four possible point loads to realize the calculated
deformation, as illustrated in Figure 6.5b.

Afterwards, every load is removed separately and a constrained motion design is carried
out for each load suspension. The load suspension that causes the least deterioration in
the functional value is then saved. In the given example, the vertical force at the lower
node has the least influence on the functional value. It increases by less than 1% from
J = 1617 to J = 1621 when this load is removed. The resulting motion is illustrated
in Figure 6.5c. It can be seen that the shape of the motion and the trajectory of both
midpoints during deformation do not change significantly, even though only three forces
instead of four are applied. This step is repeated, but now only the three remaining
loads are suspended separately. Again, the force combination with the least increase in
the functional value is chosen, as shown in Figure 6.5d. Now, a significant change can be
observed in the trajectory of the two moving points and the functional value increases
to J = 1789, i. e., by approximately 11% compared to the unconstrained motion design.
However, the overall motion pattern stays the same.

The described inverse greedy algorithm represents a possibility to find the position of
the most relevant point loads to perform an e�cient motion or deformation between two
prescribed geometries. In this way, it is possible to further improve the functional value
compared to simply working with predefined loads in a constrained motion design.

Morphing cantilever as numerical experiment

A more complex example of a morphing cantilever is studied to show the potential of
the load placement procedure. The structure is a hook-shaped cantilever that shall be
deformed such that the endpoints arrive at the prescribed location, as illustrated in
Figure 6.6a. The goal is to find an e�cient motion in which the relevant nodes end up
at the specified location and which can be performed by only four point loads – the ones
perceived as being most e�ective for the assigned task. The method of motion design
guarantees that the prescribed displacement values are met while the restriction to only
a specific number of loads is achieved by constrained motion design. To choose the most
e�cient motion, the inverse greedy algorithm is applied. The defined goal can only be
reached by combining these methods.

The cantilever, which is fixed at the bottom, is modeled with 16 displacement-based Q1-
elements. This results in a total of 34 nodes, 64 unsupported degrees of freedom and,
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therefore, 64 di�erent point loads that may be applied. The motion path is discretized by
18 linear elements. Application of the described methods yields the location of the four
most relevant point loads for an optimized motion, i. e., the loads that cause the least
deterioration of the functional value, and their evolution throughout the deformation
process. The result is illustrated in Figure 6.6b. Four point loads concentrated at two
nodes are found to be most e�cient for a minimization of the functional value and
meet the requirement of the targeted end location of the cantilever tip. The resulting
functional value, the integrated internal energy over the deformation path, is J = 569.

This solution is compared to the deformation resulting from a geometrically nonlinear
analysis in Figure 6.6c, where the calculated points loads with their value from the end
configuration are applied incrementally to the structure. It can be seen that even though
the deformed end geometry remains the same due to the prescribed final load values, a
completely di�erent motion pattern is followed until this configuration is reached. This
is attributable to the di�erent evolution of the loads during the process. In standard

a)

P

PÕ

2
.0

4
.0

0.5

10.0

Material and geometry

E = 10000, ‹ = 0.0
plane strain
t = 1.0

Path discretization

n̄ele = 18
p̄ = 1

0 1 2 3 4 5 6 7 8 9

Horizontal displacement of P

-2

0

2

4

6

8

L
o
a
d

v
a
lu

e

vertical force

horizontal force

vertical force

horizontal force

b)

c)

d)b) J = 569 c) J = 1182
·10

2

Figure 6.6: Motion design and load placement in a morphing cantilever. a) Problem
setup. b) Solution of a constrained motion design with load placement. c)
Deformation obtained by a nonlinear analysis. d) Load-displacement curves
at point P.
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6.2 Choice of e�cient actuation

nonlinear analysis, all loads are increased simultaneously and uniformly, whereas in mo-
tion design, all loads can be increased and also decreased independently from each other.
This e�ect can also be observed in the load-displacement diagram in Figure 6.6d, where
the horizontal and vertical force at point P are plotted over the horizontal displace-
ment. As the same end geometry is reached, the load-displacement-curves join at the
same point at the end of the deformation. The resulting deformation due to a uniform
increase of loads obtained by structural analysis results in a functional value of J = 1182.
This is significantly higher than the value obtained by motion design. Therefore, this
independent evolution of the applied loads leads to the di�erent motion patterns and to
a lower cost of deformation, thus, demonstrating the potential of motion design again.

6.2.3 E�cient actuator placement

In the previous section, the optimal position of point loads to achieve given displacement
values of the deformed geometry in an e�cient way has been sought after. In reference
to that, also the optimal location of actuators in a truss structure can be found. Here,
a serial actuation framework is applied, which stands in contrast to the parallel actua-
tion framework introduced in Section 5.3.3. While in the latter, a regular truss element
is placed at the same location as the actuator element, this is not the case in serial
actuation, but the actuator stands on its own. When the elastic energy over the defor-
mation path is minimized, the energy due to the length changes of the actuators does
not count towards the objective function. As a result, they can freely expand without
any “penalization” in the optimization process. This complies with the case that no
structural element is present at the position of the actuator. Thus, if a critical number
of actuators is reached, a kind of rigid body motion, a kinematic mechanism, can be
performed, which represents a minimum of the objective function with the value zero.
Therefore, two issues are approached here: First, the minimum number and positions of
the actuators are determined in order to achieve the specified displacement values by a
kinematic mechanism. And secondly, the optimal placement of actuators for a minimum
of the elastic energy to reach the end geometry through a non-kinematic mechanism is
identified.

Minimum number of actuators for a kinematic mechanism

Whether such a described kinematic mechanism is possible strongly depends on the
structure, or rather on its degree of static indeterminacy ns, the number and location of
the actuators as well as the number of prescribed displacement values in the end configu-
ration. This is studied on truss structures with di�erent degrees of static indeterminacy
ns = 1, ns = 3 and ns = 5, as shown in Figure 6.7a.
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The critical number of required actuators to exactly reach all prescribed displacement
values with a kinematic mechanism is calculated using a brute force search combined
with a greedy algorithm. The greedy algorithm represents the contrary of the inverse
greedy algorithm, i. e., the number of actuators is stepwise increased and only those with
the least increase in the objective function are saved. When combining both algorithms,
the brute force search first identifies all actuator layouts that are able to exactly reach
the prescribed end displacements. Based on these possible actuator layouts satisfying
the problem definition of motion design, the number of actuators is stepwise increased
within the greedy algorithm until a kinematic mechanism is found. There often exist
several actuator combinations with the same number of actuators that enable a kine-
matic motion. Figure 6.7b and Figure 6.7c show kinematic mechanisms as a result of
actuator placement for the three investigated trusses. Furthermore, two di�erent sce-
narios with only one or three prescribed vertical displacement values are compared. The
actuator layout for a specific number of actuators nact for a kinematic mechanism is not
unique. Therefore, only exemplary layouts are displayed in Figure 6.7. There also exist
other actuator combinations that fulfill the defined requirement.

In all mechanisms, the elastic energy as well as the functional value are zero and an
elastic-energy-free motion is possible. It can be observed in all exemplary mechanisms
that the length of the standard truss elements is the same in the initial and the end
geometry. Moreover, the number of actuators nact to enable such a motion strongly
depends on the topology of the structure. There is no obvious coherence between the

nact = 5nact = 4

nact = 2nact = 2

ns = 1 ns = 3

b)

c)

a) ns = 5

nact = 7

nact = 3

Figure 6.7: Actuator placement for kinematic mechanisms. a) Investigated structures
with di�erent degrees of static indeterminacy. Resulting actuator locations
(red) for b) one and c) three prescribed end displacements.
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degree of static indeterminacy and the required number of actuators. In contrast to
this, however, it can be stated that the more displacement values are specified, the more
actuators are needed to comply with the values.

Actuator placement for non-kinematic motions

If there are not enough actuators available to allow for a kinematic motion, it is an
option to select those that still enable the most e�cient motion regarding the underlying
objective function, i. e., the integrated elastic energy. The inverse greedy algorithm used
in the load placement algorithm is not suitable due to multiple independent kinematic
motions when using too many actuator elements. Therefore, again, a combination of
a brute force algorithm and a greedy algorithm is applied. The approach is illustrated
in Figure 6.8 with the already introduced truss structure (ns = 3, three prescribed
displacement values) and is explained in the following:

1. First, the number of actuators is successively increased and all combinations are
explored until the specified end displacements are met.

2. If there are enough actuators such that the end displacement specifications can be
fulfilled, the combination with the lowest objective function value and, thus, the
most e�cient motion is selected. This is shown in Figure 6.8a. The end displace-
ment values are fulfilled exactly with three actuators. From all combinations of
three actuators (only exemplary combinations are shown here), the most e�cient
with the lowest functional value of J = 135 is chosen.

3. In case more actuators are admissible, the actuator combination chosen in step
2 is used as a basis and the remaining elements are tested as actuators one after

J = 170 J = 196

a)
J = 135J = 160

J = 72 J = 49 J = 54 J = 61

b)

Figure 6.8: Actuator placement for a minimization of the integrated elastic energy with
a) three actuators and b) four actuators.
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the other. Again, the most e�cient actuator combination is then identified (cf.
Figure 6.8b). This step is repeated until the prescribed number of actuators is
reached.

This procedure is used to determine the optimal actuator placement for the most e�cient
motion with respect to the required elastic energy.

6.2.4 Conclusions

In this short study, well-established algorithms for actuator placement have been used
for the choice of an e�cient actuation in motion design problems. For the choice of the
most e�cient point loads, an inverse greedy algorithm is applied, where a basic motion
design procedure represents the starting point with all possible loads. By gradually
removing the discrete forces and, thus, extending the number of constraints for the
motion, the value of the objective function increases. Nevertheless, it has been shown
on a simple illustrating example that the overall optimal motion pattern obtained by a
basic motion design could be preserved.

As an alternative to using only point loads to realize a motion, also actuators can be
used in truss structures. The placement of these actuators can be carried out in a similar
manner. To this end, a combination of a brute force and a greedy algorithm has been
used and demonstrated using a truss structure as an example. It was successfully shown
that algorithms for the optimal selection of loads and actuators for the realization of
an e�cient motion can be combined with the method of motion design. This not only
allows for designing the most e�cient motion based on given loads, but also for the
integration of the choice of these load cases or actuators into the design process in order
to make the motion even more e�cient.

6.3 Playground for variants of the underlying motion
design functional

6.3.1 Motivation

The entire method of motion design was developed and presented with the exemplary
functional of the internal energy being integrated over the motion:

J� =
⁄

s
�int ds , (6.1)
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which represents a measure for the introduced cost of deformation. This quantity con-
tains relevant information about the energy state within the structure and, thus, already
meets various possible requirements of adaptive structures. It can also be easily adapted
to individual needs. For example, the membrane energy has already been isolated to
calculate inextensional deformations of shells. In the same way, individual stress or
strain components could be weighted di�erently for either a higher or lower penaliza-
tion. For all these variants, analytical derivatives can be calculated with quantities
readily available within in a regular nonlinear finite element code. However, Section 4.6
already shows that various other functionals can be applied, while still using the same
method and solution principles. Generally speaking, it is assumed that a selected quan-
tity, besides the internal energy, is integrated over the entire motion path in order to
obtain a measure that contains information about the complete deformation process.
The quantity only must be twice di�erentiable with respect to the degrees of freedom
of the structure. These derivatives can either be calculated analytically or numerically,
which allows a certain flexibility in the choice of the underlying quantity. This modifi-
cation of the functional has already been investigated to some extent in Section 4.7.4,
where the internal energy was replaced by the membrane energy for the calculation of
inextensional deformations of shells. In the following, some more ideas and approaches
based on potential modifications of the underlying functional are presented.

6.3.2 Minimization of the actuator energy

In Section 5.3 and Section 6.2 actuator elements were applied for the actuation of an
adaptive structure. When designing such structures, further energy considerations are
possible. The formulation of the total internal energy

�int =
⁄

�

1
2ET

el
CEel d�

¸ ˚˙ ˝
�int,el

+
⁄

�

3
ET

el
CE– + 1

2ET

– CE–

4
d�

¸ ˚˙ ˝
�int,act

(6.2)

allows for separating the elastic energy

J�el =
⁄

s
�int,el ds , (6.3)

which was used as underlying functional for the designed motions with actuator elements
so far. Alternatively, also the actuation energy can be extracted and chosen as the
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functional to be minimized:

J�act =
⁄

s
�int,act ds . (6.4)

Both energies integrated over the deformation path may represent feasible measures for
the cost of deformation. The actuation energy can be included into the motion design
procedure without any numerical di�erentiation, as all required derivatives are already
at hand.

For demonstrating the general applicability, the truss system from Section 6.2 with a
degree of static determinacy of ns = 3 and three prescribed end displacement values is
used. In this example, an actuator placement for the most e�cient actuator locations
was already carried out based on the motion design functional with the elastic energy
J�el . This yields the actuator layout displayed in Figure 6.9a with the optimized value
of J�el = 49 for the integrated elastic energy and the relatively large non-optimized
value of J�act = 9757 for the integrated actuator energy. Consequently, in order to
achieve the lowest possible elastic strains in the truss throughout the motion, consid-
erable elongations of the actuators are necessary. Alternatively, an actuator placement
procedure based on the integrated actuation energy can now be performed in the same
way. Figure 6.9b shows the resulting – and significantly di�ferent – optimized actuator
layout with the corresponding values for the integrated energies. It can be observed
that significantly lower actuator elongations are required, which also becomes apparent
in the reduction of the integrated actuation energy to Jact = 403. On the contrary, the
elastic energy increases as it no longer represents the quantity that is minimized.

In order to compare the two di�erent functionals with the same actuator layout, a motion
design based on the integrated elastic energy is carried out on this system. Even though
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Figure 6.9: Truss structure with optimized actuator layout based a) on the elastic energy
and b) on the actuator energy integrated over the motion path. c) Evolutions
of elongation parameters throughout the motion for the system in b.
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only three displacement values are given, the end configuration is identical. However,
the motion path towards the end configuration di�ers. This can also be observed in
the di�erent evolution of the targeted actuator elongations throughout the motion in
Figure 6.9c and is also reflected by the varying energy values.

Therefore, utilizing of the actuation energy in the underlying functional for motion
design is generally possible. This results in di�erent actuator layouts when used in an
optimal actuator placement procedure.

6.3.3 Working with motion stages and energy levels

In some cases, motions consist of multiple motion stages. The fact that the motion design
method can handle this has been shown with a three-dimensional cantilever example in
Figure 4.20. Depending on the application, one of the stages may also include a rigid
body motion of already pre-stressed structures due to previous motion stages, e. g., in
deployed satellites that only need to change their orientation. However, if such structures
undergo simple translatory or rotational movements, the internal energy and thus the
cost of deformation accumulates within the method of motion design, which might not
be desirable. Such deformations can generally be treated separately from the presented
method, but if it is intended to integrate them into the motion design process, energy
levels can be introduced.

The working principle is explained using a simple kinematic bar structure. Similar to
the example in Figure 4.9, a bar is fixed on one node while the other node can move
freely (see black bar in Figure 6.10a). The final position (blue) of this node is completely
prescribed. Although the system itself is kinematic, this final position cannot be reached
by a rigid body motion. The trajectory in Figure 6.10a (red) shows the result of a
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Figure 6.10: Working with energy levels. a) Usual motion design to final configuration.
b) Usual motion design with intermediate configuration. c) Motion design
with intermediate configuration and an additional zero-energy level. d)
Diagram of the internal energy for all resulting motions.
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standard motion design. First the free node is moved along an arc around the fixed
node without introducing any internal energy into the bar. By applying external loads
at a suitable point, the bar is then stretched to its final position.

In a next case, an intermediate state shall also be passed, as displayed in Figure 6.10b.
Standard motion design yields the orange trajectory. In order to keep the integrated
internal energy low, the node is again moved along the arc wherever possible, since
the internal energy then corresponds to zero and is, therefore, not added to the cost of
deformation.

In the last case (cf. Figure 6.10c), the intermediate state is again reached first. At
this point, however, the concept of energy levels comes into play: the bar can “lock” its
length such that it does not require any further e�ort to maintain the internal stress
state. Accordingly, the energy level is then newly initialized for the subsequent motion
stage. The continuation of the motion then corresponds again to a rigid body motion
with the node of the extended bar moving along a di�erent, larger arc (green). The
di�erences between the three approaches are clearly visible in Figure 6.10d, where the
internal energy is plotted over the total arc length.

Which technique is preferable strongly depends on the underlying problem. If the energy
state can be locked, corresponding energy levels can be introduced into the procedure.
However, if it requires substantial e�ort to maintain the stress state, it might still be
advantageous to proceed with the regular motion design method.

6.3.4 Minimizing the displacement trajectory

Another objective when designing a motion might also be to find the shortest deforma-
tion path. The length of this path, however, is already implicitly included in the regular
motion design functional through the integration over the entire motion. Because of this
integration and an accompanying substitution, the total arc length stot is introduced in
eq. (4.4) and represents the arc length of the displacement field. Thus, the objective of
finding the shortest deformation path can be fulfilled with the trivial functional

Ju =
⁄

s
ds =

1⁄

0

(. . .)su ds̄ . (6.5)

As can be expected, if the lengths of the displacement trajectories are minimized, the
solution corresponds to the linear interpolation between the initial and the target con-
figuration, i. e., the direct connection. This is demonstrated on a simple cantilever truss
structure in Figure 6.11a. It is to be deformed into a curved shape, which is first com-
pletely prescribed. In most numerical experiments, the linear interpolation has already
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a) b) c) d)

Figure 6.11: Exemplary truss structure and motions with minimized displacement trajec-
tory. a) Problem setup. b) Optimized motion with a completely prescribed
end configuration, c) with a partly prescribed end configuration and d)
with a partly prescribed end configuration and constraints regarding ap-
plied loads.

been used as predictor. As this is also the case here, the solution and optimized motion
in Figure 6.11b is directly found without any iterations. Figure 6.11c shows that the
same applies when only a part of the end displacement values are prescribed, e. g., solely
the end position of the cantilever tip nodes, even if the resulting motion seems to be
unphysical. However, high forces must be applied for each node to be moved or kept in
place. But there is again the possibility to impose additional constraints on the allowed
loads as presented in Section 5.2. As a result, the shortest path to the end configuration
that can be followed with the specified loads is searched for. To demonstrate this, it is
assumed in a next step that loads can only be applied to the two nodes at the cantilever
tip. Finally, iterations become necessary to obtain the solution, since the linear inter-
polation fulfills the condition of minimizing the deformation path, but not the given
constraints. The converged solution for this problem is shown in Figure 6.11d.

6.3.5 Homogenizing the stress state throughout the motion

A further conceivable requirement for an adaptive structure might also be to homogenize
the stress state or, similarly, the internal energy state. The envisaged homogenization
restricts stress peaks or large energy changes during the motion. This can be achieved by
only a slight modification of the original function, i. e., by squaring the internal energy
value within the integration over the motion path:

J�2 =
⁄

s
�2

int
ds . (6.6)

When using this function, locally high energy values are more emphasized and, therefore,
reduced within the optimization. In general, also higher exponents would be possible,
which would lead to an even more pronounced homogenization. However, at a certain
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Figure 6.12: Optimized motions of the exemplary truss structure of a) a motion design
based on the regular functional, b) with a square of the internal energy and
c) with the exponent 4 of the internal energy within the integration over
the motion path. d) Diagram of the internal energy for all motions.

point, the calculated values become very large and potentially lead to an ill-conditioned
system of equations.

The working principle of this alternative functional is again shown on the truss cantilever
problem from Figure 6.11a, where only the end positions of the tip nodes are prescribed.
A regular motion design without exponentiation of the internal energy yields the opti-
mized motion in Figure 6.12a. Applying the modified functional from eq. (6.6) results in
the deformation shown in Figure 6.12b. Even if the exponent is increased to 4 (functional
J�4 , leading to the motion in Figure 6.12c), there seems to be no significant di�erence
to the other two motions. However, this becomes more obvious in Figure 6.12d, which
shows the development of the internal energies for the three di�erent cases. The larger
the exponent in the integral, the larger the spanned area, i. e., the value for J�, but the
maximum local energy value is reduced for the sake of homogenization. A homogeniza-
tion over the motion can thus be achieved and large energy di�erences are avoided.

This approach of exponentiation also allows for another variant: Above, only the energy
peaks within the motion were homogenized. However, if the exponentiation is drawn
into the integral over the domain �, local stress or energy peaks throughout the spatial
domain can also be compensated.

6.3.6 Incremental motion design approach for complex problems

The findings from the previous two subsections can be used to develop an incremental
motion design process. Thereby, it is made use of the fact that a function with an
exponent zero returns the value one and the same function with the exponent one yields
the function itself. In terms of motion design, this means that if the quantity, namely
the internal energy, within the integral over the motion path is taken to the power of
zero, the functional for the minimization of the motion path length (see Section 6.3.4)

144



6.3 Playground for variants of the underlying motion design functional

emerges. On the other hand, if the exponent is one, this results in the regular functional
for motion design. Therefore, the internal energy is now exponentiated with a general
factor j:

J�j =
⁄

s
�j

int ds with j œ [0,1] . (6.7)

The procedure starts with a exponent of j = 0 and, thus, the trivial and already known
optimization solution of a linear interpolation between the initial and end configuration
is obtained. Starting from this, an incremental method can be developed by stepwise
increasing the exponent j from zero to one, analogous to the pseudo-time in a nonlinear
load-controlled analysis. Accordingly, the application of an exponent in between these
values leads to an intermediate solution between the linear interpolation and the tar-
geted solution of motion design. However, it is important to note that the individual
solutions do not correspond to equilibrium points, which are successively connected to
an equilibrium path, but to entirely optimized motions that are based on these varying
objective functions. Through the incremental increase of j, the preceding optimized
motion can be used as predictor for the following solution step. This gradually approx-
imates the predictor to the sought-after motion and the solution procedure converges
better or even converges at all.

This is again demonstrated on the truss structure from Figure 6.11a with prescribed
vertical displacements of the cantilever tip. Figure 6.13 shows di�erent solution steps
with di�erent exponents. The first predictor in Figure 6.13a is the linear interpolation
between the initial state and the prescribed end values. When using an exponent of
j = 0.1, the resulting motion already seems more physically meaningful, but it still
maintains a rather linear appearance, as it can be seen in Figure 6.13b. With the
exponent j = 0.5, the motion already resembles the final solution to a large extent, as
illustrated in Figures 6.13c and d. Especially for the first, low exponents, considerable
changes in the resulting motions have been observed, whereas for exponents above j =

a) b) c)

min J�1min J�0.5min J�0 min J�0.1

d)

Figure 6.13: Incremental motion design. a) Optimized motion for j = 0.0, b) for j = 0.1,
c) for j = 0.5 and d) for j = 1.0
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0.5, the final solution is already recognizable and fewer iterations per solution step are
necessary.

The described approach of an incremental solution procedure also allows for the design
of motions for more complex structures that might experience convergence problems
in the regular motion design method. As an example, the motion of the carnivorous
Venus flytrap, which has been investigated, for instance, in Forterre et al. (2005)
and Sachse et al. (2020), is taken up at this point. Plants that actively move mostly
do so by changing the hydraulic pressure, the so-called turgor pressure, in certain motor
cells. This causes a volume change of these cells, thus, leading to strains, stresses and a
consequential overall shape change. In order to speed up the prey-catching, the Venus
flytrap employs a snap-through mechanism to invert the curvature of its doubly curved
trap geometry, as can be seen in Figure 6.14a and Figure 6.14b. In this study, a motion
design is intended to be used for a hypothesis test. If the motion found in a purely
numerical way corresponds to the motion observed in nature, it can be assumed that
the internal energy, or any other utilized functional, also represents the driving force for
the plant motion. Particularly when studying plants, the assumption of controlling all
degrees of freedom is not a restriction and the basic motion design is suitable. This is due

a) c) e)

b)
Material and geometry Path discretization

E = 10, ‹ = 0.0, t = 0.1 n̄ele = 8, p̄ = 2

d)

t̄ = 0.00 t̄ = 0.25 t̄ = 0.50 t̄ = 0.75 t̄ = 1.00

Figure 6.14: Hypothesis test for the snapping motion of the Venus flytrap. a) Open and
b) closed state of real plant (©PBG Freiburg). c) Problem setup with open
configuration, d) motion sequence and e) resulting closed configuration in
the motion design procedure. An animation of the motion can be found in
the digital version of this work.
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6.3 Playground for variants of the underlying motion design functional

to the fact that the motion can be realized by applying the strain state via targeted and
directed turgor pressure. For motion design, one trap lobe is modeled with 5x5 Kirchho�-
Love shell elements with cubic NURBS shape functions. The geometry was taken from
a 3D-scan of an exemplary real trap and then idealized, as illustrated in Figure 6.14c.
The symmetry axis is fixed. Moreover, the material behavior is also an idealization
and an isotropic, elastic constitutive model is applied. Eight solution steps are specified
for the incremental procedure. In order to incorporate the observation regarding the
solution step size, the exponent is not increased linearly, but it doubles with each step.
Only the end position of the two marked nodes is prescribed and equal path element
size is enforced for regularization, which results in the motion in Figure 6.14d and the
end configuration in Figure 6.14e. This is already quite similar to the motion of the real
plant. However, to obtain more profound insights, further measures should be taken to
bring the model closer to the actual physiology and behavior of the plant. For example,
a multilayer shell can be employed in a simple way and would be more in line with
the real structure. Furthermore, the internal energy could be treated anisotropically.
The cells in the plant have a tubular shape, which allows for an easier elongation in the
longitudinal direction than in the radial direction. This could easily be considered in the
functional by weighing the strain in this longitudinal direction. When using a weighting
factor lower than one, the elongation would be penalized less and thus represent a
more realistic actuation. This approach also allows for simulating anisotropic surface
actuators.

6.3.7 Conclusions

In this section, modifications and variants of the underlying functional for motion design
have shortly been presented and studied. Originally, a functional with the internal
energy being integrated over the deformation path was used as proof of concept for the
development of the method in Chapter 4. However, it was shown that, in general, also
other variants besides the functional based on the internal energy are possible. This
involves the integrated actuation energy or the utilization of energy levels within the
motion. Furthermore, a minimization of the deformation trajectory length could easily
be achieved by a trivial functional with the integrand being one. This also represented
the starting point for a newly developed incremental motion design procedure, which
allows for the design of motions for more complex structures and also enables to study
motions of real structures. In this case, it was exemplarily applied for a hypothesis test
of a biological structure, the Venus flytrap.

When numerical di�erentiation is used, almost arbitrary types of functionals can be
used, which are based, for example, on other structural parameters, such as forces. In
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general, also constraints as discussed in Chapter 5 can be combined with all functionals.
Depending on the application, it has to be decided about the most relevant criteria for
the motion and the functional has to be selected based on these.
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7
Conclusions and Outlook

In certain structural engineering applications, adaptive structures need to perform large
deformations. In order to enable the deformation process itself to contribute to the e�-
ciency of the structure, the method of motion design has been proposed and developed
in this work. It represents a new approach for the design of optimal motions between
an initial and a target geometry of flexible and continuously deformable structures. The
method is suitable for quasi-static loading processes and takes geometrically nonlinear
deformation behavior into account. Furthermore, the individual geometric configura-
tions are predetermined and exclusively the deformation process itself as well as its
properties are regarded. For this purpose, a measure for the cost of deformation has
been introduced, where a selected mechanical quantity is integrated over the deforma-
tion path. Because the latter is defined as the arc length of the displacement field, the
new approach allows to consider the motion in its entirety. In this work, the internal
energy was exemplarily employed to develop the basic motion design concept. There-
fore, the cost of deformation is defined as the internal energy of the structure integrated
over the deformation path, which then represents the measure that is to be minimized
in the motion design problems presented in this thesis.

The problem formulation shows some apparent similarities to the brachistochrone prob-
lem. Hence, this historical task has been referred to in order to motivate the solution
approach based on variational calculus. In doing so, the cost of deformation has been set
as the underlying functional of motion design problems, and thus, its first variation could
be derived. Applying a standard finite element discretization of the spatial domain led
to a semi-discrete formulation, which was still continuous in the motion. However, the
decisive aspect of this work is the discretization of this motion path, i. e., the deforma-
tion process. This means that the individual nodes of the finite element approximation
of the path represent intermediate deformation states that are, in turn, interpolated
by suitable shape functions over the entire motion. With this additional discretiza-
tion, a nonlinear system of equations has been derived that could be solved using the
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7 Conclusions and Outlook

Newton-Raphson method and an accompanying consistent linearization. As a result,
the problem is no longer solved incrementally, but all deformed states and, therefore,
the whole deformation path are obtained in one go. This causes the primary adjusting
variable that improves or deteriorates convergence in nonlinear analysis, the load step
size, to disappear from the problem formulation. Nonetheless, the convergence behavior
of motion design problems has been investigated and enhanced by various methods, such
as using B-spline shape functions for the path discretization or a hierarchically improved
predictor to reduce the total number of degrees of freedom. The introduced path finite
elements were accompanied by the observation that the representation of motion paths
is no longer unique in a discrete setting. Therefore, a regularization of the problem
formulation with additional controls became necessary.

The Newton-Raphson method, which is applied as solution scheme for the nonlinear
problem, can be interpreted as a second order optimization method using first and second
derivatives of the objective function. Due to the particular structure of the functional,
where a mechanical quantity is integrated over the motion path, these sensitivities can
be calculated analytically. This merely requires the first and second derivative of exactly
this underlying quantity. Using the internal energy, as it was done in this work, only
quantities that are already available in nonlinear finite element software, such as the
discrete internal forces and the tangent sti�ness matrix, are required. But also in the
case of many other possible functional definitions, which contain information about the
internal stress or strain state of the structure, the first and second derivatives are often
readily available in standard finite element procedures. This fact also opens up the
possibility to employ any finite element formulation for the spatial discretization rather
easily.

Consequently, the results computed with the novel motion design method are optimized
motions between two geometric configurations with the objective of minimizing the cho-
sen cost of deformation measure. Its implementation was verified by several benchmark
problems for which the analytical solution is known. Additionally, the treatment of
more complex motions, including instability and snap-through phenomena, with the
prescribed functional was investigated in corresponding examples. The feasibility of the
method for the design of inextensional deformations of shells was also demonstrated.
The described procedure is inherently correlated with a large number of involved de-
grees of freedom. However, since the motion design method is primarily intended to give
an idea and information on the first design concept of an adaptive structure, a coarse
discretization of the spatial domain as well as the path is often appropriate. The results
can then serve as a basis for subsequent high-fidelity analyses.

On closer inspection, it can be observed that the equilibrium conditions have not yet
been considered in the basic motion design method. This means that the method yields,
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as an additional output, the independent evolutions of the loads necessary to realize the
resulting deformation path. For this purpose, the internal forces of the structure are
recovered from the obtained displacement field in a postprocessing step. They are then
set equal to the required actuation forces to guarantee an equilibrium state. However,
this results in the major assumption that a point load can potentially be applied at
every degree of freedom, which is typically not the case for most real-life engineering
structures. Usually, only a certain, limited number of loads, load cases or actuators are
available to realize the optimized motion. Therefore, the basic motion design method
has been further extended by the introduction of additional constraints, which makes
it more applicable for structures with limited actuation. This is accomplished by incor-
porating well-known constraint enforcement methods into the motion design concept,
and thus, the forces at all degrees of freedom that are not accessible to actuation can be
set to zero. The now additionally required first and second derivatives of the constraint
equations, i. e., the a�ected internal forces, are given by the tangent sti�ness matrix and
its derivative, respectively. Despite being based on numerical di�erentiation, the exact
value of the latter is obtained by the complex step method. Moreover, the conversion
into a directional derivative helped to prevent a drastic decline in numerical e�ciency.
Further numerical experiments demonstrated the applicability of this approach. They
showed that the constraints can be satisfied and that the functional value of constrained
optimized motions increases compared to unconstrained optimized motions, as expected.
Since actuator elements are commonly used as a type of load case for adaptive struc-
tures, they were also incorporated into the motion design method. For this reason, a new
actuator element formulation, where a targeted actuator length change is introduced as
an additional unknown parameter, has been developed. This actuator element formu-
lation allowed a straightforward implementation into the presented method for motion
design.

In the same way, other types of constraints have been applied to the optimized motion,
such as enforcing a positive determinant of the tangent sti�ness matrix with an inequal-
ity constraint. This guarantees a stable deformation process in a load-controlled scheme.
The derivative of this much more intricate condition is again obtained numerically. In
order to maintain a reasonable level of numerical e�ciency, a modified Newton scheme
is applied, where the second derivative of the constraint expression is omitted. However,
the solution of the resulting extended system of equations might exhibit numerical in-
stabilities in certain situations as the entries are characterized by a significant di�erence
in magnitude caused by the value of the determinant. Nonetheless, the aim of this study
was only to demonstrate the working principle of introducing such a constraint and its
general feasibility has successfully been proven with simple structures. The described
numerical problems still need to be tackled in further research if following this idea.
Apart from that, both types of constraints can be combined. This allows designing an
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optimized and stable motion that can be realized with a given limited number of loads,
which has also been demonstrated with an exemplary structure.

Similarly, other inequality constraints on stress measures are thinkable. This way, it
can be ensured that occuring stress values do not exceed any strength limits or require-
ments regarding local instability behavior, i. e., buckling of single truss elements, during
the entire deformation process. Such constraints only require existing quantities in a
nonlinear finite element code, and analytical sensitivities without the need for numerical
di�erentiation can be obtained.

In summary, the new method of motion design developed in this thesis enables finding an
optimized motion path for nonlinearly deforming adaptive structures in a purely formal-
ized way based on the well-established concepts of variational calculus and finite element
methods. It can be applied without providing any particular engineering expert knowl-
edge besides the desired initial and target configurations of the structure. This supports
an innovative design of motions for adaptive structures, where, for example, also insta-
bilities can be exploited for the purpose of e�ciency instead of avoiding them as it has
conservatively been done in classical structural engineering. The basic method for mo-
tion design is particularly suitable for detecting and developing kinematic mechanisms
as well as inextensional deformations of shells. This specific feature reveals a genuine
potential for application to adaptive and deployable structures. For non-kinematic mo-
tions, the limiting assumptions regarding the actuation were handled and resolved by
the introduction of constraints. Thus, the range of possible applications of the method
has been extended to structures with a predefined actuation. These scenarios resemble
actual technical implementations of real adaptive structures and further illustrate the
potential of the new motion design approach for such complex design tasks.

Some further extensions of the motion design method have already been briefly stud-
ied. The initial and end geometry was always considered as being given so far. Even
though large parts of the final deformed geometry were often left variable, the initial
configuration was never part of the motion optimization process. This is di�erent for the
concept of designing compliant structures. However, both approaches, i. e., the design
of compliant structures and the new motion design approach, aim at reducing the e�ort
to deform a structure into a given target geometry. Therefore, a short study has been
carried out, where shape optimization of the initial geometry and the motion design
method were combined and di�erent underlying objective functions were investigated.
A further increase in e�ciency, i. e., a reduction in the cost of deformation, could be
achieved, which is an intriguing starting point for future research in this direction. Es-
pecially when considering the design of kinematic motions, which is already one of the
major strengths of the presented method, new opportunities for improvement could be
revealed. For example, an originally energy-inducing motion could be transferred into a
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kinematic energy-free mechanism by the additional shape optimization step. The same
principle also holds for inextensional deformations of shells. Consequently, shape opti-
mization of the initial geometry could open up the possibility of finding an inextensional
deformation through motion design. Pursuing this idea means that a procedure can be
developed to identify geometries that are able to perform this kind of motion. However,
more detailed studies on this topic need to be carried out.

In addition, the actuation can also be addressed to increase the e�ciency of the motion.
While the number and type of load cases has been predetermined so far, it can also
be included in the design and optimization process. For this purpose, established algo-
rithms for actuator placement have successfully been combined with the motion design
method. Thus, the location of the most e�ective forces for the realization of energy-
minimized motions could be found. However, this approach has been restricted to an
actuation exclusively by point loads or discrete actuator elements. Future investigations
could search for a relationship between these loads and identify possible clustering, for
example. This would mean that fewer load cases have to be controlled independently to
follow the optimized motion path of the structure. Moreover, other types of actuation,
such as piezoelectric devices or shape-memory alloys, might be considered and stud-
ied as to whether they allow for realizing the desired shape change. It may, therefore,
also become possible to search for the best type of actuation and not only for the best
location of the actuating point loads.

Moreover, modifications of the underlying functional were presented. The motion design
method was derived using the internal energy integrated over the motion path, i. e., the
cost of deformation, as exemplary functional. Since this functional already contains
relevant information about the structure, such as internal stress and strain states, it
covers many types of possible demands for engineering structures. Furthermore, it o�ers
the potential to be modified and varied using di�erent weighting factors for stress or
strain components or exponentiating of individual entries or entire functions. However,
it is easily possible to replace the functional with other quantities. It was shown for
structures with actuator elements that the actuation energy could be minimized, too.
When a multistage motion incorporates a rigid body motion of an already pre-stressed
structure, energy levels could be applied. Furthermore, a trivial functional was used to
find the shortest deformation path. In contrast, the exponentiation of the internal energy
within the motion integral enables a homogenization of the energy state. By combining
the last two points, an approach for an incremental motion design process has been
presented, which also allows the design of motions for more complex structures, which
may exhibit convergence problems otherwise. In general, the underlying functional or
objective function for the designed motion can be adapted to the requirements of the
structure and application. The general applicability of the desired objective function
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always has to be evaluated first, but it is precisely this flexibility that underlines and
opens up further the potential of the new motion design approach.
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