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Kurzfassung

Kurzfassung

Singulére und selektiv-skalierte Massenmatrizen sindlférFinite-Elemente Modellierung
zahlreicher Probleme von grof3em Nutzen, zum Beispiel férNiedriggeschwindigkeits-
aufprall-, Tiefzieh- oder Falltestsimulation. Singul@fi@assenmatrizen erlauben eine erheb-
lich Verringerung der unerwtiinschten Oszillationen in dentéktkraft. Die Anwendung
selektiver Massenskalierung fir explizite Dynamiksinagaén fiihrt zu einer Reduktion des
Rechenaufwandes ohne mafigeblichen Verlust an Genauifdektinnte Methoden fir sin-
gulare und selektiv-skalierte Massenmatrizen basierespmziellen Quadraturregeln oder al-
gebraischen Umformungen der Standardmassenmatrizemofliggende Arbeit widmet sich
der Ableitung variationell streng konsistenter Massemizert und deren Analyse. Die theo-
retische Grundlage dieser Arbeit ist ein neues parambgssdamiltonsches Prinzip mit unab-
hangigen Variablen fur Verschiebung, Geschwindigkeit imgduls. Die numerische Grund-
lage ist eine hybrid-gemischte Diskretisierung diesesenelrinzips und eine geschickte
Auswahl von Ansatzraumen und freien Parametern. Die Qualdr neuen Massenmatrizen
wird mit verschiedenen Benchmark-Tests grundlich anatysind bewertet.

Die Arbeit gliedert sich in drei Teile. Im ersten Teil werddi® wesentlichen Grundlagen
und Notationen eingefuhrt. Es beinhaltet die zugrundehelg Kontinuumsmechanik, die
lokale Form des Anfangs-Randwertproblems fir ein elagtmathisches Kontaktproblem,
sowie dessen Losung mit der Methode der finiten Elemente.ili2arhinaus werden die
zentrale Differenzenmethode fir nicht-diagonale Mass#rinen und eine theoretische Ab-
schatzung uUber die Reduktion der Rechenzeit mit selekMassenskalierung dargestellt.
AulRRerdem wird auf die Motivation fir die Implementieruntgahativer Massenmatrizen einge-
gangen. Im zweiten Teil der Arbeit wird der neue variatiteénsatz fur elasto-dynamische
Probleme vorgestellt. Der Grundstein der Arbeit ist die lefeing des neuen Hamilton-
schen Prinzips mit Penalty-Faktoren und eine Erweiterweggrdodifizierten Hamiltonschen
Prinzips fur kurze einseitige Gleitkontakte. Diese Forigrwingen werden im Raum mit dem
BUBNOV-GALERKIN-Ansatz diskretisiert. Als Ergebnis edhénan Familien singulérer und
selektiv-skalierter Massenmatrizen. Die entsprechemgesatzfunktionen werden fir ver-
schiedene Familien von Finiten Elementen gebildet. Diemmilken beinhalten Stab- und
TIMOSHENKO-Balkenelemente fur eindimensionale, sowienflouumselemente fir zwei-
und dreidimensionale Probleme. Die Ansatzfunktionenifigigdare Massenmatrizen werden
fur quadratische und kubische Elemente hergeleitet, tékge-skalierte Massenmatrizen bis
zur dritten Ordnung. Im dritten Teil der Arbeit werden diauea Massenmatrizen analysiert
und bewertet und ein Ausblick fir weitere mégliche Entwiciden ist angefihrt.

Zur Bewertung der neuen Massenmatrizen wurden die Ausibiggiharmonischer Wellen,
freie und erzwungene Vibrationen, sowie Aufprallproblenmeersucht. Als erstes wird die
Ausbreitung harmonischer Wellen mithilfe einer FOURIERalyse, angewendet auf die
semi-diskrete Bewegungsgleichung, untersucht. Diesdy8ediihrt auf einen Satz von Dis-
persionsrelationen. Ein Vergleich der analytischen Disipasrelationen mit den dazuge-
hdrigen kontinuierlichen erlaubt eine effiziente Fehlediditzung. Auf diese Weise kdnnen
die vorgeschlagenen Stab- und Balkenelemente analyseden. Als zweites werden Eigen-
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wertprobleme fir zwei- und dreidimensionale Problemegeldierbei wird der Fehler in den
niedrigen Frequenzen (Moden), sowie im gesamten Spektarathnet. Als drittes werden
fur die neuen Massenmatrizen spektrale Antwortkurven teressanten Frequenzbereich fur
erzwungene Vibrationen ermittelt. Diese werden mit dervéarfir konsistente Massenma-
trizen mithilfe des FRAC-Kriteriums (frequency responsswaance criterion) verglichen. Die
Werte des FRAC-Kriteriums zeigen den Fehler fir lineareblerme. Anschliel3end werden
mehrere transiente Beispiele mit singularen und skahdvtassenmatrizen berechnet. Diese
Beispiele bestatigen die erwartete Uberlegenheit singulMassenmatrizen fiir Aufprallprob-
leme, d.h. die unerwiinschten Oszillationen des Kontakidrkonnen erheblich reduziert
werden. Variationell selektive Massenskalierung redtizien Rechenaufwand fir explizite
dynamische Simulationen. Im Ausblick werden mdgliche Afeintwicklungen im Hinblick
auf neue Elementtypen, alternative schwache Formen, soulie physikalische Anwendun-
gen vorgeschlagen. Als Nebenprodukt dieser Arbeit konregohPTests fur Tragheitsterme,
ein Uberblick Giber parametrische und nicht-parametrisahi@tionelle Prinzipien der Elasto-
Dynamik, sowie eine Herleitung des Hamiltonschen Prinmiiseiner halb-inversen Meth-
ode erwéhnt werden. Die Anwendung der FE-Technologie fis9damatrizen erdffnet neue
Moglichkeiten in verschiedenen Bereichen der Dynamik&ation, wie Falltest- und Auto-
mobilcrashsimulationen, sowie die Simulation phonoresdfristalle und Bauteile.
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Abstract

Singular and selectively-scaled mass matrices are useffihfte element modeling of numer-
ous problems of structural dynamics, for example for lovoe#l impact, deep drawing and
drop test simulations. Singular mass matrices allow sicgnifi reduction of spurious temporal
oscillations of contact pressure. The application of ¢eleenass scaling in the context of ex-
plicit dynamics reduces the computational costs withobsgantial loss in accuracy. Known
methods for singular and selectively-scaled mass matretg®n special quadrature rules or
algebraic manipulations applied on the standard massgeatriThis thesis is dedicated to
variationally rigorous derivation and analysis of theseralative matrices. The theoretical
basis of this thesis is a novel parametric HAMILTON’s priplei with independent variables
for displacement, velocity and momentum. The numericaishashybrid-mixed discretiza-
tion of the novel mixed principle and skillful tuning of angapaces and free parameters. The
qualities of novel mass matrices are thoroughly analyzeehbipus tests and benchmarks.

The thesis has three main parts. In the first part of the thémsssential fundamentals and
notations are introduced. This includes the basic contmmechanics, the local form of an

initial boundary value problem for an elasto-dynamic conhpaoblem and its treatment with

finite elements. In addition, an extension of the centrdkedince method to non-diagonal
mass matrices and a theoretical estimate of speed-up wehtise mass scaling is given.

Besides, a motivation for implementation of alternativessiaatrices is given.

In the second part of the thesis, the novel variational aggrdor elasto-dynamic problems is
presented. The corner stone of the thesis is the derivatitve movel penalized HAMILTON's
principle and an extension of the modified HAMILTON'’s pripk@ for small sliding unilat-
eral contact. These formulations are discretized in spatie tve BUBNOV-GALERKIN
approach. As a result, families of singular and selectigelgled mass matrices are obtained.
The corresponding shape functions are built for severalliegof finite elements. These fam-
ilies include truss and TIMOSHENKO beam elements for omeettisional problems, as well
as solid elements for two and three dimensions. Shape @nscfor singular mass matrices
are derived for quadratic and cubic elements. Selectisejed mass matrices are given for
elements up to the order three.

In the third part of the thesis, the novel mass matrices aatyaed and an outlook for fu-
ture work is given. Propagation of harmonic waves, free amdefd vibrations and impact
problems are used for evaluation of the new mass matricest, Eie propagation of har-
monic waves is studied with the help of a FOURIER analysidiagpo the semi-discretized
equation of motion. This analysis results in a set of digparselations. Comparison of
the analytical expressions for discrete dispersion k@latith the corresponding continuous
ones allows efficient error estimation. In this way, the s truss and beam elements are
analyzed. Secondly, eigenvalue problems are solved fordanmthree-dimensional problems.
The error in the lowest frequencies (modes) and in the whpsetsum is computed. Thirdly,
spectral response curves for forced vibrations are olddoréhe new mass matrices in ranges
of interest. These curves are compared with the ones obtaiitle consistent mass matrices
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via the frequency response assurance criterion. The valubg frequency response assur-
ance criterion indicate the error for linear problems. Bnaeveral transient examples are
solved with singular and scaled mass matrices. These erarophfirm expected superiority
of singular mass matrices for impact problems, i.e. spgrtemporal oscillations of contact
pressures are significantly reduced. Variational selectiass scaling reduces computational
cost of explicit dynamic simulations. In the outlook, pddsidevelopments regarding new
element types, alternative weak forms and several muitsighapplications are proposed.

As by-product of this thesis, patch tests for inertia teranrs,overview of parametric and
non-parametric variational principles of elasto-dynarand a derivation of the penalized
HAMILTON's principle with a semi-inverse method can be mbt8esides, the topic of finite
element technology for mass matrices is posed. This can npenhorizons for evolving

branches of computational dynamics such as drop test ancr&sin simulations, phononic
crystals and devices.
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Nomenclature

The following abbreviations and symbols will be addressaagal times throughout the the-
sis. Additionally, rarely occurring abbreviations and $ots are noted in the corresponding
context.

Abbreviations

IBVP Initial boundary value problem

ODE Ordinary differential equation (system)

DAE Differential algebraic equations

FEM Finite element method

LMM Lumped mass matrix

RSL Row sum lumping scheme

HRZ HINTON-ROCK-ZIENKIEWICZ lumping scheme, seellkirON ET AL. (1976)

CMM Consistent mass matrix

HMMM Hybrid-mixed (consistent) mass matrix

HSMM Hybrid singular mass matrix

CMS Conventional mass scaling

SMS Selective mass scaling

ASMS Algebraical selective mass scaling according to@sSON ET AL (2005)

VSMS Variational selective mass scaling according tRAGHUK AND BISCHOFF
(2013c)

EAS Enhanced assumed strain method

FV32,FV52 NAFEMS natural frequency benchmarks, see NAFEVE®O)
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Nomenclature

BT Boundary term

MAC, or ¢; Mode assurance criterion (fdf imode)

FRAC Frequency response assurance criterion accordingeta. N AND AVITABILE
(1998)

Element notation convention

T1 Triangular linear and quadratic FE

Q1,Q2 Quadrilateral bilinear and biquadratic FE with lughpe consistent mass matrices
Q2VnPm Quadrilateral biquadratic FE witlvelocity andm momentum parameters

S2 Quadratic serendipity FE with lumped or consistent maatsixn

S2VnPm Quadratic serendipity FE withvelocity andm momentum parameters

Tetra4 Four-node tetrahedral element

Hexa8 Eight-node trilinear hexahedral FE

Hexa27 27-node quadratic hexahedral FE

Hexa27\WhPm27-node quadratic hexahedral FE witkrelocity andm momentum parameters

Trn-m Truss FE with orden andm for displacement and velocity interpolation, respec-
tively

Tin-ml-k Timoshenko beam FE with ordarm, |, k for displacement, rotation, velocity and
angular velocity interpolation, respectively

Ti*n-ml-k  The same as previous, but with linked interpolation for Bispment and rotations

MSny Suffix at end of element name denoting variational selectigss scaling withm,
modes

Q21vM8 Quadrilateral element with mass matrix computedigsncompatible velocity for-
mulation with eight incompatible modes

Symbols in the context of:

Material body

o Origin of global Cartesian frame (inertial frame)

B, Ao Material body in actual and reference configurations, retsygedy

X, X Reference and actual position of a material point

P Density of a material point

W Elastic energy density function

u Internal energy function

0%, Part of the boundary of the body with prescribed displaceri@iRICHLET)

boundary conditions
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Nomenclature

I = [O7tend]

Part of the boundary of the body with prescribed traction INBANN) bound-
ary conditions

Part of the boundary of the body where contact may occur

Specific body force

Boundary traction

Contact traction

Time interval

Kinematic measures

p(X 1) : B x .4 — % mapping from the reference to the actual configuration
Deformation gradient

Right CAUCHY-GREEN deformation tensor

GREEN-LAGRANGE strain tensor

Linearized strain

Displacement

Velocity

Acceleration

Gap inside domain (for beams)

Gap at the boundary (for solid bodies and rods)

Kinetic measures

p=pv
| =xxpv
o

Opk1y Opk2
Oiin
t=on

Volume specific linear momentum

Volume specific angular momentum

True (CAUCHY) stress tensor

First and second PIOLA-KIRCHHOFF stress tensor
Engineering stress tensor

Stress vector (traction) field in the body

Energetic measures

T
TO

M int
rlext

SW
L=T-n

Kinetic energy of a body#

Kinetic energy computed with selectively scaled mass matrusing template
expression

Potential (internal) energy of a body

Potential of external forces

Full potential energy

Virtual work

Lagrangian

XiX



Nomenclature

H=/,Ldt Hamiltonian or action
LCEN HGEN  Generalized Lagrangian and generalized Hamiltonian

Standard model

E,v,p YOUNG's modulus, POISSON's coefficient and density

le Element length in 1D

EA GAg, El Longitudinal, shear and flexural rigidity of a rod

N Slenderness of a beam elembyie

rg=+/1/A Radius of gyration

D Material matrix (elasticity tensor or pre-integrated fegfss for thin-walled
structures)

dt Time-step

c Phase velocity (speed of sound)

f,w Natural frequency and angular frequency

Whnax Maximal natural frequency

dt,i; Critical time-step

a Mass scaling factor for conventional mass scaling

B Mass scaling factor for ASMS

C1, Gy, C3 Mass scaling factors for VSMS

[ Modal participation factor fog,

FE vectors and matrices

Fint Internal force vector

Fext External force vector

Fvbc Nodal vector due to velocity boundary conditions
uvVv,PpP Displacement, velocity and momentum vectors
Z Discrete contact forces (values of LAGRANGE multipliers)
N Shape function matrix for displacement

v Shape function matrix for velocity

X Shape function matrix for momentum

N Shape functions for incompatible velocity

M Mass matrix

M* Hybrid singular mass matrix

M® Mass matrix after selective mass scaling

e Symbol referring to mass scaling

A° Artificially added mass or mass augmentation

o Projection from velocity on displacement

(2 Projection from momentum on displacement

XX



Nomenclature

9 Projection from momentum on velocity
8 Mass matrix w.r.t. velocity
H Mass matrix w.r.t. momentum
D, L Mass matrix and projection matrix for incompatible velgcit
Bo Linear strain-displacement operator
G Constraint matrix
K Stiffness matrix
EigenvectoK @ = w?M @
o] Rigid body mode vector for an element
H Frequency response function

Spectral and dispersion analysis

A Wavelength

k=2m/A Wavenumber

K =K/le Dimensionless wavelength

W Circular frequency of wave

w° Circular frequency after selective mass scaling
Q=wle/C Dimensionless frequency

Oaco Dopt Subscript for acoustic and optical waves, respectively

obend mshear  gynerscript for flexural (bending) and shear waves, resedgt

Mathematical operators

Span Linear envelope/hull/span for a given vector set

ker Kernel or null-space of a matrix/operator

Tr Trace of a matrix

mod Modulo operator that finds the remainder of division cf ammber by another
cond Condition number of matrix, copdl) = |A|/|A~Y|

o) Variation operator

L,L* Kinematic differential operator and its adjoint

div, grad Divergence and gradient operators

E’ Fundamental tensor of third order, LEVI-CIVITA permutatitensor
23

2

Transpose of 2nd and 3rd components of a high-order tensor
> Differential inclusion
Scalar product of two vectors

X Cross-product of two vectors in 2D and 3D or product of twocgisa
, Scalar product of two vector fields defined in a doma#h

(;) p

m(,), a,) Bilinear forms for kinetic and internal energy

XXi






Introduction

1.1 Motivation

In the context of finite element simulation of structural dygmics, consistent or lumped mass
matrices are not always the optimal choice from the pointi@inof accuracy, robustness or
computational cost. It is known that the dispersion erradhefweighted sum of the consistent
and the lumped mass is smaller than for each of themniff°A 2006). Standard mass matrices
also lead to spurious oscillation of contact forces or djeet results for penalty treatment of
contact with large values of contact penalty stiffness ortfeatment of contact constraints
using LAGRANGE multipliers. The usage of singular mass ma$ significantly reduces
such spurious oscillations #@ENOUS ET AL 2008; HAGER ET AL. 2008). Application of
Selective Mass Scaling (SMS) in explicit dynamics increabe critical time-step size and
results in a substantial speed-up for many practical prob)dike deep drawing and drop test
simulations (QOVSSON ET AL 2005; BORRVALL 2011).

The reduction of the dispersion error using alternativesmaatrices is a well studied subject,
e.g. see IRENK (2001), FELIPPA (2001), DESMAN ET AL. (2011), Guo (2012) and refer-
ences therein. This question is not directly addressedsrtltesis. This thesis is focused on
singular and selectively-scaled mass matrices. In cdrtsggevious works on this subject,
unified variational approacks used to construct matrices with desired properties. Tifeed
variational approach is based on a novel mixed parametriMHAON’s principle, which
provides the necessary flexibility in choosing ansatz spacel free parameters. Consistent
spatial semi-discretization of this principle result$amiliesof consistent mass matrices. The
most useful members of these families are selected, eealaatd reported in this thesis.

In the following, some examples are presented to illustteggroblems of the standard mass
matrices and motivate the usage of singular and selectsedied mass matrices. As it is
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Figure 1.1: Evolution of the total energy (left) and the history of thetart force (right) computed
for a typical impact simulation (see Subsection 7.1.6) iobthwith NEWMARK
method, consistent mass matrix and LAGRANGE multipliershod for contact.
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Figure 1.2: Contact force computed with different penalty factors (BfF example from Sub-
section 7.1.6.

mentioned above, the standard mass matrices may produdatastof contact forces, see
Figure 1.1. Moreover, each release or activation of theamtrdonstraint leads to an artifi-
cial gain or loss of the total energy. Using the penalty méttoo dynamic contact problems
leads either to overpenetration, if the contact stiffnessmall, or to highly oscillating con-
tact forces, if the penalty factor is large, see Figure 1i2this thesis, these problems are
substantially reduced using specially constructed sargulss matrices.

SMS is implemented in commercial codes and extensively irsewlustrial applications to
reduce the computation time in explicit dynamics. Thereadse alternative methods to save
computational time, like dynamic condensation or mesh @dgp SMS is competitive with
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Option Simulation time, s Speed-up w.r.t baseline
Baseline (fine mesh from start) 5493 1

Mesh adaptivity 599 9.2

Dynamic condensation 157 35

Selective mass scaling 119 46

Table 1.1: Speed-up for different methods RADIOSSor the NUMISHEET2008 S-rail bench-
mark (Roy ET AL. 2011).

un

i & &

Figure 1.3: Deformation of a steel tube in a drop test, sa@>@sSON AND SIMONSSON (2006).

Option Simulation time, s  Speed-up
No mass scaling (base model) 4268 1
Double density 3149 1.2
Selective mass scalin@,= 10 1346 2.0
Selective mass scalin@,= 50 621 34

Table 1.2: Speed-up for different methods mass scaling strategiesstee tube in a drop test
benchmark (QOVSSON AND SIMONSSON 2006).

the alternative methods for reduction of computationaétam a study for metal sheet forming
shows, see Table 1.1. Here, SMS enables a speed-up of 44 tikheie modest results
are obtained in a drop test simulation, see Figure 1.3. Adspeefrom 2.0 to 3.4 times is
reported in QOVSSON AND SIMONSSON (2006) for the explicit finite element codeRYP,
see Table 1.2.

SMS can also be applied to a full-scale model of a car. In Eidu4, the deformed shape of
aDodge Neommodel is shown, which is computed after 40 ms of crash with the corniale
codeLS-Dyna The history of contact forces is given in Figure 1.5. Thesrmedel uses time-
step 1us. Speed-up values of 1.13 and 1.17 are obtained with SM$ferdtep sizes of 2
us and 3us, respectively. The higher computational costs for cdritaatment and solution
of linear system of equation at each time-steptweigh the benefits of larger time-step for
this model.

1Available at http://www.ncac.gwu.edu/vml/models.html
2SMS leads to non-diagonal mass matrices.
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US NCAP: 1996 Dodge Neott
Time = 0.G40001

Figure 1.4: Deformed shape of Heon1996 model after 40 ms for the initial velocity B5m/s.
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Figure 1.5: History of the contact force fdleon1996 model during the first 40 ms.

These examples illustrate the range of applications of SMsgynificant reduction of com-
putational time for existing SMS techniques. However, ¢hisra big potential for the im-
provement of the existing methods and for extending theeafgpplications.
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1.2 Goals

This thesis follows the standard procedure for derivatiomesv finite elements: searching for
appropriate weak formulation, setting the discretizapoocedure and approximation spaces,
benchmarking and testing. In the context of singular andctgkly scaled mass matrices,
these steps are

e derive new parametric variational principles for elasyoxamics with displacement, ve-
locity and momentum as independent variables

¢ find appropriate discretization and approximation spagedisplacement, velocity and
momentum

e evaluate critically the proposed discretization schenres select the most efficient
ones.

1.3 Overview

The thesis is organized in eight chapters and two appendit&hapter 2, a current approach
to finite element discretization of dynamic structural peohs is given. First, the basic contin-
uum mechanics and the local form of an initial boundary valwdlem for an elasto-dynamic
contact problem are given. The theories for selected tlahed structures are also provided.
Secondly, an overview over spatial finite element disca¢itn of non-linear continuum and
standard treatment of contact are given. Then, a topic giusimn and scaled mass matrices is
thoroughly investigated. The benefits of singular massioefor dynamic contact problems
are explained and existing methods for construction oftdargnass matrices are presented.
Besides, methods for conventional and selective masshgclr explicit dynamics are de-
scribed. Furthermore, the standard time integration selseare presented. This includes the
central difference methddand NEWMARK B method, which are used later in the numeri-
cal examples. The methods for assessment of quality of theerical solution conclude the
Chapter 2.

Chapter 3 is devoted to the derivation of the novel penalZAMILTON's principle and the
modified HAMILTON'’s principle. The latter is extended for aihsliding unilateral contact
problems. The derived formulations can be directly diszeet In addition, the equivalence
of the proposed penalized and modified HAMILTON's princgte the local formulation is
shown by the derivation of the EULER-LAGRANGE equations.

3The standard procedure and a modification hyo@ssSoN AND SIMONSSON (2006) for non-diagonal mass
matrices needed for SMS. A theoretical estimate of speddrupMS is also derived.
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In Chapter 4, different families of mass matrices are disedsFirst, the family of consistent
scaled mass matrices is built. Among the family three usagiiances are chosen. Then the
Hybrid-Singular consistent Mass Matrix (HSMM) is discussand its stability is considered.
Moreover, the condition for the construction of a HSMM witera components at certain
nodes is derived. The latter condition requires specigbsiianctions for the displacements.
In Chapter 5, such functions for arbitrary line elementshané. On the basis of these func-
tions, 2D and 3D extensions are proposed. Then good ansatessfor selectively-scaled
mass matrices are proposed for truss, beam and solid element

The newly developed mass matrices are rigorously analyadtifee important applications,
namely free vibrations, wave propagation and impact prableT he quality of the solution for

the modal analysis is indirectly assessed for 1D exampiag dsspersion analysis. Accuracy
of 2D and 3D elements is assessed by NAFEMS eigenvalue bemkbm The results of

such an analysis for the elements are presented in ChapMurGerical examples for wave
propagation and impact problems are presented in Chapk@ndlly, the main results and the
features of the new method and an outlook are given in Ch8pter

In Appendices A and B the inertial patch tests for selectethehts and an alternative deriva-
tion of the novel penalized HAMILTON's principle are conered.
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In this Chapter, an current approach to FE discretizatiodyofamic structural problems is
given. First, the basic continuum mechanics and the logal faf an Initial Boundary Value
Problem (IBVP) for an elasto-dynamic contact problem avergin Sections 2.1 and 2.2. The
theories for selected thin-walled structures are alsoigeahvin Subsection 2.2.6. Secondly, an
overview over spatial FE semi-discretization of non-lineantinuum and standard treatment
of contact is given in Section 2.3. Then, the question of Wizigand scaled mass matrices
is thoroughly investigated in Subsections 2.3.4 and 21&@$pectively. The benefits of sin-
gular mass matrices for dynamic contact problems are ceresidand existing methods for
construction of singular mass matrices are presentedd8gsmnethods for conventional and
selective mass scaling for explicit dynamics are descridagithermore, the standard time
integration schemes are presented in Section 2.4. Thigdaslthe central difference method
and NEWMARK 3 method, which are extensively used in later numerical exesip Chap-
ter 7. The methods for assessment of quality of the numesadation conclude the Chapter.
These methods, i.e. dispersion analysis, frequency respassurance criterion and modal
assurance criterion, allow evaluation of the influence af neass matrices on eigenmodes
and eigenfrequencies.

2.1 Basic Continuum Mechanics

In this section, a brief overview of continuum mechanicsiigeqg (for further reading cf.
GURTIN (1981); MARSDEN AND HUGHES (1983); HoLzAPFEL (2000); BoNET (2008)).
First, basic notions of kinematics, strain and stress nreasue introduced. Then, constitutive
equations for hyperelastic material and balance laws astifated. A statement of the initial
boundary value problem and its weak form conclude the sectio
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currentt

Figure 2.1: Mapping between the reference and the current configuration

2.1.1 Kinematics and stress measures

Throughout the thesis, a Lagrangian description of mot@&ative to an inertial Cartesian
frame is used. We denote with the origin of the coordinate system and witq,e»,e3) — the
orthonormalized basis vectors. L&ty be a reference configuration of a body at titne 0
andZ be a current (deformed) configuration. Consider an arlyitraaterial point® given by
its position vectoX € % at the reference configuration. We denote withcurrent position
of a pointP. The motion can be mathematically described by a time-digr@mappinge
between the reference and the current configuration

X =p(X), p(Xt): Box I — B, (2.1)

with .# = [0,t.,d being the time interval. We assume that the inverse mappamg the current
to the reference configuration exists with

X = (xt), P (X,t): B x I — Bo. (2.2)

We assume also that the mappipgs sufficiently smooth, namely it is one time piecewise
continuously differentiable in space and twice piecewmatiouously differentiable in time.
From now on, we usg as a function oX andt.

Displacement and deformation

The displacement of a material poiRtis the difference between its current and reference
position vectors with

u=x-—X. (2.3)
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The velocity and the acceleration are defined as the firstranskticond time derivatives of the
material point position vector with
v = 2 Zx axt = 2% _x (2.4)
I - 0t A 9 - 0t2 — . .
Note, that the material coordina¥eis independent of time, thus the velocity and the acceler-
ation can be expressed in terms of the displacement vecataih

du+X) du

du 92(u+X)
ot ot

v(X,t) = e

0, a(X,t) = — . (2.5)

During the deformation process, the relative position efraterial points i is changed.
A material point is zero-dimensioned object, and so it isasgible to define a deformation of
a single point. The common approach considers an infiniedsimaterial fiber d intersecting
the pointP. A material fiber is defined as a smooth one-dimensional setatérial points.
Undergoing deformation, the fiber rotates and stretches.tdtal deformation of the fiberxd
is computed via mapping with

dx = (x4 dx) —x = (X + dX,t) —(X,t) = FdX, (2.6)

with F = g—;é being the deformation gradient, see Figure 2.2. The volumédeformation,
or the ratio of initial infinitesimal material volume\dto an current volume \daround the
material pointP, can be computed using the Jacobian of the deformationegradi

dv

— =det(F). 2.7

dv ) (2.7)
We regard here only proper mappingswith detF) > 0. This guarantees that the material
volume does not turn inside out. The velocity gradiens defined as the material gradient of

the velocity vector with
ov ox .
== F (2.8)

Along the infinitesimal material fibers and volumes, infigiteal material area elements may
be introduced via cross-product of infinitesimal fibeR,dand dR,. The transformation of
area elementsadand A is governed by NANSON's formula with

da= detF)F " dA. (2.9)

The normal of the body surface follows the same transfonatules as the material area
element, which is used for correct treatment of contact itmmc.
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t=0 currentt

Figure 2.2: Mapping of line and area elements.

In the following, strain and deformation measures for fimiedormations are introduced by
the difference of the squares of the material fiber in curagwlt reference configuration with

ds? — dS? = dx- dx — dX - dX = dX-F'FdX — dX - dX
— dX-(C—1)dX = dX - 2EdX, (2.10a)

where

C=FF, E= %(C—I), (2.10b)
with C being the right CAUCHY-GREEN deformation tensor aBdbeing the GREEN-

LAGRANGE strain tensor. This completes the summary of kiagcs.

Stress measures

Internal forces are developed in deformable bodies asiogaitt external action, which can
be surface tractiof, body forcesb or contact traction with another body. The measure
of intensity of the internal forces is stress. The CAUCHes# theorem postulates that the
stress state at a material point in the body can be defined bgamnd-order tensar, called
true stress tensor. The true stress tensor relates the g&@®rt on a plane with an arbitrary
normaln as

t=on. (2.11)
This relation is illustrated in Figure 2.3.

The normal vecton and the stress vectarbelong to the current configuration. The first
PIOLA-KIRCHHOFF stressrq«; relates the reference normal vector to the current strass ve

10
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currentt

Figure 2.3: Internal traction vector on virtual cut surface with norma.

tor. ok, IS Obtained from the true stress via transformation with
Opk1 = (detF)O’FiT (212)

This transformation results in a tensor with both referesroe current basis components and
it is called apartial pull back

None of the stress tensors are energy conjugate with tha stresors defined above. For this
reason, the second PIOLA-KIRCHHOFF stresg, is introduced with

Opko2 — (detF) Filo'FiT. (213)

This transformation is aomplete pull backo the reference configuration with an additional
weighting factor defe. The partial push forward of the first PIOLA-KIRCHHOFF sBes;
and the complete push forward of the second PIOLA-KIRCHH®@FE read as follows

1 1

g = EUPK]_FT, g = de?FO'pKzFT. (214)

2.1.2 Constitutive equations for hyperelastic materials

Generally, the behavior of a solid material can be elasticiaelastic (plastic, viscoelastic or
viscoplastic). It can depend on temperature and strengdéteafric and magnetic fields, etc.
Even more complicated behavior is observed if the matendetgoes phase transformation,
e.g. for shape-memory alloys. Herein, only hyperelasticstitutive relations are used. More-
over, we neglect internal dissipation and thermal condugtivhich means that no entropy is
produced and the processes are isentropic. Thus, the tcbinstiequation used here relates
the current stress only with a current value of strain.

Hyperelastic material is an ideal elastic material, for athihe stress-strain relationship is
derived from an elastic energy density functidh It is defined to be specific to the reference

11



2 State of the art

volume and for the isentropic process it is related to therirdl energy functiohV = pou.
Following standard derivations, the stress is obtainedhaglerivative of the elastic energy
functionW w.r.t. the GREEN-LAGRANGE strain tensor (see balance ofgynbelow) with

ow ow Ju

Opk2 = 9E _‘ac 2PO%- (2.15)

The material tangeri relates infinitesimal increments of stress and strain.ntxsacomputed
as the second derivative of the free energy function

oW  9°W
with
2w d%u
D =227 =Poses. (2.16b)

The material tangent is a fourth-order tensor and in casgéielastic material, it possesses
major and minor symmetries with

Dijxi = Dkiij = Djik - (2.17)

Now, we recall the elastic energy density function, stistsain relations and the material tan-
gent for most common materials, se&QEN (1997); HoLzapFeL (2000). The constitutive
relation for the ST. VENANT-KIRCHHOFF material reads addols

W= ’\5 (Tr(E))%+ u Tr(E?), (2.18a)

ooe = A TH(E)| 4 2UE, (2.18b)
23

D=Al@l+2u(lol)T. (2.18c)

For neo-Hookean material, the relations read

W= %(TrC—B) —uln(detF)+%(ln(detF))2, (2.19a)

Opkr = u(l —C71)+AC717 (219b)
23

D=p(CtoC™) +2(u—Aln(detF))clact (2.19¢)

Note, that ST. VENANT-KIRCHHOFF and neo-Hookean matergis isotropic and their
stored energy function depends only on the invariants of C.

12
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2.1.3 Balance laws

As it was mentioned in the previous subsection, we limit elwes to hyperelastic constitutive
equations and we neglect internal dissipation and heatumtioth. Therefore, the entropy
balance inequality is omitted here (for a deeper descnmifdhermodynamics of continua cf.
GURTIN (1981); MARSDEN AND HUGHES (1983); HoLzAPFEL (2000); BONET (2008)).

We assume no mass production or influx. The action of the systdimited to an external
body loadb and an external surface loacand a flow of internal traction defined by the
CAUCHY theorem. Now we can postulate the balance for basitheugcal quantities: mass,
linear momentum, moment of momentum and energy. Firstidenan open subs&r > %
with a sufficiently smooth bounday7/. For this subset, we define the mamssthe linear
momentump, the moment of momentuiy the kinetic energyf, the internal energy and
the total energ¥,, as follows

m(%):/ pav, p(%):/%pvdv, I(@/):/%xxpvdv, (2.20a)

/ Pyvav, U@)=[ puE)dv, Ea=T+U, (2.20b)
w2 w

with p being the density. The balance of mass for the subset of imlgbeints 7 postulates
that in absence of mass production and mass influx, the rategehof the mass is zero.
Application of the Transport theorem according tottzAPFEL (2000) and MARSDEN AND
HUGHES (1983) results in

/pdv / (p+ pdivv) dv=0. (2.21)

Using the Localization theorem for the latter integral aiding it over p, one gets

p p 0voX _E B
E-i—dIVV— 54—&& " (In(p) +In(detF)) = 0. (2.22)

The latter equation can be integrated in time. Substitubithe initial values of def(t =
0) = detl =1 andpy, yields the equation for the balance of mass

p detF = pp = const (2.23)

The balance of linear momentum postulates that the rate arige of linear momentum is
equal to the total force from volume and surface loads, i.e.

/pvdv /pbdv+/ tda= /pbdv-l—/ onda. (2.24)
dt Tt ow

13
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The balance of mass together with the Transport theoremttedide following statement
% Ja pvav = [, pvdv. Application of the Divergence theorem to the tefgy, ondayields

‘/ dev:i/ (dive + pb) dv. (2.25)
w w

Finally, usage of the Localization theorem results in tlralstatement of the balance of linear
momentum

pv =divo + pb. (2.26)

The balance of moment of momentum postulates that the rathasfge of moment of mo-
mentum is equal to the total moment from volume and surfaagdpi.e.

EI(“Z/):E/ xxpvdv:/ xxdev-l-/ xxtda:/ xxdev-l—/ X x onda.
dt dt Jo w 0w u 0w
(2.27)

The terms$ [, x x pvdv and [, x x onda are recast using the balance of mass, vector
algebra and the Divergence theorem

E/ xxpvdv:/ vxpvdv-l-/ xxp\'/dv:/ X X pvdv, (2.28a)
dt Jo % % %

3
/ XX onda= / div(x x on) dv= / (x x dive+ E 0') dv, (2.28b)
o u u

3
with E being the Fundamental tensor of 3rd order (LEVI-CIVITA petation tensor). Sub-
stitution of the latter two expressions into the balance ofrrantum yields

.. 3
/% <x>< (p\'/—diVa—pb)+ Ea) dv=0. (2.29)

Using the balance of linear momentum and the Localizatieortam, the local form of balance
of momentum is obtained in a form

3
Eo=0&0"=0. (2.30)

Thus, the balance of moment of momentum implies the symnudttiie CAUCHY stress
tensor. The second PIOLA-KIRCHHOFF stress is also symmetrnich is easily checked
using the transformation formula betweepy, ando .

14



2.2 Large sliding frictionless contact

The balance of energy postulates that the rate of changesoders equal to the total power
from volume and surface loads, i.e.

d d
_Etot(%) = a(

" T+U):/%v-pbdv+

v-tda:/ v-dev-l—/ v-onda. (2.31)
owu u owu

Recasting the term& (T +U) and f,, v- andayields

d B . Ju(E) -

a(TﬂLU)—A/pv vdv+é)/pa—E.Edv, (2.32a)
/ v-onda= [ div(ov) dv:/ K@ ; 0') +V~diV0’] dv. (2.32b)
ow U o |\ OX

Substituting the latter expressions in the integral forrthefenergy balance given in equation
(2.31), together with collecting terms, yields

S ~ JuE) - oJv_ B
é/(v-(pv—dwa—pb)-l—(p IE .E—&.a)) dv=0. (2.33)

The first term in the integral is zero. The te%@: o in equation (2.33) can be recast with

ov . 1 1 : 1 :
& .0 = (FFfl) . EFUPKQFT = ﬁ (FTF) . OpK2 = ﬁsyﬁ‘(FTF) . Opk2
1

= deE- TP T gepret B

In the derivation, the symmetry (2.30) and the push-forvedittie second PIOLA-KIRCHHOFF
stress (2.14) are used. Substitution of equation (2.3¢gégther with the local form of the mass
balance (2.23) yield the local statement of energy balance the reference quantities

(2.34)

Ju(E)
Po IE

2.2 Large sliding frictionless contact

In this section, a concise description of large slidingtfoicless contact is given. A description
of frictional contact with a rigorous derivation of tangehbehavior is given in the classical
textbooks WRIGGERS(2006) and [AURSEN (2002).

First, the motion of the contacting bodies is described hadasic assumptions and notations
are introduced. Secondly, the impenetration conditionthedraction contact condition are
stated in a practical form. Finally, variation of the kingrmnand traction values is given.
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t=0 currentt

Figure 2.4: Kinematic of two contacting bodies.

2.2.1 Motion, assumptions and notations

Without loss of generality, a two-body contact is considesee Figure 2.4. The bodies are
defined by their reference positiou% and ,%’(2). The motion of the bodies is described by
independent mappings® and? with

ol Bix I — B, 0> BEx I — B (2.36)

The superscripts 1 and 2 refer to bod:@é and,%’g throughout this section. At the current
position at timet, the bodies occupy the configuratio®® and 2. The DIRICHLET and
NEUMANN boundary conditions are defined for the bodies agaisly to the case without
contact.

The parts of the boundary where contact may occur are demdtadd %2 and 9.%2 and
the pull back of these boundaries to the reference configasaare denoted Witﬂ,%’go and
mgo. For well-posedness consideration, it is necessary tapdnt of the boundary with
DIRICHLET condition and the contact boundary do not overlap

0B NIRBL =2, 0BLHNIRB: = 2. (2.37)

Moreover, we assume here that the contact part of the boyhaédongs to the zero traction
subset of the NEUMANN boundarigsZ! andd.%?, i.e.

0BL > 0B = (X c 0B :1=0}, 0B%>0B°:={XecdB?:1=0}. (2.38)
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2.2 Large sliding frictionless contact

2
0 actualt

Figure 2.5: Parametrization of a contact surface.

The quantities relevant to contact require an appropriatedinate system. It means that at
least one of two adjacent surfaces is parametrized. Hastityj it is the surface with super-
script 1 and it is called thelavesurface. The opposite surface with superscript 2 is called
master surface. Here, we use convective covariant codediren the contact surfackz:
defined as

0B = (x1(&1,6) 1 (E1,&) € T}, (2.39)

wherel £° is some generic parametrization, see Figure 2.5. Now, waal#fe actual contact
surface as the overlap betwe@ggl andd %2 with

Ve = 05BN 0> (2.40)

and the unit normal od % as

1,1
nt— 1572 (2.41)
T X 15|
with 72 with a = 1,2 being the tangential vectors on a surfgeeAs the actual contact surface
is common (according to equation 2.40), the normal of thaaad)t body must be the opposite

to n! with

_ L (2.42)
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Note, that the pull back images of the actual contact surfade the reference positions
0%, andd %2, do not coincide. The pull back of the normal vectotsandn? is defined by
NANSON's formula. It uses deformation gradients from twdépendent mappings! and
2. Thus, this pull backs are generally not opposite, i.e.

detF (F) "n' # detF? (F?) "n' = —detF? (F?) "n. (2.43)

The tangential vectors can be computed by

1_ axl(E].?EZ)

=" =12 2.44
Ta aga bl a 172 ( )

The distance function between a point of the master sutfiand the slave surface* is
defined as

d(&1,82) = min |x*—x']. (2.45)
X292,

The minimizer for the distance function is called the clogesnt projection or the proximity
point X? with

X2(&1.8) =arg_min [x*—x1. (2.46)
X2€0%%,

If the surfaced %2, is smooth, the necessary condition for minimum of the distareads as
follows

2 1
2 1|_X—X

The—xt e 0,a=12 (2.47)

This condition requires that the projection vecxdr— x! is orthogonal to the tangent plane
and that it is parallel to the normal. Having this definition and assumption at hand, the
contact gap and traction can be introduced.

2.2.2 Contact gap and traction

The normal gap is the main measure of impenetration. It isiddfas

ov = (%2 —xb)-nl. (2.48)
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2.2 Large sliding frictionless contact

The normal gap can be positive or negative. The impenetrabadition requires that

o > 0. (2.49)
Variation of the normal gap w.r.t mappings reads

Oy = 0(x®—x1) - nt (x2—x1). ant. (2.50)

The variation of the unit normal vector is orthogonal to litsélhus, the latter expression
reduces to

Sy = &(x%> —x1)-nt, (2.51)
Now, we consider the traction on the contact surfacé-irst, they must satisfy the balance of
momentum. For the massless interface this requires

tl=—t2. (2.52)

The contact tractions, which we assumed earlier, actinghertractionless pad %:° and
02820, are in coherence with the traction flux inside the bodiefindd by the CAUCHY
stress field, i.e.

t% —o'n?, tg = o’n’. (2.53)

The contact traction vector is usually decomposed in a nloadha tangential part
1_¢ a1
tC = tan +tcaTa. (254)

We assume that there is no adhesion in normal direction leettte bodies. Thus, the normal
traction can be only compressive.

toy < O. (2.55)

Since the traction acts only when the gap is zero, the gaphenddrmal traction can not be
simultaneously non-zero. Thus, the normal behavior cartdtedsin a form

gN 2 07 t(:N S 07 gNtCN = O (256)

These relations are well-known SIGNIORINY’s condition 0ARUSH-KUHN-TUCKER
conditions in mathematical programming, seexCHI AND ODEN (1988) and ©RNIER
ET AL. (1995). The impenetration condition and non-negativetiva condition are called
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the primal and dual feasibility conditions, respectiveljnese conditions are inequality con-
straints. The equalitgyt.,y = O is called the complementarity condition.

2.2.3 Boundary and initial conditions

For the closure of the problem of mechanical motion disalisgm®ve, boundary and initial
conditions are required. The boundary conditions are DHRIET (for the prescribed motion)
and NEUMANN (for the prescribed tractions) conditions with

u=0(X,t)in 0B, x .7, t=on=1in0% x 7. (2.57)

The initial conditions describe the state of system at ezfee positiort = 0. Here, it is
assumed that the reference configuration is stressffreel( o = op, = 0). In addition,
materials are hyperelastic and no initialization of theinal variables is required. Thus, the
initial conditions impose the initial displacement andogiy with

U|t:0 = Up, in %o, V|t:0 =Vo in %0. (2.58)

2.2.4 Strong and weak form of contact IBVP

In the previous subsections, the individual field equat&md conditions of a two-body con-
tact are considered separately. Here, these equation®emgosed in an IBVP w.r.t. the
unknown displacement. This IBVP is difficult to solve analgtly and such attempts are not
presented here. A detailed description of analytical smhutf contact problems can be found
in ALEXANDROV AND POZHARSKII (2002), HHNSON (2003) and GLIN AND GLADWELL
(2008). Some exact solutions for non-linear elasticity given in OGDEN (1997) and b
AND OGDEN (2001). The presented IBVP is a possible starting pointlerderivation of
weak forms or variational formulations. A standard formdzhen thePrinciple of virtual
work (PWV) and LAGRANGE multipliers treatment of normal contacincludes this sub-
section. Alternative variational formulations, which iseoof the main foci of this thesis, are
discussed in Section 3.

The IBVP is stated as follows:

Findu': %) x .# — %' andt.y : 0 B x # — R such that they satisfy the kinematic equations

i ou' Loitei yin i
ov = (%2 —xb)-nt, (2.59b)

20



2.2 Large sliding frictionless contact

the balance of linear momentum
pl' =dive' +p'D in %' x .7, (2.59c)
the constitutive equation for given strain energy funcion (E)

i 1 oW FiuT

R = i i
o = oEm IE in 8" x ¢, (2.59d)
the initial and boundary conditions
U'|t—o = uj) in 4., Uli—o = Vo in 4., (2.59¢)
u=0'(Xt) indA x.7, t=on'=t indsx.s, (259
oln! = nlt, in A x .7, o’n! = —nlt,, indA%x .7, (2.599)
and the normal contact conditions
gN Z O, tCN S O, gNtCN - O |n d%CO X j (259h)

Following the classical text books on computational contaechanics VRIGGERS (2006)
and LAURSEN (2002), the weak formulation using PWYV is written as

| OE' +pl(b —v -5uidv+/ f.duda+ [ ou'-nlt, da}+G >0,
i;2 U&% 7re Pol ) 05| Ve N =

(2.60)

with G¢ being the term enforcing the contact constraint antibeing the kinematically ad-
missible variation of displacement. Here, the LAGRANGE tipliers form

Ye

For details about the discretization of this problem, seed®AND LAURSEN (2004a), WNG
ET AL. (2005), HUEBER ET AL. (2006), HARTMANN ET AL . (2007) and BPP ET AL (2009).

2.2.5 Linearized equations of elasto-dynamic contact

The linearization of the IBVP (2.59) or the weak form (2.66) adequate if the deformations
and rotations of the bodies are sm&ll< 1) and relative sliding of the bodies and change of
normal is negligible. In this case, a linearized strainsahdearized material law can be used
inside the domain. On the contact surface, the linearigati@losest point projection and the

21



2 State of the art

impenetration conditions are used. A concise derivatiothisf formulation is given below.
For more detailed descriptions of standard treatment seesBERS (2006) and IAURSEN
(2002) and for an extensive study of the problem with useasfational inequalitiessee

KIKUCHI AND ODEN (1988).

The linearized or engineering strain law reads

e=Lu, (2.62)

with L being the differential operator for a given type of problem.case of 2D and 3D
elasticity, the differential operator is the symmetrictparthe gradient, i.e.

1({du du'
Lu = symgradi = > (W + X ) . (2.63)

In Cartesian coordinates, the operdtan the VOIGT notation reads

. i
% 0 0
J
P 0 % O
X1 d
L=| 0 ¢4 in 2D L—OO‘3—X3'30 2.64
= a% | in2D, 1o o o in 3D. (2.64)
0 0 Xy 00X
Xy 0%y o 2 2
X 0%
J J
L% 0 %

Consistent notation for differential operators is usedtfie description of the kinematics in
selected thin-walled structure theories. The adjointajoeito the operatdr is denoted ak *.
The constitutive equation in case of a linear material laduoes to HOOKE's law

(2.65)

O\in — De.

Combination of the equation given above leads to the folgvatatement of the IBVP

;

pli = L*oy,(U)+b in.Z x %

u=~0 in.% x 0%,

onn =1 in .7 x 0% (2.66)
u(0,.) = ug in %o

U(O,.)ZVO in Ay.
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2.2 Large sliding frictionless contact

Figure 2.6: Linearized kinematic on the contact surface.

The contact conditions use a linearized gap function
g = (x*—x1)-n= (U —ut)-n—gyo, (2.67)

with gyo = (X2 —X1)-n being the initial gap, see Figure 2.6.

2.2.6 Selected linearized models for thin-walled structures

In the theories discussed above, continuous domains asdesad. In many applications,
slender structures are used. For these structures, it magoally motivated to use assump-
tions and reduce the dimensionality of the problem. If twoelnsions of a structural member
are much smaller than the third one, it is callea. It is possible to reduce all quantities of
arod to the center line.

Straight rods are usually classified in subclasses by théedadoads. Trusses carry axial
force, beams carry bending moments and transverse forcalis £arry torque. There are
special designations for members subjected simultangtaisl combination of forces, like
axial and transverse forces and bending moments for a beamzo. Herein, two models are
used: trusses and TIMOSHENKO beams. The matrix notatiothiodisplacement vectar,
material matrixD, differential operatoL. etc. previously introduced for continuum models, is
also used in the context of structural theories. The mataadrix and density are understood
here as quantities which are pre-integrated through tlokribss .
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By
| X
Uz (X) e '

Figure 2.7: Truss model.

The primal kinematic unknown for the truss is the axial daisgimentu,, see Figure 2.7.
Following the matrix notation, the quantities defined witthe truss model reads

u=[u], v=|vi], p=Ip), e=[en],

d (2.68)

o =[A01], p=[pA], D=[EA. L*:L:{d—xj,

with A andE being cross-sectional area and YOUNG’s modulus, respagtiv

For the truss, contact can occur only at the end points. Tieatized impenetration conditions
read

ur(x="Db) < gy, te(Up — Qo) =0, tc <0, (2.69)

whereb is theX;-coordinate of the right end, see Figure 2.7.

The primal displacements for a two-dimensional TIMOSHENKE&am are the center line
deflectionu, and the rotation of the cross-sectigp, see Figure 2.8. The TIMOSHENKO
beam model in matrix notation reads

U2 Rz P2

u= 5 V= 9 — 9
_¢J wj P _|3]
[0 4 [0 4 GAs 0

|_ e d Xm] , L* — d Xm] , D e :| , (2'70)
a 1 o -1 | 0 El

[V [y _[pA O
Ojin = _M:| 9 €= _%:| 9 p_ I O p|33:| 9

with v, and s being the linear and angular velocitigs,andlz being the linear and angular
momenta,GAs and El being shear and bending stiffness¥sand M being the transverse
shear force and the bending momeptand >« being the shear strain and the curvature of
the center line] being the effective momentum of the section in bending lagdeing the
second moment of inertia, which might slightly differ from In this thesis, the possible
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Figure 2.8: TIMOSHENKO beam model.

difference between the effective momentum and the secomdembof inertia of a section is
neglected. The gyration radiog is defined as /1 /A. The shear correction factor is defined
asys = GAs/GA

For the beam model, contact may occur on the upper or low&cialong the whole length.
Contact tractions on these surfaces lead to stresses anusstr thickness direction. These
strains are usually neglected in standard beam models,usutadthese strains the distance
between a point where contact actually occurs and the ckméechanges. This effect qual-
itatively influences the distribution of the contact traati see BLEH AND SUHOROLSKIY
(1980) and ®IGOLYUK AND TOLKACHEV (1987). A shell theory that includes this effect
may also be found in NGHDI (1975). Moreover, the modern commercial codes include this
effect as an option, see MRLEY AND ENGELMANN (1993). In this thesis, the effect of
through-the-thickness strains on contact conditionsgsanted. The contact conditions refer-
ring to the center line read

U2 S g%a tc(uz - gz> - O, tc S O in % (271)

2.3 Discretization in space

In the following section, a semi-discretization in spacéjali is used in this work, is pre-
sented. It is based on a total Lagrangian formulation usisglacement parameters only,
e.g. see EENKIEWICZ AND TAYLOR (2006); BONET (2008). Then, a brief description of the
Node-to-Segment approach for unilateral and bilateralamins given.

the focus of this thesis is discretization of inertial termrdsthorough overview of different
mass matrices is given for beam, plate, solid and shell fadtments. This overview includes
mass lumping techniques and mass matrix templates, smgnalas matrices, conventional
and selective mass scaling.
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2.3.1 Residuum, algorithmic tangent and consistent mass matrices

Consider a quadrilateral parent finite element in paracieteference and actual configu-

ration, according to Figure 2.9. Let us denote the mappinys the parametric space to

reference and actual configurations wigt and 2, respectively. These mappings can be
written as the function between corresponding point pasétx, X and&

X =@"(8), @R(€) -1 x [-1Y = % (2.72)
X = @3(&1), WD) [-1,1] x [-1,1] x . — B. (2.73)

Exploitation of the isoparametric approach means usaggual@pproximation functions for

reference current

O
1 2

isoparametric

Figure 2.9: Element geometry.

the reference position vect¥rand the displacement
X" = NE, u" = NU, (2.74)

whereN is the matrix of shape function& is the vector containing the reference positions of
nodes andl is the global displacement vector. First, we compute thekliaa of the mappings
pRandp?as

_ox" Ja_ ox" o oun

R
T “oe ) T

(2.75)
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The deformation gradieri can be expressed in tensor notation via the latter Jaconiéims

oun oun ONU
F—J3 Ry (RO ) (gRy-1 2% 27
J%(J7) (J —l—0€ (J7) +0Xh +axh (2.76)
or in VOIGT notation with the help of the linear B-operator
F=1+BpU, (2.77)
with Bg
N N
mm 0 om0
0o M o N |
Bo=|on, 22 gn, X2 : (2.78)
oo m L
0 o 0 ox

With the deformation gradient at hand, other strain meassteesses and internal forces may
be computed using equations (2.10), (2.18) and (2.19).

The inertial forces are proportional to the acceleratidine standard approach uses equal ap-
proximations for velocity, acceleration and displacendsgcribed in equation (2.74). More-
over, the variation of the displacement in the PVW expression is discretized with the same
shape functions, leading to

uM = NU, u" = NU, dul = NJU, (2.79)

whereU, U and dU are the vectors of global velocities, accelerations andrkigtically ad-
missible displacements. Substitution of this discretirain the virtual work principle

SWN (U, su) — WM (U, Su) + SWKNN(u, Su) = 0,

SWM(u,8u) = [ SE:SdvV,
By
. . 2.80
SWe (U, du) = / du- pob dV-l—/ ou-tdA, (2.80)
By 0%0
SWKN(u,8u) = [ Bu-polidV,
Po
results in the standard equation of motion
MU +F"(U) = F& (2.81)

with F"t andFe*! being the internal and external force vector.
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Formulation (2.80) uses the pure displacement. More addhfarmulations (mixed, en-
hanced assumed strain and assumed natural strain) aredtieatletail in SEIN ET AL.
(2004). Alternatively, an updated Lagrangian formulatisee B\THE (2006)) and arbitrary
Lagrangian Eulerian formulation (seeBrTSCHKO ET AL. (2001)) may be used.

2.3.2 Standard contact techniques

During the last fifty years, many contact formulations folMFRave been proposed. They dif-
fer in many aspects, but we will focus on the type of spatistidtization of contact constraint
(Node-to-Node, Node-to-Surface, Surface-to-Surfate) farm of contact virtual work (pure
LAGRANGE, penalty, etc.), the type of contacting bodied&taral contact of deformable
bodies, unilateral contact) and the type of temporal diszagon treatment of contact con-
straints for dynamics.

Initially, Node-to-Node (NTN) discretization of contaca@/proposed by RANCAVILLA AND
ZIENKIEWICZ (1975). This approach imposes an impenetration conditigrair initially ad-
jacent nodes in normal and tangential direction. HoweVes, method is restricted to small
sliding contact and it requires matching meshes. Furtkegeral variants of Node-to-Segment
(NTS) discretizations were proposed iv® ET AL. (1985) and BENSON AND HALLQUIST
(1990). They enable the solution of static and dynamic noisl with large sliding and with
non-matching meshes. It is possible to extend the fornaratd self-conta¢t see QR-
PENTER ET AL (1991) and GE (2004), which is important in post-buckling of shells and
progressive folding in car crash simulation. Many comnadrcodes use them, because for-
mulation and implementation are not complicated. Moreabery allow explicit and implicit
time integration.

However, NTS formulations possess several unavoidabVedreks (see SO AND LAURSEN
(20044, b)):

e one-pass algorithms fail the contact patch test
e two-pass algorithms produce overconstraint

e non-smooth contact surfaces cause jumps in the tangdnessfwhen slave nodes slide
between adjacent master segments

e discrete constraints cause jumps in the contact forces wlae nodes slide off the
boundaries of the master surface. This occurs even for fitttcas.

Surface-to-Surface (STS) discretization allows to eletenthe aforementioned deficiencies.
However, STS formulation needs more advanced techniquesofttact detection, build-

Lalso called single surface contact algorithm in literature
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ing contact segments, integration over the segments andlaabn of a consistent tangent.
For details see SO AND LAURSEN (2004b), GTTERLE ET AL. (2010), GCHOSZ AND
BisCcHOFF(2011) and BPP(2012).

Another important part of the contact formulation is its Wwdarm G¢, see equation (2.60).
Inequality constraints can be fulfilled either exactly by GRANGE multiplier form or ap-
proximately in terms of some regularization technique®etiag to WRIGGERS (2006) and
LAURSEN (2002). The LAGRANGE multiplier method can not be used dlye@s it is not
known beforehand which of the constraints are active ortivec Therefore, LAGRANGE
multipliers are combined with an active set strategy, semdoth NEWTON methods or lin-
ear and non-linear complementarity functions, se&ER (2010).

For dynamic contact problems, further issues are presenvat linear and angular momen-
tum and energy, seeAURSEN AND CHAWLA (1997), BETSCH AND HESCH (2007), HAGER

ET AL. (2008) and @cHOSz AND BIsCcHOFF(2011). These algorithms usually impose con-
servation laws as additional constraints on a systems,fynsdatment of internal form and
lead to correction terms for loss or gain in contact eventse &ffort of implementation of
these methods is substantial, nevertheless they are mora@me widely used in commercial
codes in the last decade.

Known dissipative algorithms are based on modified predioborector schemes for NEW-
MARK, see ANDOLFI ET AL. (2002); DEUFLHARD ET AL. (2008) and ROTHE'’s method
KRAUSE AND WALLOTH (2009). They are discussed in Subsection 2.3.4.

2.3.3 Mass lumping and mass customization

Diagonal or Lumped Mass Matrices (LMM) have many importgoplecations. The most
important usage is explicit dynamics, where the diagonahfof the mass matrix simplifies
the calculation of the global acceleration vector. Morepthe critical time-step for consistent
mass matrices (CMM) is by factor two to three smaller tharafbMM. Other merits of LMM
are better storage requirements, easier application o€igboundary conditions and contact
conditions.

There are three common methods for obtaining LMM
¢ Optimal or nodal quadratureproposed by RIED AND MALKUS (1975)

e Special mass lumping or HINTON-ROCK-ZIENKIEWICZ (HRZ),qposed by hiN-
TON ET AL. (1976)

e Row-sum-lumping, see BIGHES (2000) and ©OK ET AL. (2007)

2sometimes called Spectral Finite Elements.
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Figure 2.10: Locations and weights for optimally accurate nodal quadeatules.

Optimal mass lumping is proposed iRED AND MALKUS (1975). The basic idea of this
mass lumping is to place nodes at the location of a high ordadiature rule. Then, shape
functions that fulfil interpolation conditions are used,igthautomatically yields a diago-
nal mass matrix. In case of line elements, the locationslead53AUSS-LOBATTO points.
Tensor product of GAUSS-LOBATTO points is used for quadeitals and hexahedrals, see
Figure 2.10. For these elements, the weights are alwaysiyeoand the order of conver-
gence for eigenfrequencies is preservedid® AND MALKUS 1975). For triangular and
tetrahedral elements, special locations are used whictabodated in RIED AND MALKUS
(1975) and lwo AND PozRIKIDIS (2006). However, for high-order triangles and tetrahegjral
the weights may be negative. Alternatively, the nodes malptated at so-called FEKETE
points. FEKETE points for a domain are those which maximimedeterminant of the VAN-
DERMONDE matrix for a given polynomial basisABQUETTI AND RAPETTI 2006). For
triangles up to order 18 and tetrahedrals up to order nirgdy, gaints are tabulated ilAYLOR

ET AL. (2001) and GEN AND BABUSKA (1996), respectively.
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A diagonal mass matrix can also be obtained from CMM via aigppoocedure called mass
lumping. Special mass lumping, or HRZ, scales the diaganaig of CMM as follows

Nep
M2 = Bmeji, Meii = 5 PONWII||g =g n=n.i=ze (2.82a)
k=1
- e _/ pOd%_ Nipp()WkUHE g 7=¢ (2 82b)
- > Myrans= = R e Z—ls- .
2jMej % Z =M =0i

HRZ result in positive definite mass matrices by construnctio

The other common procedure for mass lumping is Row Sum Lugn{$L). The algorithm
adds all entries of CMM in a row to diagonal. It can be efficigmtpplied for many ele-
ments. The problem is that for high-order elements, suclo@asifiht-node quadrilateral or
ten-node tetrahedral elements, RSL results in mass matwdl negative diagonal terms
(CookK ET AL. 2007; BATHE 2006).

2.3.4 Singular mass matrices

The literature on singular mass matrices is not so rich, umeshey may only be obtained
for a few cases. Initially, singular mass matrices were iabthfor optimal mass lumping
with zero nodal weights or row-sum lumping for special typéslements, e.g. the six-
node triangle. Another source of SMM is mass matrix custation. Such a procedure
allows avoiding stopping bands in semi-discrete FE lat{e&s.1PPA 2006). Singular mass
matrices are used in reduction methods for generalizecheddige problems, mass (dynamic)
condensation and GUYAN reduction, see for detailsdHES ET AL (1976), WOK ET AL.
(2007) and WSLOUKH ET AL. (1973).

A recent application of singular mass matrices is found imadigic contact problems &ER

ET AL. 2008; KHENOUS ET AL 2008; HAURET 2010; RENARD 2010). The usage of singu-
lar mass matrices improves numerical stability of the sdiserete problem: the differential
index of the underlying differential-algebraic systemaduced from three to one, and spuri-
ous oscillations in the contact pressure, which are comyn@ported for formulations with
LAGRANGE multipliers, are significantly reduced. A moreargus analysis is given below.

Standard spatial discretization of dynamic contact prolleising LAGRANGE multipliers
leads to systems of differential algebraic equations (Dwi) differential index of three (see
ASCHER ANDPETZOLD (1998))

M U +F"(U,Ut) = FY(t) + G(U,1)Z, (2.83a)
G'U-gp>0, Z<0, Z(G'U—gp) =0. (2.83b)
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We note that the non-penetration and complementary congigjiven by (2.83b) do not act
on all nodes but only on a proper subset. The numerical solati such a system is challeng-
ing. Standard time integration schemes for ordinary difféial equations (ODE) applied to
System (2.83) may produce oscillating Lagrange multipleerd a substantial loss or gain in
the total energy (RURSEN (2002) and ACHER AND PETZOLD (1998)). This type of spuri-
ous oscillations does not occur or is significantly reducezhise of DAE systems with smaller
index. This observation motivates the combination of sgawetime discretization with the
goal to reduce the index.

There are three principal approaches to reduce the indextifBhis a modification of the alge-
braic constraints to a differential equation, e.g. BAUMGHRSstabilization one-index form
(BAUMGARTE 1972) and GEAR-GUPTA-LEIMKUHLER two-index form (&AR ET AL.
1985). In the second approach, system (2.83) is solvedtlyitadcerms of predictor-corrector
methods (see KAUSE AND WALLOTH (2009); DEUFLHARD ET AL. (2008)). The third fam-

ily makes use of a singular mass matix. In case of linear elasto-dynamic systems, equation
(2.83) can thus be reduced to

M 0 Ui Kil  Kic Ui Ei 0
|:O O][UC]+[KCI KCC][UC}:{FC]+[60]27 (284&)
(GC)T uc— 0o>0, 20, Z ((GC)T uc_ gO) -0 (2.84b)

with U' andU€ referring to inner nodes and contact nodes, respectively.

As all equations that include the Lagrange multipieare now algebraic, the index of the
system reduces to one. This is a much more suitable probtamtfie point of view of time
integration. We follow this approach in this paper, whicls b@en originally introduced for
unilateral contact problems indkENOUS ET AL (2008).

A known complication of singular mass matrices is infinitgegifrequencies in spectra, see
BATHE (2006). First, initial conditions regarding velocity have physical meaning at mass-
less modes (displacement initial conditions are dispejalfbecond, phase velocity for part
of short waves (modes) is infinity. This also leads to infifgbsent) branches in dispersion
relations, see Section 6.1. Third, explicit time integratschemes can not be used.

Another motivation for singular mass matrices can be ddrivem the TONTI diagram,
see Figure 2.11. Here, only the primary loop of the diagrashmwvn with displacements
being the master field. All kinematic quantities, such a®ei¢y, strain or contact gap are
computed from the displacements. Then, the kinetic quastisuch as the stress, the linear
momentum and the contact traction, are computed from thenkdtic quantities. Finally,
equilibrium in the domain is satisfied. In the discrete settithe flowchart is very similar.
However, the contact part of the boundary in the continuetisng has no inertia, whereas
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Figure 2.11: Primary loop of TONTI diagram for linear elasto-dynamic tamt problem (above)
and its discrete counterpart (below).

the contact nodes get some mass via CMM or LMM. Thus, remaviagnass from the con-
tact surface leads to recovery of the initial structure ef¢bntinuous equations.

A slightly different argumentation comes when the contéthim-walled structures is consid-
ered. In this case, the potential contact domain and probmmain coincide. The removal of
mass from whole contact domain then means removal of masstfre whole domain. Here,
it is proposed to redistribute inertia inside the domaimat-wise and to split all nodes in
the massless and the inner nodes. Thus, this proceduregustes the differential index from
three to one.

2.3.5 Mass scaling

Scaling of inertia for explicit time integration is a commprocedure since the 1970s. The
aim of mass scaling in context of non-linear structural na@dts is to increase the critical
time-step for explicit time integration without substahtoss in accuracy in the lower modes.
Conventional Mass Scaling (CMS) adds artificial mass onlidagonal terms of the lumped
mass matrix and thus, preserves the diagonal format of tlss matrix. It is usually applied
to a small number of short or stiff elements, like spot-wétdsar crash, whose high eigenfre-
guencies limit the time step size. CMS is also used for sgaifrrotary inertia of beam and
shell elements. This allows to increase the critical step of these elements up to a corre-
sponding critical step of truss or membrane elements. Hewdéranslational and rotational
inertia of the structure increase, which may cause nonipalygshenomena. Selective Mass
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Scaling (SMS) adds artificial terms both to diagonal and diagtonal terms, which results
in non-diagonal mass matrices, but at least it allows pvesien of translational mass. Thus,
SMS can be used uniformly in the domain with less non-physitafacts.

In this subsection, existing CMS and SMS methods for beaml] ahd solid elements are
described and their properties are discussed. The effente$ scaling on the quality of the
solution is discussed in Section 6.4.

Conventional mass scaling

First, consider an EULER-BERNOULLI two-node column-bealen@ent with cubic trans-
verse and linear longitudinal displacements. For the tigiedy the influence of rotary inertia
of the cross-section is neglected. The element criticadt#tep size for the row-sum diago-
nalized mass matrix is the minimum of the axial and flexuraktisteps

Cltgrit =min <|_e \/ﬁlg ) )

c’12crg

(2.85)

with ¢ being the phase velocity of longitudinal waves agdbeing the radius of gyration for
the section. Analysis of this expression shows that fortshetements witte/rg < 4./3, the
critical time-step is limited by flexural waves, se€IBTSCHKO ET AL. (2001). Therefore,
the rotary inertia for these elements is artificially in@ea to match the axial critical time-
step. This was proposed bye AND BEISINGER (1971) and leads for an element with
constant cross-section to the mass matrix in the form

20 0 0 O
. PlA| O alg 0 0

® " 420| 0 0 210 O}’
0 0 0 al?

(2.86)

wherea = max(17.5,840r;/12) is the mass scaling factor.

An appropriate scaling factar = 17.5(1+ 12r3/I3) is also obtained for a two-node TIMO-
SHENKO beam element with circular cross-section, &LBrscHkKO AND MINDLE (1980).
A short overview on scaling for these two types of beams ismgin Table 2.1.

A similar procedure is applied for plate and shell elemesgs, HHGHES ET AL (1978). The
rotational inertia for a rectangular 'thick’ plate elemevith isotropic material is scaled with
the factora =12/(12t?), wherele andt are the element size and the thickness of the plate. For
a distorted element, a more precise estimate is madeEuyBCHKO AND LIN (1985). In
addition, such scaling leads to an isotropic nodal rotaiigrertia matrixMyy = Myy = M, =
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mass influence of flex shear .
element type type  rotary inertia dtzs dt3; mass scalingr
2
two-node RLM no 1‘5’3'5 - max(17.5,84 jg)
BERNOULLI VIR, /T2 2
column-beam; RLM  yes 12crgy /124312 ) max(17.5, 630@)
cubic transverse; cMM  no ﬁ'r%g . not used
axial linear
V21, /144+-1802r2+1680'2
CMM yes 21001, \/lgflzg . - not used
) , le\/513+21673 I
two-node linear CMM yes cy/1521 1807 75 not used
TIMOSHENKO lo /752 132407 2 (2
beam LMM  no o e max(17.5,2103

Table 2.1: Element time-steps and mass scaling factors for BERNOUIndl aIMOSHENKO
elements based on the maximum flexural and shear frequenegt Eiffness is used
for both elements. For TIMOSHENKO elements, a square csestion with shear
correction factoty = 5/6 is assumed.

M, = pAel2/36, so that the rotary inertia is invariant under finite riotas. For a 3D 4-node
shell element, such nodal mass matrix reduces to

100 0 0 O
010 0 0 O
ptAe |0 001 0O 0 O

=° 2.87

Mnode="72"19 0 0 a® 0 O (2.87)
000 O atd 0
000 0 0 atf

In case of truss, membrane and solid elements, the LMM isedday a factor ofg. This
reduces the element time-step size by the factoy/gfand increases the translational and
rotary inertia of the element by factgr Usually, such scaling is applied to a small number
of short or stiff elements with an overall increase of the snaisthe model up to 1-3%. The
amount of the added mass should be carefully controlledpseecommendations WIRLEY
AND ENGELMANN (1993).

It is also possible to add artificial inertia to incompatibledes (MATTERN 2012; SSHMIED

ET AL. 2013). In this way, static elimination of incompatible nequarameters can be avoided
and at the same time, locking phenomena are circumventedeVd, the stiffness of modes
associated with the incompatible displacements is largetla@se modes provide the highest
eigenfrequencies, which motivates the application of nsaating to these modes.
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Selective mass scaling

Selective mass scaling was proposed ro@ssSON ET AL (2004, 2005). The original idea
relies on the followingalgebraicconstruction of the scaled mass maimg of an individual
element as
, A
M3 =me+ A2, with AL = Tme (I _ ZoiToi> , (2.88)
|

whereme and Ag are LMM and Mass Augmentation (MA)) is the number of nodes per
element,Amg is the artificially added mass amglis some set of orthonormalizeid body
modes Initially, it was proposed to include only translationgjid body modes (QOVSSON
ET AL. 2005). Herein, this method is referenced as AlgebraiccBeéeMass Scaling (ASMS).
A later implementation includes also rigid body rotatioBDRRvVALL 2011). Hence, the

properties of the algebraic SMS are defined by the lineardiwéctorso; and the amount of
added masg\me.

Example: 3-node 2D membrane element with constant densdynadal coordinateE =
[X1,Y1,X2,Y2,X3,Y3]. The LMM and two orthonormalized rigid body modes for sucheex
ment read

10000

01000

m{0 0100
Me==1500104° (2.89a)

00001

00000
o0=1/v3[1 01014, (2.89b)
®»=1/v3[0 1 0 1 0 1, (2.89c)

wherem = pAgt is the translational mass of the element @ad= %(Y1X3 +YoX1 4+ XoY3 —
Y1 X2 — YoX3 — Y3X3) is the area of the element. Substitution of the two rigid boahdes in
equation (2.88) yields mass augmentation

(2 0 -1 0 -1 0]
0O 2 0 -1 0 -1
s Amg|-1 0 2 0 -1 0
Ae = 6 O -1 0 2 0 -1|° (2.90)
-1 0 -1 0 2 o0
|0 -1 0 -1 0 2]
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01 - RBM in x-direction
02 - RBM in y-direction
03 - rotation wrt COG

[X1,Y1] \
o e reference

Figure 2.12: Rigid body modes of a 3-node element with 2 DOFS per node.

Thus, the translational mass and the center of gravitjxs,ys] computed with ASMS has
correct values. The values for moments of inertia w.r.t.cyeter of gravity{lxx,Ixy,lvy] are
overestimated by the factor of46/Am/m. In order to get the correct value for the polar mo-
mentum(lyx + lvy ), the third rigid body mode vector should be also used in egu&?.88).
Taking into consideration orthogonality with the vectogs, the vectoros reads

03

03 = —, With (2.91)
03|
-Yz +Y3— 2Y1-
2X1—Xo— X3
~ Y1+ Y3 —2Ys
5= | oo xa| (2.92)
Y1+ Yo—2Y3
| 2X3— X1 — X5

In this case, the local scaled matnx is fully occupied, i.e. it has entries coupling inertia in
x- andy- direction.

In a total Lagrangian approach, assembly of the local scakesk matrices is carried out once
at the beginning of the computation. It leads to a globald®ie scaled mass matrix

Me = Jmg. (2.93)
e

Matrix M° has a non-diagonal structure. Therefore, calculation efglobal acceleration
vectora, requires at each time-stgpa non-trivial solution of the linear system

M“an = fn, (2.94)
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wheref, is the global nodal force vector. Itis proposed to use a préitioned conjugate gra-
dient method (PCG) with JACOBI preconditioner, ses09SSON AND SIMONSSON (2006).

SMS has the following effect on the structural behavior. Thecal time-step roughly in-
creases by the factor f'1+ 3 with B being the ratio of the added mass to the element mass
Am/m (OLOVSSON AND SIMONSSON 2006). The eigenmodes of the structure are distorted
and the order of the modes may be changed. The phase velocghdrt waves is signifi-
cantly reduced and the dispersive error for these wavegisased, see Subsection 6.2. In
case of translational rigid body modes being taken, theyateertia of the structure is in-
creased. If all rigid body modes are taken, then the rotastimis preserved. However in this
case, the scaled mass matrix obtains coupled terms betwesriaiin x-, y- and z-direction
(BORRVALL 2011). The condition number of the global mass mattikincreases by factor
approximately 1 23 and the number of iterations needed for solving the systemm, = fj,

grows proportionally to,/1+ 2[3.

ASMS is implemented in the commercial explicit FE codésDyna Impetus AFEA and
RADIOSS. It proved to be efficient for some applications such as deapidg and cutting

of metal sheets, car roof crash and drop tessNAUDEAU 2010; BORRVALL 2011; AGANI

AND PEREG02013; Roy ET AL. 2011). The theoretical estimate of the speed-up that can be
obtained with SMS is given in Subsection 2.4.2. The obtagpeabd-up in real-life application
varies from two to forty, see also Chapters 1 and 7.

SMS for solid-shells and shells modelled with solid elersamiceived in literature special
attention. The typical spectrum of such structures is shmwrigure 2.13. Through-the-
thickness modes limit the critical time-step size. Howgtlegse modes are not important for
the global structural response and they may be suppressediging inertia for the stacks of
the nodes, seel®VSSON ET AL (2004). A similar approach is given for dynamics of solid-
shells in ®CCHETTI ET AL. (2013) and RGANI (2013). These works also include analytical
estimates of the critical time-step and study on the distordensitivity of the proposed for-
mulation.

MINDLIN’s theory of elasticity with micro-inertia can be ather possible starting point for
derivation of SMS. This theory includes inertia for disgaent and micro-rotations. After
several simplifications of this general theory, the follogriequation of motion for isotropic
media may be obtained:

P [u. — (d%—l—d%) Ujjj — d%ijij] =(A —I—H)Uj,ij + Ui jj, (2.95)

3LARS OLOVSSON is one of the active developersrapetus AFEASome advanced mass scaling methods are
implemented in the code, e.g. mass scaling for quadraticabit tetrahedral and hexahedral elements, mass
scaling for clusters of nodes. However, the methods areutdtghed (see http://www.impetus-afea.com/).
4Selective mass scaling is call@dvanced mass scaling RADIOSS
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Figure 2.13: Characteristic distribution of eigenfrequencies for atalled structure modelled
with solid elements (black) and effect of mass scaling afkhéss inertia (red).

with u; being the displacemem, and being the LAME constantsi; andd, are the length
scale parameters related to the micro-structure, s&EA ET AL (2011). Finite element
discretization of inertial terms leads to the element magsreentation matriXA° with

X’:/ pNTNd,%HL/ (LN 5LN d, (2.96)
B B

23
p=dlol+dB (1. (2.97)

Here, p is the matrix of local micro-inertia properties ahdis the symmetric part of the
gradient (2.64). Matrix Teduces for the 2D case to

d?+d3 d? 0
p=p| d@ d?+d3 0]. (2.98)
0 0 di

A variation of equation (2.96) called Enhanced Selectives$/8caling (eSMS) is given in
GAVOILLE (2013). There, isotropic mass scaling is obtained for thgtle scale parameters
di=0 andd% ~ [B. Moreover, the value for the scale parameigrs adjusted to the size of
each element leading to a mass augmentation matrix in the for

[5(LN)"LN d8

2.99
Tr [, (LN)'LN d%’ (2.99)

)\O - Bem

with Be andm being the element scaling factor and mass, respectivalyTabeing the trace
operator for a matrix.

Stiffness proportional mass scaling is recovered in equd®.96), if the ratio of LAME pa-
rameters\ /u and the squares of the scale paramaﬂ%;‘sl% are equal. Stiffness proportional
scaling was proposed earlier in dEK AND AUBERT 1995; Q. OVSSON ET AL 2005),
though. Positive features of stiffness proportional masdirsg are eigenmode preservation
and controlled eigenfrequency reduction.
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A variationally based method for SMS was proposed recentlfACHUK AND BISCHOFF
(2013c). The starting point of the proposed approach is apaametrized variational princi-
ple of elasto-dynamics, which can be interpreted as peathHHAMILTON'’s principle. It uses
independent variables for displacement, velocity and nmome in a three-field formulation.
The penalized HAMILTON's principle imposes relations beem velocity, momentum and
displacement via the penalty method. Consistent disatsbiz of the latter principle results
in a parametric family of mass matrices. In this way, thegtatonal inertia, center of gravity
and polar momenta of individual elements may be preserva@hnguarantees convergence
of the method with mesh refinement. A distinctive featurehef tnethod is variational rig-
orousness. Besides, the mass augmentation is prescrideshsatz spaces for velocity and
momentum. This method is discussed in detail in Sectionss42land 7.2.

A classification of mass scaling methods the discussed abkayeen in Figure 2.14. The
conventional mass scaling was extensively studied in ti@48nd 1980s. After the pioneer-
ing papers (MCEK AND AUBERT 1995; Q.OVSSON ET AL 2004, 2005; QOVSSON AND
SIMONSSON 2006), the selective mass scaling received a great dedeviti@in. New meth-
ods were proposed in KES ET AL (2011); GCCHETTI ET AL. (2013); TKACHUK AND
BISCHOFF(2013c, b); QvoILLE (2013); SHMIED ET AL. (2013). Besides, approximately
20 papers and conference talks describe speed-up of SM8feoedt applications.

> Rot. scal. for EB-beam, Ky AND BEISINGER(1971)

Rot. scal. for 'thick’ plates, HGHES ET AL. (1978) ‘

r Conventiona

Rot. scal. for Timoshenko beamEBYTSCHKO AND MINDLE (1980)

—

Rot. scal. for shells, BLYTSCHKO AND LIN (1985)

Lsl Uniform scaling of mass matrix, from 90s ir5-Dyna

Mass scaling_

— Stiffness proport., MCEK AND AUBERT (1995); ASKES ET AL. (2011)

Thin-walled, Q OVSSON ET AL (2004); G®CCHETTI ET AL. (2013) ‘

> Selective Algebraic selective mass scalingLOvssoN ET AL (2005)

ol e

Variational selective mass scalingkACHUK AND BISCHOFF(2013c)

Ls Enhanced selective mass scaling\@ILLE (2013)

Figure 2.14: Classification of mass scaling methods.
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2.4 Integration in Time

In this section, methods of solution for second order ihit&ue problems are discussed.
Here, the methods used in the thesis are presented, ingladintral difference and NEW-
MARK B methods. The description follows the notation used®BrsCHKO ET AL. (2001)
with an extension of the central difference method to n@agdnal mass matrices presented
in OLOVSSON AND SIMONSSON (2006).

2.4.1 Central difference method

The central difference method is a common method for expime integration. Its simplicity
and robustness motivate the usage of the method for a brogd d applications. The most
important applications include crash worthiness and nastufing simulations. Another ad-
vantage is the structure of the algorithm allowing efficipatallelization and scalability on
modern supercomputer architectures. For example, car shamilation speed-up satisfactory
up to 200 processors and 10 million DOFs for a hyldr#stDYNAversion (MENG ET AL.
2010; MakINO 2008). Some applications on special computer architestsrale well up to
65K processors and 320 million DOFsABRN 2007).

In the following, we consider for simplicity an algorithm tlvia constant time-stefit (an
algorithm with variable time-step can be found iBIBTSCHKO ET AL. (2001)). The initial
time and the state of the system are denoted tyjtbly and Uo. The termination time i&nq
Displacements and accelerations are defined at full timesst asU, andU,, respectively.
Velocities are defined in half-steftg, 1, as Un+1/2. The central difference formulas for
velocity and acceleration read

) Usr—U U — U,
Unijz = =, Un = =22 =2, (2.100)

Equations of motion are evaluated at the full time gtep
MUp = F = F&_ Fint_ pvbc, (2.101)

The internal force vectoFin”t is evaluated for the current displaceméhit as described in

Section 2.3. The force vectd#!°° arises from velocity boundary conditions and the off-

diagonal terms of the scaled mass mamX. It is assembled over all nodes with velocity

boundary conditions to the vector

Un+1/2 - Un71/2
At ’

F\AbC - U Mol.jn, Wlth l.jn -

vbc

(2.102)
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. Initialize t = t, U = Up, U = Up

. Compute LMMM or SMSM*® and preconditioner for mass matfx
. Get global force vectdf,, = F& — Fint _ pvbe

. Compute acceleratidd, = M F,

. Time updaté, 1 = t, + At

. Partial update of veIocnanH/z =U, + tU,

. Enforce velocity b. cUnH/z = Un+1/2

. Update nodal displacementl,,; = Up+ AtUnH/z
. Get global force vectdfn 1 = Fﬁfl Fint, — Fyee
10. Compute acceleratlcmnﬂ =M- Fn+1

11. Partial update of velocityn, 1 = Un+1/2+ Uit
12. Update time-step counter et 1

13. Output

14 If thy 1 < tenggo to 5.

© 0o~N OO0~ WNPF

Figure 2.15: Flowchart for explicit time integration.

Whereo are vectors of prescribed velocity. This term vanishes se«d LMM.

Thus, the update for velocity and displacement results in

Uni1/2=Un_1/2+ ALM Iy, Unp1 = Un+AtUp,q . (2.103)

The algorithm for the central difference method is presgmeFigure 2.15. Calculation of
the global acceleration vector is performed at stages 4 onfl8MS is used, then the ac-
celeration vector is computed with a direct solver for smgditems or with a Preconditioned
Conjugate Gradient method (PCG) with JACOBI preconditipsee Figure 2.16. According
to OLOVSSON AND SIMONSSON (2006), the acceleration vector from the previous step is
used as starting value for the iterative solution. The tolee for the iterative solveol, is
usually in a range from 1@ to 108 depending on the application.

The central difference method is conditionally stable. kogarized systems an the critical
time-step size can be estimated on the basis of the maximtumah&equencymax of the
system, see HIGHES (2000) and EBLYTSCHKO ET AL. (2001). Thus, the time-step size
should satisfy the condition

At< 2. (2.104)

ax

It is recommended to reduce the time-step further by th@f&@ECFACfrom 0.67 to 0.9 de-
pending on the application. The maximum natural frequerasy ke estimated from an it-
erative algorithm according toEBISON ET AL (2010) or from an elementwise computation
according to BELYTSCHKO ET AL. (2001).
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. Initialize acceleration with values from previous tistepU,, o = Un_1
. Compuite initial residualy = F — M°Up o

.20=Prg

-Po=1720

. while|rg| > tola|F,| do

2z
k= —io—
K pyM O_Pk

. Unkt1 = Unk+ akpx
k1 =Trk—M°py
CZepr =P

T
B = Zkg 1%
zkrk

10. pr4+1 = Zkt1+ PPk
end do

© DN U AWNNR

Figure 2.16: Flowchart for calculations of acceleration vector with PCG

E =207 GPa

v=0.0

clamped F=2N o = 7800 kg/n?
ny =50

3mm n=1

100 mm

n=3

1 mm tend=2 Ms

Figure 2.17: Tip loaded beam, problem setupl(@/SSON ET AL 2005).

2.4.2 An estimate for speed-up for SMS

The theoretical estimate of speed-up for SMS can be done aangpcomputational costs for
LMM and SMS for the following simple example (@VSSON ET AL 20059. The model
for the example problem is shown in Figure 2.17. Initial zdigplacements and velocities
are assumed. The beam is loaded at the tip by an abruptFortke time-step scaling factor
SCFAC is 0.67 for LMM and SMS. The model hage = 50 x 3 x 1 eight-node hexahedral
elementsnnoge = 400 nodes andyos = 1200 degrees of freedom.

The computational costs of explicit time integration withlM can be roughly estimated as
follows. The initialization steps 1 to 4 (Figure 2.15) rdsnlcosts ofO(Nnge), Which is small
in comparison with discussed below costs. The most expemsvt of the time integration
loop (steps 5 to 14) is the computation of the global intefoie vector (step §) The global

5Two major drawbacks of this example are regular mesh anchabs# contact. Distribution of element distor-
tions and local critical time-steps have a significant inflees on the efficiency of SMS. Treatment of contact
usually takes 20 to 40% of the computational time in realdifplications. However, the cost of treatment of
the contact is proportional to the number of time-steps¢ividioes not change the form of the final expression.

5The output (step 13) is never done at each step due to lionigf hard disk capacity and slowness of 1/0O
operations. The number of output frames is usually by a faaft@000 smaller than the total number of time-
steps. The time spent on output is usually below 5 % and itgécted here in the estimate.
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internal force vector is assembled franye local internal force vectors. Computation costs of
a constant stress solid element withAlNAGAN AND BELYTSCHKO (1981) hourglass control
and bilinear elasto-plastic material is cgst= 1388 FLOP (HALLQUIST ET AL. 2006). Thus,
the computational cost for the global internal force vector

COSTgje = COStje X Nstep= 1388x 150= 208200 FLOP (2.105)

The internal force vector is assembled at each time-step CHL criterion predicts the critical
time-step ofAteit =le/Cc = 0.18us. Taking in account a SCFAC of 0.67, this results in a time-
step valueAtMM = 0.1251s and total number of time-stepstep = 16000 (for end time
tend = 2ms). Thus, the computational cost estimate for LMM reads

tend
COSTMM ~ COST, = —_end _ _208200«16000=23.33 GFLOP
elellstep COSEIeneIeAtLMMSCFAC

crit

(2.106)

Explicit time integration (Figure 2.15) with SMS leads torseal overheads: computation
of the scaled mask!°® and preconditioneP (step 2), evaluation of the vect&¥ ¢ (step 3
and 9) and computation of the acceleratidn(step 4 and 10). The scaled mad$ and
the preconditioneP are computed in the beginning of the simulation. The contutal
cost for step 2 i©(ngje). It is negligible in comparison with the costs for the int&rforce
vector COSTEiehstep The cost of evaluation of the vectBYC is proportional to the number
of nodes with prescribed velocity boundary conditions. sTiiimber is problem dependent
(in the example, it is eight). In this estimate, it is assurtied the number of these nodes is
small in comparison to the total number of nodes and the @staegligible. The costs for
computation of the acceleratidhis the costs of a single PCG iteration CQSE times the
number of iterationSier, 1.€.

COSTsolver= COSTpce X Niter- (2.107)

The average number of iteration for the relative tolerante= 10~° is eight. The costs for a
single PCG iteration COSEgcan be estimated as

COSTpce = 2 x bandwidthx ngof = 2 x 5 x 1200= 12000 FLOP (2.108)

This yields an estimate COSdver 0f 208000 FLOP.

The number of time-steps for SMS depend on mass scglwig a factor\/1+ 3. For3 = 8,
the time-step is scaled by factor three/to>MS= 0.375us (AtSMS= /1 + Ble/c = 0.54us).
The total number of time-steps for the end titag = 2ms is 5333. Thus, the estimate for the

’Floating point operations.

44



2.4 Integration in Time

computational costs of explicit time integration with SM&ads

t
COSTEMSy(COSToie+ COSTeoner) Nstep=(COSTore+ COSTeanver) —gpomt——
( elet solver) Nstep=( elet solver) AtSMSSCFAC

crit

= (208000+ 10800Q x 5333= 1.69 GFLOR (2.109)

Finally, it leads to the theoretical estimate of speed-usidS

cosTMM ASMS 333

crit

COSTIMS ™ AtLMM(1 4 COSTeoner/COSTere)  1.69

SPEED-UR- 1.97.  (2.110)

Note, that the speed-up is proportional to the ratig'S/ At-MM - Besides, small ratios for
COSTsover/ COSTele allow large theoretical values for the speed-up. In the g@tanthe ratio

is 0.52, which reduces the theoretical speed-up from tloded7. Fast iterative solution for
accelerations requires good conditiorfitand small bandwidth of the scaled mass matix
which is discussed in Subsection 6.3.2. In addition, themdational costs cogt for other

FE formulations may be up to 11000 FLOP, lik&-Dynaeight-node hexahedral element
(ELFORM = -2 or 3) or ten-node tetrahedral element (ELFORMG6=at 17). For these
elements, the ratio COSdjer/ COSTele is less and SMS has larger potential. This example
illustrates, that the efficiency of SMS is reached at goodrizd between the costs for global

internal force calculation and iterative solution for decation.

2.4.3 Newmark 3 method

The second most popular method in computational struatoeahanics is the NEWMARIG
method proposed in BIWMARK (1959). NEWMARKZ( is a one-step and self-starting method
and it is available in most implicit commercial codes. ltieslon the following update rules
for displacement and velocity

2
(2801 + (1-28) ). (2.111a)

l-JnJrl = Un+ At (VUn+l+ (1_ V)Un) ) (2-111b)

Un+1 - Un+Un+

with B andy being parameters of the method. The paramegieamnd y determine accuracy
and stability of the method, e.g. se&&HES (2000).

8The number of PCG iteration should be less than 50.
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. Initialize t = t, U = Up, U = Up

Compute mass matrix

. Get global force vectdf,, = F& — Fint _ Fvbe

Compute acceleratidd, = M F,

. Time updaté, ;1 = t, + At _

. PredictotUn. 1 = Upy1 + At2BUn. 1 andUnyq = Unpq + AtyUnia
(Loop over NEWTON-RAPHSON iterations:)

7. Get global forcd,, 1 = F&!, — FI"t, — FyP°, assemble global tangeldtr
8. Compute algorithmic right hand side and tangent (2.115)

9. Solve forAUI
10. Check for convergence

11. Update of velocity and acceleration
12. Update time-step counter et 1

13. Output

14 If th, 1 < tenggo to 5.

O UTAWNER

Figure 2.18: Flowchart for NEWMARK]f time integration.

The solution is split in predictor and corrector steps. Tregtor step is written as

. . At2 .

Uns1 = Un+ At(1—y)Up. (2.112b)
The corrector step reads as follow

Uni1 = Uns1+ A2BUM, (2.1139)
Uni1 = Un1+AtyUnya (2.113Db)

The unknown acceleratiddy, 1 at the new time-step is expressed using the corrector equati

. 1 ~
Un+1 = m (Un+1 - Un+1> . (2-114)

Substitution of the acceleration in equilibrium equati@B() att, ., leads to the following
equation with respect to the unknown displacement vddfor

1 4 int t 1 Yy ~ A

(2.115)

The latter equation is usually solved with the NEWTON-RARMEalgorithm. HavindJ,. 1
at hand, the acceleration and velocitytat; are updated. The algorithm is presented in
Figure 2.18.
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2.5 Assessment of quality of space and time discretization

Instabilities for non-linear problems are common for dymaoontact problems. Certain mod-
ifications to the algorithm should be made, if contact caaditire included. This question
is covered in RNDOLFI ET AL. (2002); LAURSEN (2002); HARTMANN AND RAMM (2008);
DEUFLHARD ET AL. (2008); SJIWANNACHIT ET AL. (2012).

2.5 Assessment of quality of space and time
discretization

2.5.1 Temporal discretization

A good time integration scheme is crucial for accurate ahdbie solution of dynamic prob-
lems. The analysis of one-step and multi-step time distattin schemes for linear systems
of ODE is available in HGHES (2000); S\MARSKII (2001). This analysis considers amplifi-
cation matrices on a single step and provides results foenigal damping, period elongation
(dispersion), convergence and stability. Yet, it is diffica conduct such an analysis for non-
linear systems or systems with constraints.

DAE systems and differential index

A differential-algebraic equation is an equation invotysm unknown function and its deriva-
tives, see GMPBELL ET AL. (2008). The properties and solution methods for a DAE dépen
on its mathematical structure. In case the system of equatian be solved with respect to
highest derivative, the DAE reduces to an ODE. This usualtyrmot be done for constrained
mechanical systems discussed here, see equation (2.830eBe problems, the semi-explicit
class of DAE arises, which is possible to be solved with ressfpethe highest derivatives only
for a part of unknowns, and for the rest of unknowns algelegqitations are provided. These
types of equations are called HESSENBERG forms§AER AND PETzOLD 1998). These
DASs can be interpreted as a system of ODEs coupled with @getonstraint equations.
Thus, variables for these DAEs can be distinguished by the tf defining equations be-
tweenalgebraic and differential variableBASCHER AND PETZOLD 1998). For example, the
following equation

U=M"1 (Fe"t(t) _Fint(g,u,U) — Gz) (2.116a)
0=G'U—qg (2.116b)
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2 State of the art

includes differential unknownd and algebraic unknowrs. The algebraic unknowns can be
eliminated from system (2.116) using three subsequerdrdiftiation. Thus, this system is
classified as HESSENBERG index-3 DAE$8HER ANDPETZOLD 1998).

The high-index of DAE implies that this DAE includégdden constraintsin case of having
system (2.116), the solutidh),Z] must also satisfy two derivatives of (2.116b). The equation
(2.116b) is a constraint on the position level. In mecharitos two derivatives of equations
(2.116b) are called constraint on velocity and accelendguel.

High index of DAE indicates higher complexity and higher rerioal effort. For the me-
chanical system, energy conservation, noise in algebeaiables and bad conditioning are
usual issues connected with solution of index-3 DAESGNER AND PETzZOLD 1998). The
common approaches to resolve these issues are discussadusiec8on 2.3.4.

2.5.2 Spatial discretization

The standard analysis of the error for elliptical problesislone e.g. in BBUSKA ET AL.
(2010). Static and dynamic unilateral contact problemsasdysed in KkuUCHI AND ODEN
(1988). The error analysis in hyperbolic problems is momapgiicated. Some approaches are
used for this, e.g. HGHES ET AL (1976); DESMAN (2011); HUIGHES (2000). Among these
approaches, spectral analysis provide valuable infoonatbout quality of the solution.

The basic results on spectral relation FE is given ELBrscHko (1978). This paper con-
siders 2-node and 3-node truss elements with consisteduemmed mass matrices. For the
3-node truss the acoustic and optical branches of the digperelation are obtained. For
wave propagation in 2D meshes of linear triangular and édirquadrilateral elements see
MULLEN AND BELYTSCHKO (1982). In this paper is shown that mass lumping and under-
integration of a stiffness matrix increase the dispersivere Dispersion relations in pFEM
and isogeometric FE are investigated inRAMPSON AND PINSKY (1995) and AIRICCHIO

ET AL. (2012); KOLMAN ET AL. (2012).

2.5.3 Assessment of dynamic behavior of semi-discretized
equations using Fourier analysis

The overall accuracy of inertia and stiffness discretaatian be evaluated using a FOURIER
analysis of an infinite mesh of equal-sized elements, seg@&®.19. The results of such an
analysis provides an estimate of the error in the eigenéeges needed for free vibration
problems and it gives an exact dispersion relation relexawiave propagation problems.
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__s direction of wave propagation

A
Y

Figure 2.19: An infinite mesh of quadratic elements and a harmonic wave.

The wave propagation in the mesh is governed by semi-dsemationsv U + KU = 0,
which has an infinite number of unknowns= [ -+, Uj—2,Uj—1,Uj,Uj+1,Uj4 2, - - } This system
has an infinite number of solutions. These solutions areliiag harmonic waves (ELIPPA
2001, 2010) of wavenumbe&r= 211/ A, wavelength\, phase velocitg and circular frequency
w = 2mc/A. The displacement vector as a function of time is

U(t) = O« (2.117)

with U standing for the complex-valued vector of nodal phases amglimudes and being
v/ —1. Substitution of the latter into the equation of motionufesin a system of linear
algebraic equations

(—w?M+K)U=0. (2.118)

As the elements in the infinite mesh have equal size and tHéateets in Equations (2.118)
are periodically repeated, the general solution of it caaliiained for a representative sample
(patch) with a finite number of degrees of freedom. Considgpi@al patch of three elements
as

(—szrep+ Krep) Orep: O (2119)

The determinant of this system provides a characteristiaton, from which the dispersion
relationk(w) can be found. Note, that multiple solutions, or brancheshefcharacteristic
eqguation correspond to physically different waves andéonerical artifacts. For the elements
discussed here we distinguish physical longitudinal, shed bending waves. The meshes of
the finite elements can have optical and acoustic branchesFa (2001); HUGHES ET AL
(1976). For convenience, the dispersion relations areepted in dimensionless quantities
with wavenumbek = k/l¢ and frequency2 = wle/c.
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2.5.4 Participation factor for classification of load cases

Consider an undamped systemrmedlegrees under an arbitrary force

MU +KU =F(t),
U(t=0) = Uo, (2.120)

U(t=0) = Vo

The system (2.120) gives rise to a generalized eigenvabl#gm
(K —w?M) @=0. (2.121)

The eigenvalues and eigenvectors for large sparse systnisecextracted with LANCZOS,
KRYLQV subspace or QR methodsASD 1992).

Let us denote eigenvalues for the system (2.121) sortedcending order agy and corre-
sponding eigenvectowg. Herein, we use only eigenvectors orthonormalized witpeesto
mass matrix, i.eqo,TM @, = & with g; being Kronecker delta. The mode participation factors
[; for the given load® are defined as

Mi=@ F™Yp Ke,. (2.122)

2.5.5 Harmonic analysis

The driven harmonic oscillation for a linear systemmflegrees with viscous damping is
described by

MU +CU+KU = F&(t), (2.123)

with C being the damping matrix. The RAYLEIGH model of damping.catslled propor-
tional damping, assumes matfixin the form of

C=aM +aK, (2.124)

whereag and a; are mass and stiffness proportional damping coefficients. harmonic
excitation the external force can be presented as

FoX(t) = Pt (2.125)

wherew is the angular frequency of the excitation ahds the global vector of forces that
includes information about phases and amplitudes. Subsetitof the time-harmonic ansatz
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U = Ud®! leads to an equation with respect to steady amplitithes

(—w’M +iwC+K)U=F. (2.126)

Solution of the latter equation for an identity matrix inlitghand side at results in frequency
response function

H(w) = (—w™ +iwC+K) . (2.127)

This means, that the amplitude of response in th®OF caused by a harmonic force with
unit amplitude at the') DOF is componertjj(w). Generally, frequency response functtén
is a rational complex function ab, for details see FOMSON (1993).

Frequency response assurance criterion

Any two frequency response functions that represent the saput-output relationship (ob-
tained experimentally or numerically) can be compared \iechnique known as Frequency
Response Assurance Criterion (FRAC), seeYHEN AND AVITABILE (1998) and ALE-
MANG (2003). FRAC is computed for two response functibhg; (w) andHoj(w) for a
given set of sampling frequencifsy 27" with

| ST HL (@) Haji (6

N N 9 (2128)
ke Hijj (@dHgj (@) 324 Ha j (@) Hzjij (o)

FRAC; =

with samplbeing number of sampling points and the super-scrip¢ing a complex conju-
gate. FRAC is one for two linearly dependent response fansti Closeness to one assures
similarity in response for a given sampling range, but itsdoet guaranties the amplitude of
response is equal.

Modal assurance criterion

According to ALLEMANG (2003), a Modal Assurance Criterion (MAC) can be defined as
degree of correlation between one modal vegband another reference modal veo@ﬁras
follows

o -
ollef|

MAC; = (2.129)
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Values of MAC close to one indicate similarity of the modeseré] as a measure of the
distortion due to selective mass scaling, an angle betweeartginal modap, and the mode
of the scaled system can be introduced as

@
j = arcco -
b S<|qr>|||qv.|

) . (2.130)
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Variational principles of
elasto-dynamics

The benefits of singular and selectively scaled mass mataeepresented in Sections 2.3.4
and 2.3.5. Here, anified variational approaclior both singular and selectively scaled mass
matrices is proposed. It is based on a new penalized HAMILE@Nnciple that uses dis-
placement, velocity and momentum as variables. Relatietsd®en the variables are weakly
imposed via a penalty method. This results in a templateatiarial principlé of elasto-
dynamics depending on the free penalty parameters. Thencahone-, two- and three-field
principles are recovered as special instances of the téepheaddition, the three-field canon-
ical principle is reformulated by introduction of an incoatible velocity field, which provides
another useful variational form.

An in-depth overview on non-parametric variational prpies of rigid body dynamics and
elasto-dynamics can be found imkzcos (1970) and WsHizu (1975, Appendix 1), re-
spectively. An overview on the application of variationahgiples of elasto-dynamics in FE
discretization is given in GRADIN (1980). Among the presented principles, the most im-
portant principle for FE applications is HUGHES's prinebtepending on two independent
fields of displacement and velocity (MHES ET AL 1976). This overview also includes
dual/reciprocal variational principles of elasto-dynasjie.g. REISSNER’s, TOUPIN’s and
PIAN'’s principles. A distinguishing feature of TOUPIN’sipciple is the introduction o&n
impulse field, that is defined as integral of the stress tensor in time. 1Otéisions of re-

1n this thesis "parametric”, "template” and "penalized” NALTON'’s principle are used as synonyms. The
name penalized is preferred because the penalty approasedshere in the derivation and the idea of the
derivation is the synthesis of inertial penalties given ®k&sS ET AL (2011) and the rigorous variational basis
of template variational principles given ireEIPPA (1994).

2|t is also called here HELLINGER-REISSNER type Il or two-flalanonical principle.

Sh:=ho+ féadr, impulse and momentum field are related with: divh for a zero bodyload.
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ciprocal forms of HAMILTON's principle are given in RSSNER(1948) and EIAS (1973).
The GURTIN's family of variational principles based on cohitions is thoroughly inves-
tigated in QURTIN (1964). For re-parametrization of the three-field funcsioof elasticity
(VEUBEKE-HU-WASHIZU) with incompatible strains, seen8d AND RIFAI (1990).

Parametric variational principles originate from Beijsahool of mechanics. Two one-parame-
tric families of generalized variational principlefor linear elasto-statics are proposed in
WEI-ZANG (1983). In this paper, a so-called method of high-order LABKSE multipliers

is used to impose the constitutive relation. Based on theesgpproach, parametric exten-
sions of GURTIN’s convolution principle and HAMILTON's prciple for elasto-dynamics
are proposed in KUl (1992a) and 8ikul (1992b), respectively. Generalized variational
principles withseveral arbitrary parameterare proposed in ¥-QIlu (1987) and developed
further in HUANDING AND DONGBU (1990). They are based on adding quadratic integrals of
constitutive, kinematic and equilibrium equations angMlisement and force boundary con-
ditions*. Another method for establishirgeneralized variational principles proposed in
DAH-WEI (1985). It uses a so-called semi-inverse method, whereotime 6f the functional

is not assumed beforehand, but recovered in the processightiten using an IBVP. This
method allows also the derivation of variational princgéth free parameters @2000). In
this case, the free parameters can be interpreted as itiggcanstants.

Further development and applications of parametric vanat principles are connected to
template variational principles. For the definition of tdatp variational principles for POIS-
SON’s equation, classical, incompressible and micro+pelasticity, see ELIPPA (1994).
High performance plate and shell elements based on theas a&e presented inEEIPPA
AND MILITELLO (1989). For further references on the topic, seelFPA (2000).

The usage of parametric and generalized variational flie€iare not limited to elasto-dyna-
mics. Parametric variational principles for elasto-ptast using complementary and poten-
tial energy are presented irHONG AND ZHANG (1988). Generalized variational principles
for micromorphic thermo-elasticity and micromorphic matmelectro-elasto-dynamics are
given in He (2005) and ZENG ET AL. (2011), respectively.

The short overview given above, may be an illustration offloe thatthe inverse problem of
variational calculu$ has neither a unique solution nor a general method of solufi\m ex-
tensive study on the subject can be foundimtAYsoN (1972). The high-order LAGRANGE
multipliers, semi-inverse and template methods may bemewended as the most powerful
techniques.

4A similar approach is used here.

5See Appendix B for an example of derivation.

6Given a system of differential equation, find the Lagrangitirat have that system as EULER-LAGRANGE
equations. These set of Lagrangians embody the variatiorral of the problem. Usually the PVP results in
linear spaces of Lagrangians.
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3.1 Penalized Hamilton's principle

3.1 Penalized Hamilton’s principle

Recall the strong form of the IBVP for linearized elasto-dgmics from Subsection 2.2.5 with

( pii=L*oy,(U)+b in.Z x %
o, = De in.% x %o
e=1Lu in .7 x %y
u=~0 in .7 x 0%, (3.2)
onn=t in.7 x 0%
u(0,.) = ug in %o
U(O,.) =V in %o.

Now, a problem is posed to setup a variational framework vhltows a parametric family of
consistent mass matrices and at the same time is equivaldrd hon-parametric IBVP given
in equation (3.1). The following considerations are usedtie derivation of the new prin-
ciple. In order to get maximum flexibility, a multi-field apggach with independent variables
for displacement, velocity and momentum is used. The figleléirsked in a weak sense using
the penalty method. The penalty factors then naturally detfie free parameters. Finally,
only symmetric terms for inertia should enter the principlbich guarantees symmetric mass
matrices by design.

Let us introduce notations for a scalar product in the dorrthim bilinear forms of potential
and kinetic energy and the linear from for external workpezsively, with

(W,z) = W zdV, w, z € [L?(%o)]9™, (3.2a)

nint(u) = a(u u =5 / u) v, u e [HY(%)m, (3.2b)

T(U) = ;m(u 0) = (pu 0) / pu-udv, U € [L2(%p)9m, (3.2¢)

neu)=f(uy= | b.-udz+ [ f-uddz. (3.2d)
) 0% 0

Starting point for the derivation of the alternative formtithn is HAMILTON's principle stat-
ing that among all admissible displacements that satigfyptiescribed geometrical boundary
conditions and the prescribed conditions at the time lintits actual solution makes the fol-
lowing functional stationary

H(u) = /ﬂ (T i o) it — stat (3.3a)

H(u) = /j (% (pU, 1) — %a(u,u) —i—f(u)) dt — stat (3.3b)
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3 Variational principles of elasto-dynamics

HAMILTON's principle imposes relations between velocitgomentum and displacements
in strong from with

v=u, p=pv, p=pu. (3.4)

These conditions enter equation (3.3b) using the penalthade To construct the penalty
term for the kinematic equation— u = 0, the differencev — u is squared and weighted with
the densityp and a dimensionless penalty facéﬁg. In this way, the physical dimension of
the term is energy. Finally, it is integrated over the domeesulting in

1 2., 1 : : _
[ 5Cep(v— v = 3Ca(p(a—v).u—v) 0 35)

Analogous considerations for the other two relations ofagign (3.4) lead to two terms with
penalty factor€C; andC,. Summing up all terms provides a new expression for the kinet
energy

o L o000+ S (i pi—PY 22 (v —pv—P) + S (v
T—Z(pu,U)+2<pu p,u p>+2<pv p,V p)+2(p(u V),u—v). (3.6)

The penalized Hamilton’s principle us&s as

H®(u,v,p,C1,C2,Cs) = / (TO —nnt4 I'Ie’“) dt — stat (3.7)
s

Here, dependency of the penalized Hamiltonian on the freanpetersCy » 3 is explicitly
stated. For simplicity, it is dropped from the list of arguntsebelow.

In the following, the weak form and EULER-LAGRANGE equatsofor functional (3.7) are
derived. The first variation of equation (3.7) gives

OoH°(u,v,p) = /j <5p, (C1+Cy) % —Ciu— CgV) dt
+/j(5V,(Cz+C3) pv—Czpu—Cop) dt (38)

+/j [(3U, (1+C1 + Cg) pll — Czpv — Cip) — 3M] dt.

Integrating the terngdu, (14 C1 + C3) pu — C3pv — C1p) by parts in time yields

d :
—/ﬂ <5u,a{(1+ C1+Cs) pu —C3pv—C1p}) dt. (3.9)
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3.1 Penalized Hamilton's principle

Substitution of equation (3.9) into equation (3.8) givesealformulation, proposed herein.
The EULER-LAGRANGE equations of the weak form (3.8) compasystem of equations

g—t{(1+C1+C3) PU—C3PV—C1D} = L*O'nn—f—f) in.% x %A

Tinh = in .7 x 0%,
(C1+Co)p—Copv = Cypu in 7 % B (3.10)
—Cop+ (C2+C3) pV = Cspu in.7 x 2.

Consider the two last equations in (3.10). They are a sysfetwmlinear equations with
respect top andv. If the determinant of the coefficient matrix is non-zere. iC1Cy +
C,C3+ C1C3 # 0, then we can solve fgr andv, leading to

V=u, p = pu. (3.11)

Thus, the subsidiary conditions (3.4) are recovered as BJLBEGRANGE equations. Sub-
stitution of the latter in the first equation of (3.10) givée tequation of motion in the form
(3.1;). This proves the equivalence of the penalized HAMILTON'gpiple to the IBVP
(3.1). Hence, the free parameters in the functional (3. Malther change the extreme value
of the functional nor the solution of the variational prabléFELIPPA 1994). At an extremal,
where the EULER-LAGRANGE equations (3.11) are satisfied, fiteldsu, v andp/p co-
alesce. Actually, the free parameters can be interpretedeaghts on the field equation in
the weak form, see equation (3.10). Therefore, these paeasnare also called high-order
LAGRANGE multipliers. Generally, these parameters candm®sd order tensors for vector
fields, like velocityv, or fourth order tensor for second order tensors, ékéor details see
WEI-ZANG (1983) and laAMICHHANE ET AL. (2013). According to this point of view, the
penalty term can be interpreted as

1 .p 2_1 .p N ¢
§C1p <U—E) — é <U—E) pC]_I <U—E
1 P 2_1 Y P
ECZP (V_E) - é (V—E) pC2| (V_E

2Cap(v— )%= 5 (v—1)pCsl (v— 1) = 5 (v 1) Qs(v— 1), (3.120)

whereQ1 3 = C1 -3l are second order tensors for high-order LAGRANGE multislieA
possible usage of anisotropic matrices for the multipl@{$ 3 is outlined in the outlook in
Section 8.2.
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3 Variational principles of elasto-dynamics

Note, that the fornT° is quadratic and symmetric with respect to the trijplg, p]

1 pu (1+C1+C3)l —Cal —Cl u
TOZQ/ oV _Cal (Co+C3)l —C,l v | d%. (3.13)
71 b Gl —Col  (C+C)l | | §

The vector{u,v,p] is calledthe generalized field vectan the literature and the matrix in the
quadratic form is called dsinctional generating matrix

The positive definiteness of the form is verified by SYLVESTER terion. If the leading
principal minors of the functional generating matrix of tpeadratic form are all positive,
then the form is positive definite. These conditions reaclsvs

C1+C3> -1
C,+C3>0 (3.14)
C1C+CoC3+C1C3 > 0.

Thus, the form fulfills the requirement for the new variaabformulation given in the prob-
lem statement.

The formulation (3.8) can be interpreted as a parametridp]ate) variational principle
according to ELIPPA (1994). The formulation contains all canonical variatigoanciples of
linear elasto-dynamics as particular cases. The standaMIEH ON’s principle is obtained
for C, = C, = C3 = 0. The modified HAMILTON's principle is recovered f@; = —C, = —1
andC3; = 0. The HELLINGER-REISSNER principle with the variablesp] is recovered for
C;=—-1andC; =Cz=0. SettingC; = —1,Cy = 1/2 andC3 = 0 yields LIANG-FU principle
(GUO-PING AND ZI-CHI 1982). These examples imply completeness of the pararmaibiiz
Moreover, the formT° satisfies the consistency conditions for a template staté@iiPPA
(1994). The row sums of the functional generating matrixaare for the primary variabla
and zero for the dual variablesandp.

Note, that a straightforward extension of the derived patamed principle to a finite defor-
mation regime is possible, se&@ ACHUK AND BISCHOFF(2013a). In case of non-conservative
systems, the parametric version of the principle of virtuaik must be used.

3.2 Canonical two-field principles

The penalized HAMILTON's principle (3.7) can be reduced@oanical HELLINGER-REISSNER
principles of two types. Type | and Il use as variablep| and[u,v], respectively. Type | is
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3.3 Canonical three-field principle

obtained forC; = —1 andC, = C3 = 0, leading to a weak form

SH(up) = [ ((8p.p/p—)-+(p.8u) —alu, 6u) +(3u))dt = O (3.15)
Type Il is obtained folC; = C, = 0 andC3; = —1, leading to a weak form

SH(U,v) — /ﬂ (M(3V,V — )+ m(V, 3u) — a(u, 3u) +F(3u)) dt = . (3.16)

Both weak forms stated above can be used for discretizasiea,for examples BIGHES
ET AL. (1976) and GRADIN (1980). More detailed theory on these variational prirespl
is given in WASHIZU (1975, Appendix I).

3.3 Canonical three-field principle

The canonical three-field principle is referred to modifieNHLTON's principle in the lit-
erature. It is obtained from the penalized principle (3af)€; = —C, = -1 andC3 =0
resulting in the following variational principle

H(u,v,p) = /j (%m(v,v) —(p,v—1u)— %a(u,u) +f(u)) dt — stat (3.17)

This principle will later be used for the derivation of sigumass matrices. Note, that the
guadratic template for the kinetic energjy reduces to

. o170 0 |
T*:—/ oV 0 1 -
2/)%
p I

-1 0

d%. (3.18)

o< C

The template matrix has two zero blocks on its diagonal arschiot positive definite. Hence,
special considerations are necessary for stable disatietiz These details are presented in
Section 4.3.

3.4 A principle using an incompatible velocity field

Starting point for this principle is the canonical thredefigrinciple. Re-parametrization of the
velocity fieldv is done according to the original idea of EAS elements fosteddy (WILSON
ET AL. 1973; SMO AND RIFAI 1990; RFOMERO AND BISCHOFF2007). There, the kinematic
variablee is split into a parL.u, which is compatible with the displacementand an incom-
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3 Variational principles of elasto-dynamics

patible parte"= € — Lu. Here, the velocity is split in a partu, which is compatible with the
displacementi and an incompatible pa¥# leading to the following expression

vV=u+V. (3.19)

Substitution of the expression (3.19) in the equation (ByBHds the re-parametrized modified
HAMILTON's principle

H(u,7,p) :/ (%m(u +V,u0+V) —(p,V) —%a(u,u)Jrf(u)) dt — stat (3.20)
7
The re-parametrization procedure can be viewed as a lin@asformation of the indepen-

dent variables fromu,v,p] to [u,V,p]. The quadratic form for the kinetic energy modifies
accordingly with the transformation. Thus, the quadraticrfT* reads

-l

0O -1 O

d%. (3.21)

Do <t C-

If the orthogonality(p,V) holds, then only two variablds,V] are present in the principle and
it reduces to

H(u,¥) = /j (%m<u+v,u+\7) — %a(u,u) +f(u)) dt — stat (3.22)

Corresponding to this variational form, the template fardtic energy further reduces to
. .
=, 1 u I u
T_é/ﬂp[v] {l |H\7]d’%' (3.23)

This variational principle is very useful if the inertia ofew modes need to be removed. The
latter formulation can also be used for the derivation of @parametric variational principle
with incompatible velocity field. Blending the standard HAMION'’s principle with the form
(3.22) with the coefficient§1+ C;) and(—C;) yields

Flo(u,\7):/ <1+2C1m(U,U)—%m(U—l—\?,U—i—\?)—%a(u,u)—i—f(u)) dt — stat (3.24)
7

with the kinetic energy template
1 al'f | —cd]fu
~ 4 _ < — 1
T_Z/ﬂp[v] {_Cll —CllHV}d%}' (3.25)
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3.5 Variational principles with contact conditions

The latter formulation illustrates the flexibility of the theds of variational calculus. The
methods applied for linear and non-linear static probleraasily applied to elasto-dynamics.
From these variational forms families of mass matrices désired properties can be derived.

3.5 Variational principles with contact conditions

There are many ways to include contact conditions in a weak,feee e.g. equation (2.60).
Here, the contact conditions are included via adding arcatdr function to any of the vari-
ational principles mentioned above. An example for suchravalion can be found in AN-
DOLFI ET AL. (2002). Here, more rigorous solution spaces are intratlud&ector-valued
spaces are denoted by bold letters, d.g(%) = [L2(%)]9™. The test space for the displace-
ments is defined as

¥ :={ueH :u=0ind%,}. (3.26)

The dual spaces are denoted with a prime sign, €/g.A convex subset of that satisfies
the kinematic contact constraints is denoted’&s The definition of.#" depends on the
structural theory behind the contact problem. Usuallyg @ set of inequalities that should be
satisfied on the contact boundary or inside the domain. Eestand beam models discussed
in Subsection 2.2.6, the admissible set reads

A ={ue¥  u-n<ggyzinBandu -t < gy, in 0A:}. (3.27)

The indicator functiorik (u) for the admissible space can be written as

1L(UX) = o fu-n>gyu xXe# Ly (UX) = o fu-7T>0ys XEIHB:
7 0 otherwise, I 0 otherwise,

k(W = | 15(Ux)dZ+ 1o (UX) s, (3.28)
with I ;(u,x) andl,(u,x) being the indicator functions for the contact constraintsde the
domain and the boundary, respectively. Let us considerdreextension to the contact prob-
lem of the three-field canonical principle given in equat{8riL7). The extended variational
formulation reads

H(u,v,p):/j(%m(v,v)—(p,v—U)—%a(u,u)+f(u)+lK(u)) dt — stat  (3.29)
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3 Variational principles of elasto-dynamics

withu € L2(.7,%),ve L?(#,Ly), p € L3(#,L,), u € L?(.# L,). Variation of (3.29) gives
OoH = /j (m(v,dv) — (dp,v—u) — (p,dv — du) —a(u,ou) +f(du) + dlk (u)) dt. (3.30)
If we additionally assump € L2(.#,#") and integrate by pari, 5u), we get
OH = /j ((dp,u—V)—(p—pV,0V)—(p,0u) —a(u,du) +f(du) + dlk(u))dt. (3.31)
This formulation is the starting point for an alternativerfuulation for the elasto-dynamic con-

tact method proposed herein. The EULER-LAGRANGE equatafrtbe weak form (3.31)
are a system of equations

—p+L*o(u)+b e Ng(u) in.Z x %

O'”n—fe Nr(u) inﬂx&%(;
u=v in .7 x Ao (3.32)
p=pv in .7 x A,

with N (u) andNr (u) being subdifferentials of the indicator functiongu,x) andl,»(u,x),
respectively, and& denotes the inclusion. Thus, from the equation (3. 32e fieldp can be
identified as a momentum field. Also using the properties fiéintial inclusion, it can be
shown that equation (3.32) is equivalent to the IBVP giveaqnations (2.66 3). The initial
condition given in equations (2.66s) can be introduced in equation (3.30) by the correct
boundary term8T at the time limits = 0 andt = tgng, €.9. according to &NNAROZZI AND
MANCUSO (1995),

/jé (%m(v,v) —(p,v—u)— %a(u,u) +f(u)+ |K(U)) dt = BT,

BT = (6plo, ulo — Uo) + (dUfo, pV0) — (3U, P) lteny

The first term in the expression f&T weakly imposes the displacement initial condition,
while the second and third term are responsible for the ugldwtial condition. However,
addition of BT leads to a non-integrable differential in contrast to meditdamilton’s princi-
ple (3.30). Such treatment of the initial conditions is reseey for space-time finite element
discretizations. Here, classical time integration rulessed and the initial conditions are
merely interpolated at the nodes.

The correct boundary terms can be found also for the paranvatiational principle given in
equation (3.8). Such a formulation can be used as the gjqutimt for a parametric family of
space-time finite elements. However, this question is ogtope of this thesis.
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3.6 Summary of variational methods for elasto-dynamics

3.6 Summary of variational methods for elasto-dynamics

This chapter is the core part of this thesis and its main séeadvance. The unified vari-
ational approach presented in this thesis enables an ¢ldgawation of useful variational
formulations, which is the basis for the following desaatiion of different elasto-dynamic
problems.

The chapter includes quite technical derivations of patam@&nd mixed principles for elasto-

dynamics. The relations between the derived methods asemed in Figure 3.1. The vari-

ational principles with their independent variables aneirtifree parameters are shown in
rectangular boxes with grey filling. The arrows depict thevdion steps. The text in ellipses
attached to the arrows denotes the methods used in the titemis/a

’Hamilton’s, variablesul] ‘

penalty
high-order Lagr. mulj.
| semi-inverse

penalized Hamilton’s, variablds,v,p], parameter€; 3

|

| . .

| specification o
| parameter€;_3
|

|

|

|

|

|

canonical Hamilton’s canonical Hamilton’s
2 variablegu,v] or [u,p] | |3 variablequ,v,p]

‘ re-parametrization (indicator function re-para_metfizatio
+ param. spec. Ik (u) v=u+V

* * *
Incomp. vel. Hamilton’s| [Hamilton’s for contact| |Incomp. vel. Hamilton’s
3 variablegu,7,p] 3 variablegu,v,p] 3 variablegu,V,p]
parameteCy

Figure 3.1: Relations between variational formulations of elastoaiyits. The novel principles
are marked with an asterisk *.

The basis for all derivations is one-field HAMILTON's pripée. The penalized HAMIL-
TON'’s principle is derived using the penalty method for kiregic and material equations.
Three canonical principles are recovered upon specifitaifathe free parameters. Then,
the contact constraints may be included in three-field HAMDIN’s principle by adding an
indicator functionlk (u). Introduction of incompatible velocity allows to derivedviurther
variational principles.

’For alternative derivation of the penalized HAMILTON’s peiple using the semi-inverse method, see Ap-
pendix B.
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3 Variational principles of elasto-dynamics
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Spatial discretization of inertial terms

In this chapter, a semi-discretization for the inertiahtsris given based on the weak forms
presented in Chapter 3. The most general expression foea-ffarametric family of mass
matrices is derived and analyzed. Three specializatiotieedhree-parametric family relevant
for selective mass scaling are given. Then, Hybrid-SingMass Matrices (HSMM) are
derived with focus on dynamic contact problems. It is shdwat hodal mass vanishes, if only
a special orthogonality condition is fulfilled. Expressoior incompatible velocity mode
mass matrices (EAS-like) conclude the chapter.

4.1 Three-parameteric template for mass matrix

In the previous section, a weak formulation for elasto-ayita (3.8) was derived. This for-
mulation has three independent varialjles,p] and contains three scalar penalty parameters
(C1,C2,C3). Spatial semi-discretization of the free variables can hiten as

u" = NU, WV =wv, p" = XP, (4.1a)
duM = NJU, V"= waV, oph = x3P. (4.1b)

Here,N contains shape functions for interpolationmgfnodal displacements, given by the
vectorU. The default physical dimension of the vectdris length, or m. Matricesl and

X interpolate velocity and momentum from vectors of paramseteandP. The lengths of
V andP are denoted as, andnp. The physical dimensions &f andP are velocity, or m/s,
and linear momentum, or kg/s, respectively. Note, that variational indices of vialeg v
andp for spatial derivatives are zero. This means that intemele continuity of/" andp" is
not required for convergence. Therefore, paraméteaiadP are not necessarily nodal values
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4 Spatial discretization of inertial terms

in contrast to the displacement vectdr Later, this property is used for local elimination
of these parameters. Herein, the shape functions for thatiars are the same as for the
variables (BUBNOV-GALERKIN type of discretization). Thguarantees symmetry of the
obtained mass matrices.

Substitution of the equation (4.1) in equation (3.8) witl®§3ields a semi-discrete expression
of penalized Hamiltonian

5H"(U,V P) =/ OP (—C1ETU — Co@ TV + (C1+ Cp) 9P) dt
S
+ /j 8V (~Ca/TU + (Co+ Ca) #V — CrP) dlt (4.2)

+/ U ((1+Cy+Ca)MU — CaarV — CrEP+KU — F*) dt.
S

Here,K andF® are the global stiffness matrix and the nodal vector of exeiorces. Fur-
thermore, the following matrices are defined:

M= [ poN'NdZ, o= pNTWdB, %= / NTX d%, (4.33)
Bo Bo 2

w=[ puTvds @= / oTxd2, = / poIXTXd®,  (4.3b)
By B PBo

whereM is the consistent mass matrix. Note, that the matri€esnd¥ are independent

of material properties and play the role of projection betweiscrete spaces. The physical
dimension of the matrice® and<¥ is volume, or i. Matrices? and.”# are mass matrices
on discrete spaceg andP. Matrix ./ is a weighted projection between discrete spaces.
The usage of projections is explained and illustrated irufég 4.1 and 4.2. The physical
dimension of matrice¥ and.< is mass, or kg. The physical dimension.&f is volume
squared divided over mass, oPfkg.

Using independence of the variatiods), 8V and dP, the following system of DAE is ob-
tained

(Co4Ca)#V —Co@P = Caa/'U (4.4)

{ (14+Cy+Ca)MU — CazV —C1EP+KU = FeXt
—C9 ™V + (C1+Cp) #P =Ci%TU.

The variables/ andP are collected in the left hand side of the second and the éujtgition
of (4.4). Elimination ofV andP yields the following equations of motion

M°U+ KU = F& (4.5)
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4.2 Variational selective mass scaling

with the new consistent mass matik°. This mass matrix is important for the variational
mass scaling. Therefore, it is called hehe scaled mass matrixThe artificially added
mass is defined analogously to the expression of the algefmi@ss scaling in equation (2.88)
A° = M°—M, which leads to the expression

Cact 1[ (C2+Ca)¥  —Co% ] '[ CaedT @6
C1% —C9T  (CL+Cp) et |

The latter expression can be further expanded using theutarfar inversion of block matri-
ces, see e.g. (RANG 1986, Exercise 1.3.12) to

A°=(CL+Ca)M — {

C2 c2c?
AN =(Ci+CsM - —=2 gty 273 gTy-lgyqgTy—ley
(C+Cs) Co+0C3 +(C2+C3)2
(4.7)
C1C2C3 1 T Toy—1 T 2 T
— (d@f GSC +C€SG W o )+C1<€y<€ , (4.8)
Co+C3
assuming that” is invertible and with” defined as
C% To—1 -
S = (C1+C))H ——~=—-9G"' %94 ) 4.9
<( 1+ C2) 1 Cs ) (4.9)

Formula (4.6) provides the most general expression for eetparametric family of mass
matrices. From an algebraic point of view, the artificialtldad mass\°, entering equation

(4.5), is a rational function of the parameté&,C,,C3). It is not practical to use expression
(4.6) directly, as the influence of the individual param&ten the mass matrix is unclear.
Below, three important cases are discussed, where thesskpng4.6) substantially simplifies.

4.2 Variational selective mass scaling

4.2.1 Case 1: one-parametric U-v-p-formulation

Let us set the free parametéls = —C, andC3z = 0 and assume th&l; is positive. In this
case, the general expression for the added mass matreduces to

-1

AO:clM—cl{;Hzg ‘(i} {;T} (4.10)
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4 Spatial discretization of inertial terms

This expression can be further simplified, if the matrigésand ¢ % ~1¢ are invertible.
Finally, this leads to the expression for a one-paramednalfy of scaled mass matrices in the
form

N=C(M-%(@Tw ) e (4.11)

Note, that in this cas€; is negative and the conditions for positivity of templatéepiple
(3.14) are not fulfilled. This leads to a zero block matrix kpeession (4.10), which is not
positive definite. Therefore, special stability condisanust be fulfilled, which is discussed
in detail in below, see equations (4.17) and (4.22).

4.2.2 Case 2: two-parametric U-v-p-formulation

Let us set the free paramet€s = 0 and assume positivity of the paramet€isandCs. The
added mass matrix° reduces then to

-1
Cgﬁ/]{Cg*@/ 0 } {c:gM} 4.12)

[0 — M _
A= (Gt G { e || 0 o Ci%"

The matrices” and s# are positive definite by construction. Hence, the block mair
expression (4.12) is positive definite and invertible. Tleisds to a two-parametric added
mass matrix in the form

XN=C (M- +Cs(M—a¥ 1aT). (4.13)

Note, that physical dimension of the prod@tt# 1€ in equation (4.13) is kg, i.e. dimen-
sion of #, m®/kg, complies with dimension of the projection mat m3.

4.2.3 Case 3: one-parametric U-V-formulation

Let us set the free parametéls = Co = 0 and assume positivity df3. This case is just a
further simplification of case 2 witG; = 0. The added mass matiK is reduced from (4.13)
to the expression

XN =C3 (M- taT). (4.14)

In cases 1, 2 and 3, linear families of mass matrices arer@tawhich clarifies the meaning
of the penalty parametelS; and C3 as scaling factors for the artificially added mass, see
Figure 4.1. The penalty fact@®, that is responsible for the coupling of the dual variables
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4.3 Hybrid-mixed mass matrices

Figure 4.1: Linear two-parametric template of mass matrices obtaingdequation (4.13)

v andp plays only an auxiliary role in the cases discussed above. riiétricesey % ~1or T,
16T and€ (%T@*@)A%T present in equations (4.11-4.14) are on the basis of a
consistent hybrid-mixed mass matricgemputed on mixed Hamilton’s principle with the
variables[u,v], [U,p] and[u,v,p], respectively. Such mass matrices were defineducHeS

ET AL. (1976) and used in ERADIN (1980). Thus, the proposed families (4.11-4.14) are
weighted sums of known consistent mass matrices and the@gedprsariational formulation
(3.8) justifies such a construction. In additid{,is semi-positive by construction. This prop-
erty follows for the cases 1 to 3 from a matrix generalizattbnthe CAUCHY-SCHWARZ
inequality. Thus, positive definitenessMf is guaranteed if the penalty paramet€ssand

Cs are positive.

The structure of\° given in (4.11-4.14) explains the way the proposed masssgcalorks.
The consistent mass matrix and hybrid-mixed mass matriesscaual, if only the ansatz space
for v andp are taken equal to the ansatz spaceauforhis results il\° being equal to zero. If
the ansatz spaces ferandp are chosen poorer than the ansazt spaca,ftire hybrid-mixed
mass matrix produces less inertia than a consistent massnigtus, the artificially added
mass increases inertia for modes orthogonal to the ansate sv andp. The appropriate
ansatz spaces are discussed in the subsequent chapter.

4.3 Hybrid-mixed mass matrices

4.3.1 Discretization of two-field canonical principles

The Hellinger-Reissner principle of type | and Il is obtairfeom the template (3.8) by spec-
ification of the penalty factors. In the same manner, therdisanass matrices are obtained.
This question is not considered here in detail.
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4 Spatial discretization of inertial terms

4.3.2 Discretization of three-field canonical principle

The starting point for the discretization of the modified Hi@mmian principle is the weak form

given in equation (3.17). Ansatz (4.1) is used for the diszaéon of independent fields. The
projection matrices between fields are denoted accordiaguation (4.3). Substitution of the
discretization yields the following algebraic system

cTU=9"V (4.15)

GP =WV
EP+KU = F

which can be identified as a discretized counterpart of theemad, kinematic and kinetic
equation, respectively. If the matri is invertible, the velocity vectoy can be eliminated
from equations (4.18 and (4.15) resulting in

gy —1gp =¢TU. (4.16)

For linearly independen¥ and a positive densitp, the matrix?% is positive definite and
invertible. The matrix produc' % ~'¢ is at least positive semi-definite, 4% is positive
definite. It is positive definite, # has full rank, and its number of rows is less or equal to the
size of%, i.e.

np < Ny. (4.17)

Let us assume thaf satisfies these two conditions. The matik = (¥7#% ~1%)~1is then
well defined. Using this matrix, the relation between displaent and momentum can be
written as

€70 =P. (4.18)

Substitution of the latter in equation (4 g)@llows to eliminatd® from the equation of motion
leading to

¢ HETU+KU =F* 4 7. (4.19)
That delivers an expression for hybrid-mixed consistergsmaatrix
M* = #6T =69 o 19) %7, (4.20)

The formula (4.20) can be illustrated with Figure 4.2. Theekic energy in the modified
Hamilton’s principle (3.17) is computed on the discreteoetly v producing the matrix? .
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4.3 Hybrid-mixed mass matrices

T =¢9"1

Figure 4.2: Approximation spaces far, v andp, quadratic forms for kinetic energy and discrete
projection between approximation spaces.

Then, it is projected via the Lagrange multipligt on u" in terms of the matrice¥’ and¥
resulting in the matriXM*. If the matrix¥ is square and non-singular, an auxiliary matrix
7 = €%~ may be introduced to combine both projections. In this cémeexpression for
the matrixM* simplifies to

M =699 T¢T =TT, (4.21)

It is identical to the transformation of a quadratic fof#hunder linear transformatio " :

V — U. The variational index in the spatial dimensiongandyv in the weak form (3.17) is
equal to 0. Thus, the inter-element continuity of the shapetions¥ andX is not required
for convergence and andP can be eliminated on the element level provided that thesbasi
functions are element-wise supported. Then, the globaixédt* can be assembled from the
local element mass matrices, aftdhas a block diagonal structure (ISHES ET AL. 1976).

The second condition for stability of this three-field meath®that the intersection of the null-
spaces of the mass and stiffness matrices must be emptyZ(efiNKIEwICZ AND TAYLOR
2006, p. 371) and (BNARD 2010, Theorem 1, condition (7)) for VEUBEKE-HU-WASHIZU
o — e —u elements),

kerK NkerM* = &, (4.22)

with ker being kernel or null-space. This condition autoaly provides thakK +rM* is
not singular for any > 0, and thus, most time integration schemes are well-defined.
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4 Spatial discretization of inertial terms

4.3.3 Orthogonality and stability conditions

M* is at least semi-definite by construction. In order to impbaethe ™™ diagonal component
of M*, ¥ and.>Z have to satisfy the condition

M;=el¢#%¢ e =0. (4.23)

with g being the 1" unit vector. AsH is positive definite, this condition can hold only if
¢Te=0,lie.,

%Taz/%x(Na)d@:O. (4.24)

Automatically, with the condition (4.24) the entii®® row and column of the mass matrridk;f
vanish,

M; =e'6 ¢ g = (6¢) #¢ g =0. (4.25)
0

The condition (4.23) automatically satisfies the inf-supdition given in RENARD (2010)
that is sufficient for the index reduction of the DAE systen8®). But it restricts the mass
matrix to fit into the form given in (2.84). Such an approacimsre complicated because it
requires specially constructed shape functions for thelaliement field. The advantage of
the proposed approach is that massless nodes and nodesagishane split by the structure
of the mass matrix, and they can be treated separately.

The mass matriM* is computed from the product of# and%. The rank of. % is Np,
therefore the rank oM™ is less or equal tm,. At the same time from condition (4.22) it
follows that the rank oM™* must be greater than or equal to the number of zero eigers/alue
of K, which is equal to the number of rigid body modes of the elamgy,. If we want to
make the number of massless nodes todgethen the rank oM * is less or equal tog — nyo.

It is pointless to take more thayy — ngo momentum shape functions, beca#sén this case
does not have a full rank. Its columns are linearly dependemich means we can use only
those shape functions af that provide linearly independent columns. This deliveessame
mass matrix with less computational effort. Thus, the nunabenomentum shape functions
np should satisfy the following conditions

Nrom < Np < Ng — Ngo.- (4.26)
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4.4 Incompatible velocity method for mass matrices

4.4 Incompatible velocity method for mass matrices

The discretization of the variational principle (3.22)uégs shape functions for the incompat-
ible velocityV. Let us denote these shape functionblasd incompatible velocity parameters
asV. This leads to the following discrete equation of motionhngtibsidiary conditions

CU=DV
. e 4.27
{ MU-+LTV +KU = Fe, 4-27)
where matrice§ andD are defined as
L=/ poN"Nd#, D= [ poN'Nd#. (4.28)

B B

As in the previous cases, the matritesandD do not explicitly depend on time. If the rows
of the shape function matriX are linearly independent, then the matdixs invertible. Static
elimination of incompatible velocity parametérdeads to the equation of motion

MU+ KU = F®, (4.29)
with an EAS-like mass matrikl defined as
M=M-LTDIL. (4.30)

Conditions for its consistency are described in Subse&ién

The one-parametric family of mass matrices can also bermdadadrom the discretization of
formulation (3.24). The discretization procedure in thase is identical to the one given in
equations (4.27-4.30) above. The resulting scaled magsxmaat the artificially added mass
matrix read

M®=M+CiLTDIL, A°=CiLTDIL. (4.31)

This structure provides symmetry and positive definiteiné$ise added mass.
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Good ansatz spaces

This chapter focuses on ansatz spaces for the proposedl&iiong. Choosing the right
ansatz spaces is crucial for accuracy and consistency s fieemulations. First, the patch
test for inertia terms is discussed. Passing patch thedestdessary for consistency. Sec-
ondly, shape functions for singular mass matrices for féatnoen (4.20) are derived. The key
requirement for the shape functions is completeness ofabis land satisfaction of the orthog-
onality condition (4.24), which is required for an efficiadiscretization of dynamic contact
problems. Thirdly, appropriate ansatz spaces for sekent&ss scaling formulation according
to equation (4.14) are built. Finally, an example of ansptcss for an incompatible velocity
formulation according to equation (4.30) is given.

5.1 Patch test for inertia terms

The patch test is a useful tool in FE technology for the assessof crucial discretization
properties like consistency, stability, robustness amrdaymptotic convergence rate. It was
initially proposed to test the performance of FEs with inpatible modes and numerical
integration (B\ZELEY ET AL. 1966; RONS AND RAZZAQUE 1972), i.e. the patch test is a
simple test for verification of consistency. Later, it wasdiss an equivalent of BABUSKA-
BREZZI criteria for mixed and hybrid-mixed elementS€XKKIEWICZ AND TAYLOR 1997),
which involved stability (solvability) requirements. Thigher order patch test was introduced
in TAYLOR ET AL. (1986) and it provides information about the asymptotievergence rate.
Another important application of patch tests is finding iempkentation errors in FE programs.
For a comprehensive overview on the topic, SEENKIEWICZ AND TAYLOR (2006).

Here, patch tests for inertia terms (mass matrix) are desgriThey are described by corre-
sponding numerical experiments and limited to hybrid-rdized displacement formulations.
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5 Good ansatz spaces

Consider a discretized body in a stress-free configurafitwe. following patch tests are des-
ignated by roman capital letters from 'A' to 'E’

e A: prescribed nodal acceleratidiresults in an inertia force vect®tA that is equal to
the consistent nodal forcfeﬁe NT pobdV for the uniform external body loaohb

B: an abrupt uniform external body lo@gb in the domain and a nodal acceleration
applied at all boundary nodes result in a uniform accelenadt inner nodes

C: an abrupt uniform external body loagh to an unconstrained body results in uniform
acceleration at inner nodes

D: prescribed nodal acceleratibresults in a translational acceleration of the center of
gravity b and zero rotational acceleration w.r.t the center of gyavit

E: an abrupt uniform body loadob results in a translational acceleration of the center
of gravity b and zero rotational acceleration w.r.t the center of gyavit

Note, that patch tests 'C’ and 'E’ require non-singular masdrices. Patch test ‘B’ requires
an appropriate rank of the mass matrix. Patch tests 'A andniply no conditions on the
singularity of the mass matrix. Singularity of the mass matioes not imply instability
of dynamic solutions (for details see condition (4.17) armo® ET AL. (2007); HAURET
(2010)). Actually, the patch tests 'A’ and 'C’ correspondite physical experiments. In the
test A, the reference frame gets an abrupt acceleramﬁn In the test 'C’, the gravity force
is abruptly "turned on”. In both cases, an arbitrary bodyhwiit constraints is expected to
move as a rigid body, and the nodal inertial forces must bsistent withogb. Test 'B’ can
be regarded as the mixture of 'A' and 'C’. Tests 'D’ and 'E’ ameaker. These tests check
only in an average sense.

For higher order patch tests, the uniform vediahould be substituted by

The exact acceleration vectarshould interpolate the corresponding value® oA special
case of a higher order patch test is referred here as a rigig tmtation. It can be obtained
for the 2D case as

~ 0 0 -1
brotz = {O} + L} X+ { 0 } y. (5.2)
An alternative approach for consistency of hybrid-singolass matrices is given inlHES

ET AL. (1976). Itis based on the completeness of the bases andipsavtheoretical estimate
of the convergence rate for the lowest eigenfrequencieg@@hmodes.
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5.2 Shape functions for singular mass matrices

Note, that the patch tests discussed above do not affecy egrees of freedom. Patch tests
for elements with rotary DOFs are not discussed here.

One important consequence of all patch tests is that thezasysaces for all discretized fields
must contain at least a constant mode. This argument is ofteth for construction of ansatz
spaces herein.

5.2 Shape functions for singular mass matrices

This section is organized as follows. First, the shape fanstfor a one-dimensional three-
node element are derived. This derivation mainly followesitteas of RNARD (2010). Sec-
ondly, the derivation is extended to arbitrary number ofe®ébr 1D elements and some
guadratic TIMOSHENKO beams. These three bases are giveRAGCHUK ET AL. (2013).
Thirdly, the ansatz spaces on the basis of tensor-produetdaaived for 2D and 3D cases,
which were presented iINKRCHUK ET AL. (2012) and EK ET AL. (2013).

5.2.1 Derivation of shape functions in 1D

Here, the shape functions for 1D elements are constructecthisfy the orthogonality con-
dition (4.24) at the corner nodesvhere later contact conditions are collocated. It is ratur
to takeng — 2 = ny = np, which automatically satisfies the stability conditions1{# and
(4.26). This choice is also optimal with respect to compatet costs for the element-wise
computation of the singular mass matrix.

Three-node element

Consider a three-node 1D elemedini= 1, ny = 3). The goal is to obtain massless left and
right nodes. First, for a consistent approximation of themantum and the kinetic energy
at least constant shape functions are required for the wl(s=e Figure 5.2). This also
guarantees that the element passes the inertia patchTestsnomentum shape functioks
enter into the zero mass condition (4.24). In order to avoichglications in the case of a
non-uniform Jacobian, the momentum shape functiomase modified by multiplication with
the factor|Jo|/|J|.

Ti=1 Xi=[Jl/¥ nv=np=1, (5.3)

1This construction prohibits use of linear elements for HSMM
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5 Good ansatz spaces

where|J| is the determinant of the Jacobian, dd¢l is evaluated at the center of the element

¢ =0.

Secondly, it is assumed that the new displacement shapgdoatave the same linear span
as the standard quadratic shape functions and that each fhmagbion is a linear combination
with so far the unknown coefficients

SpariNg,Np,N3] = Spari1,&,E2), (5.4)

with Span denoting the linear span.

Thirdly, it is assumed that the interpolation conditionasisfied only at corner nodes with

N1(=1) N2(-1) N3(—-1)

N1(1) 6 N2(1) 6 N3(1) (5.5)

g—\ll

Finally, satisfying the condition (4.24) wit; = ag+ a1& + a2&2 leads to a system of equa-
tions

Ni(—1) =1
Ni(1) =0 (5.6)
f—ll Nix1[J]d¢ = f,ll N1|Jo|dé = O.

The solution iN; = _Z — —E + 352 Due to symmetry, the other corner shape function reads
N3 =—3 + 1E + 462 There are only two conditions for the three coefficientsatrok N,.
To obtaln a uniqué\y, it is additionally required thatl;, No, N3 form a partition of unity with

N2:1—N1—N3:g(1—52). (5.7)

Summarizing the results (see Figures 5.1 and 5.2 for ariréitisn), we get

ng=3: Np=—7—3&+3&°

N2 =3 (1-&?)

Ng=—1+2184 362, (5.8)
n=1: yp=
np=1: x1=1[Jo|/|J]
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5.2 Shape functions for singular mass matrices

1 X.§

(@) (b)

Figure 5.1: Hierarchical (left) and modified (right) shape functions doquadratic truss element.

X1,¥q \Y
SN TN
@ —
-1 0 1 X, &

Figure 5.2: Velocity shape function for quadratic truss element.

General case (ng-node element)

Consider a 1D element with arbitrary number of nodgs- 2. There is more than one possi-
bility to construct shape functions that satisfy the intdgagion condition at the corner nodes
and the orthogonality condition (4.24). Here, an optiorhvaitosed form expressions for the
shape functions is presented. It uses GAUSS-LOBATTO quackgoints as node locations
and partially follows the idea of construction of biorthogd bases proposed inAMICH -
HANE AND WOHLMUTH (2007).

Letus denotd &}, and{w }}¥, as locations and weights for the GAUSS-LOBATTO quadra-
ture of orderngy for the interval[—1;1], see (RAMOWITZ ET AL. 1964, p. 887). The
special feature of the GAUSS-LOBATTO quadrature is thatitttegration points include
the end points of the interva{ = —1 andé,, = 1). The inner points are the roots of the

derivative of the Legendre polynomiaizr’]d_l(f) = 0, and the weights are equal vg =
2
Ng(ng—1)(Zng-1(&)?)”

Then, two LAGRANGE bases are defined using the quadraturggas interpolation points

= KA R oy By
N‘_géj—a”‘lvnd Xl_iggj_fi7l—27(nd 1), (5.9)
17 i
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5 Good ansatz spaces

X andN are complete polynomials of ordag 2 andnd, respectively. Moreovely andN
satisfy the interpolation condition @Ei}i(id and{&} i1,, respectively.

The shape functions for momenfaare defined as complete polynomials of ordgr 2
multiplied with |Jo| /|J|

Xi = |Jol/|3Xi+1 i =2,(ng—1). (5.10)

The left corner shape function can be constructed as a lgwrabination ofN; with

ng—1

Ny =Nj— ; aN.. (5.11)

The orthogonality condition foN; and xk reads as

1
/ N1Xk|3|d5—|30|/ (Nl— Zza.N>XkdE k=2,(ng—1). (5.12)

The integrand is a polynomial of ordétng — 4) and thus, the integral can be evaluated exactly
in terms of the GAUSS-LOBATTO quadrature formula withnodes. Next, the interpolation
property ofx andN is used to simplify the expression

ng—1
IJOI/ (Nl— aiN; ) Xkd€ = |Jo] Z [(Nl (&) — Z aiNi(fj)> )?k(fj)] W =
= |Jo| (Xx(—L)wy —awi), k=2,(ng—1). (5.13)

Then, the orthogonality relation (5.12) gives

wi Xk(—1) Xx(=1) 5
a(_ = . .14
Wi (P 1(&))? (5.14)

Due to symmetry, the right corner shape function can be oactsd as

_ Nn B bil\_li, bi _ Wnd%(]-) — )a(l) . 515
’ Zz Wi (Png-1(&))° 519

Note, that the corner shape functions do not satisfy thepotation condition at inner nodes.
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5.2 Shape functions for singular mass matrices

The inner shape functions are not uniquely defined. They neagdmstructed such that
{N;}}¥, form a partition of unity

o R Xi(—)+x()\ < R}
Ni = (1+a+b)N = <1+ FrrC) ) N, i =2 (ng—1). (5.16)

The functions{l\_li}i”i1 form a complete polynomial basis, and it is easy to checkithiat
the same case for the badisi} ;. The basis{N}2 is built from {N;}'¥, via a linear
transformationT j, which has a nice block structure

Ny _ —
N, = .ZTN’ij N or N =TnN, (5.17)
with
1 —ao _and_l 0
0 (1+ax+bp) --- 0 0
Tn=|: : : S (5.18)
0 0 o (14 and*1+bnd*1> 0
0 —by —bn,—1 1

Note, that the determinant of the transformation mafkixcan be computed as follows

ng—1

de(Ty) = |1(1+aa+bi). (5.19)

The absolute values af andb; are less than.8, which implies that1+a +b;) > 0. Thus,
the determinant of the matriky is non-zero and the transformation matrix is regular.

In the casag = 3, the functions are identical to the ones in equation (3rBjhe caseay = 4,
the basis reduces to

( é14==%1;é23= i%
ng=4: Ni=-— 4+4E+4€2 5'53
Np=3+54°8 - 162 e
Na=3-3y5¢ 62+3ﬁ’63 (5.20)
Ny=—%— 3E+4€2+ 53
nv=2: Y1=1ypr=¢
| =21 xi=55 (VBE+1): xo= 55 (—vBE+1).

The shape functions (5.20) are illustrated in Figure 5.3.
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Figure 5.3: Modified shape functions for the cubic 1D element.

This method can be easily extended for multiple dimensiorase of tensor product struc-
ture, see Subsections 5.2.3 and 5.2.4.

The formulation and shape functions developed above enghie construct finite elements
for thin-walled structures that significantly reduce aciél oscillations of contact forces in
dynamic problems and show sufficient accuracy for modal aadevpropagation analysis.
Herein, the discussion is restricted to 1D truss and 2D TIMBSKO beam elements, quad-
ratic nine-node quadrilaterals and 27-node hexahedmaladdlition, only formulations with

equal number of velocity and momentum parametgrs n, are considered.

Now, a notation for the two discussed truss elements isdoized:

e Tr2-0: athree-node truss with quadratic shape functiondifplacements and constant
ansatz for velocity, according to (5.8)

e Tr3-1: a four-node truss with cubic shape functions for dispments and linear ansatz
for velocity, according to (5.20).

In the denomination (TrX-Y) for the elements, X and Y are theeo of the displacement and
velocity interpolation, respectively. For these elemgatsitact may occur at the end of the
domaind %, i.e., at the left or right node. The shape functions for sAHMOSHENKO
beam elements are given below.
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5.2 Shape functions for singular mass matrices

5.2.2 Special shape functions for three-node Timoshenko beam
element

For a beam element, a lateral contact inside the domgamay occur. It is collocated at the
corner nodes of the elements herein. Only three-node TIMEMIKD beam elements are
presented

e Ti2-2-2-2: standard Lagrange formulation with CMM (used feference computa-
tions)

Ti2-2-0-0: quadratic shape functions (5.8) for displaceta@ad rotation

Ti2-2-0-1: quadratic shape functions (5.8) for displacetrend rotation, but angular
velocity is linear

Ti2-2-0-2: quadratic shape functions (5.8) for displacetrend rotation, but angular
velocity is quadratic

Ti2*-2-1-2: cubic linked interpolation (5.21), see dissio below.

In the element notation (TiX-Y-Z-W), the four numbers stdadthe order of displacement,
rotation, translational and angular velocity, respedyivEhe latter four elements have singular
mass matrices with zero masses at the corner nodes. They idiffthe computation of the
rotational inertia. Ti2-2-0-1 and Ti2-2-0-2 use a highetarransatz for angular velocity. The
linked interpolation Ti2*-2-1-2 allows the element to ydedn exact stiffness matrix for static
problems. The shape functions reads

[ 1/4+3/48+3/482-5/482 0 7'
_5/8E (1—£2)le 1/2-1/2¢& (1 07"
N = 3/2-3/2¢ 0 W= g (1) . (5.21)
0 1-¢&2 0 &
~1/4-3/48 +3/48%+5/48% 0 [ 0 &
—5/8& (1-¢&2?)le 1/241/2¢& |

Moreover, the corner displacement shape functions ar@gotial to linear velocities. The
linear translational velocity,, allows exact computation of the polar inertia, which is bene
ficial for flexural dominated problems.
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5 Good ansatz spaces

Figure 5.4: Shape functiomN1(&,n) of a nine-node quadrilateral element (Q2).

5.2.3 Shape functions for 2D

The shape functions for the 2D case may be obtained by meaessdr product rule, see
Figure 5.4. The shape functions for a nine-node quadrdatdement are constructed with
the help of the shape functions for three-node element doapto equation(5.8).

The orthogonality condition for displacement and momensinape functions given in equa-
tion (4.24) requires the muItipIie%| for X. Moreover, mixed products of monomiajsand
n must be avoided fox, which limits the maximal number of momentum shape functign
to 10. The number of velocity parameters is assigneg te10. This leads to shape functions
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5.2 Shape functions for singular mass matrices

@® — node with massQ - massless node

Figure 5.5: Nine-node quadrilateral element (Q2).

in the form
_ [Nu(&)Na(n) 0 Ng(§)Nu(n) 0 } 22
" { 0 N1($IN2(n) 0 Ns(&)No(m) -] )
[t ox" o Y0 & n2o o0
@_{0 1 0Xx" 0 Y 0 o0 & nz}’ o2
_|Jol[10& 0n o0& n%o0 0
X‘ﬁ[o 10&0n 0 0 &2 nz}' o2

This element is denoted as Q2V10P10, i.e. itis a quadratcdraye element with ten velocity
and momentum modes (parameters). This element has massiess nodes, see Figure 5.5.
The inertia is consistently redistributed between theerembde and the mid-edge nodes.

5.2.4 Shape functions for 3D

The derivation of the shape functions for a 27-node Lagrahgment follows the procedure
for the element Q2V10P10. The shape functions are constiweith the help of the shape
functions for three-node element (5.8). In this case, theimmam number of the momentum
shape functions is 57 including 19 monomials for each diwact

0=1[1&,n,0,6%n%02%EN,EL,NL,E%n,E2L,En% N2 £ 1% N {2E20% %02 8227
(5.25)

The orthogonality condition for displacement and momensinape functions given in equa-
tion (4.24) requires the muItipIielfJ%| for momentum shape functions This leads to shape
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functions in the form

N = [Ny(E)Ny(mN1()l Ni(&)Na(m)Na(O)l Na(E)Na(mNy({)l -], (5.26)

=10, (5.27)
X = %I@, (5.28)

wherel is the identity matrix of size three by three a@dis defined above defined above
vector of monomials. The element is denoted as Hexa27V57P57

5.3 Variational selective mass scaling

Justification of the existing methods for SMS is not the prirgoal of the derivation. Flex-
ibility of the mass matrices (4.11-4.14) facilitates th@swuction of SMS that does not have
some of the disadvantages of existing techniques. For deasgme mass scaling technique
do not preserve rotational inertia of a single element. Téasls to large errors for problems
where substantial rotations of a structure occur. If theaemspace for velocities contains all
rigid body modes (RBM), then the mass matrix (4.14) givesetkeect values for translational
and rotational inertia. For 1D, 2D and 3D cases the followdngs required:

10 —-Yh
Uip=[1], ‘I’ZD—[O 1 X0 ], (5.29)
100 -Y Zh o
Up=|[01 0 Xt 0 -—Yh (5.30)
001 0 -—xh zh

Here,X"(&,n,2), Y'(&,n,0) andZ"(& ,n,{) are approximations of the reference geometry of
an element obtained from the isoparametric approach. Henvewch velocity shape functions
¥ |lead to a mass matrid ° with coupled terms betwees, y- andz- direction. This is a rather
undesired property. In order to decouple inertia, eachroolof ¥ should contain only one
non-zero entry. This leads to a different ans&tavith

1 0Y" 0

‘IIZD_|:O 1 O Xh:|7 (531)
1 00Y"Z" 0 0 0 O

Up=[{0 10 0 0 0 X" o Y [. (5.32)
001 0 oXxXro zho
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5.3 Variational selective mass scaling

For high-order elements a complete linear ansatz may bewisied

1 0x o Y o0

01 0 xh o Y|’
1 00xhYhzh 0 0 0 O 0 O

Usp=|010 0 0 oXP Y Z" 0o 0 o0]. (5.34)
001 0 0 0 0 0 0xhyhzh

Uip=[1 X"], Uyp = (5.33)

For some low order elements, such as T1 or Tetra4, constaatzaspace fow may be used
with

10 1 00

‘1’202{0 1], Uapp=|(0 1 0. (5.35)
0 01

Note, usage of current geometry for velocity ansatz is pbssiSome aspects of such treat-

ment are discussed iKRCHUK AND BISCHOFF(2013a).

The elements using variational mass scaling are denotddtit suffix '"MS’ andn,, the
number of columns in the matriw, e.g. 8-node hexahedral element using ansatz (5.35)
with three velocity shape functions is denoted Hexa8MS3: Vdlue of scaling factoC; is
specified separately.

In the following section, some examples demonstrate theiafity of the proposed tech-
niques.

5.3.1 Three-node triangle

A simple example is discussed to clarify this approach. @emsa three-node membrane
element with two DOFs per node with constant dengitydescribed also in Figure 2.12. Let
us stick to the case wit@, = C3 = 0, leading toM° = M + Ag with the mass augmentation
matrix in the formAg = C; (M — €.~ *¢T). Standard shape functions for displacements
and constant functions for momenta are used with

| 1-&¢—-n 0 § 0n O |10
N = 0 1-£-n 0 & 0 n},x_{o 1} (5.36)
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This corresponds to an element TIMS2 in the notation of tesish Substitution of shape
functions lead to

201010 10
020101 01
P | 102010 7 A|l0O A1 0
M=2 0102017 "3|01| " xlo] &
101020 10
(01010 2] [0 1]

e=C17 0 1 0 2 0 -1 (5.38)

-1 0 -1 0 2 O
0O -1 0 -1 0 2

The latter expression is identical to the mass scaling magigiven by equation (2.90) up to
a factor three, see alsoLOVSSON ET AL (2005).

Ansatz (5.30) can be used for more accurate computatioresgvexact value for the element’s
rotational moment is needed. The basiseads

1 0 —Yh
X:lo o } (5.39)

This results in the following projection matricgsand.>Z for the element TLMS3 with

1 0 —Ye
0 1 Xs , (5.40)
Vo %ol ly+xE+y2

Ao

H=—
Po

—2Y1—Yo—Y3 |
2K+ X+ X3
—-Y1—2Y2—Y3

0
4
@7 = 20 0
12 4 X1+ 2X+ X3
0
4

(5.41)

—Y1—Yo—2Y3
X1+Xo+2X3 |

O ~,O MO

The obtained mass scaling matig for an element TIMS3 is identical to the one obtained
in Subsection 2.3.5.
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5.3 Variational selective mass scaling

5.3.2 Bilinear quadrilateral element

In Chapters 6 and 7, the elements Q1MS2, Q1MS3 and Q1MS4sdeeltd-or comparison of
these formulations, see als&@kACHUK AND BISCHOFF(2013c). The most efficient element
among the proposed ones is Q1MS3 leading to accurate rasudending dominated tran-
sient and eigenvalue problems. The conditioning of the messix obtained with Q1MS3 is
comparable with ASMS. This element is also found to be lessitee to element distortion
w.r.t. ASMS (TKACHUK AND BISCHOFF2013b). For wave propagation example the disper-
sion produced by Q1MS3 is substantially larger than for ASWISSACHUK AND BISCHOFF
2013b).

5.3.3 Quadratic Serendipity and Lagrange elements

Q2MS6 and S2MS6 elements are proposeddiARd@HUK AND BISCHOFF(2013a). They may
be considered as very good alternatives to LMM. They prodwoeirate results and enable
calculation with large time-step sizes. However, conditig of mass matrices obtained with
S2MS6 prohibits large values for the selective mass scéicigr C;. Conditioning of mass
matrices obtained with Q2MS6 is by factors smaller. ThusiV&Swith six velocity modes
can be used for broad ranges of the selective mass scalitog Gc

5.3.4 Linear tetrahedral element

TetradMS3 and TetradMS6 elements were proposecdciki ET AL. (2014). These elements
yield accurate results. They can be recommended for bulktsires free-meshed with tetra-
hedral meshes. Thus, it may be used in various areas likedgioamics and forging. More
examples can be found in Sections 7.2 and 6.3. Ten-nodeajiathtrahedral elements (like
LS-DynaELFORM=16 orANSYSSOLID92) and composite ten-node tetrahedral elements
(like LS-DynaELFORM=17) are not considered here. Extension of varialiealective mass
scaling for these elements is outlined in the outlook in iBad.2.

5.3.5 Trilinear hexahedral element

The element formulation Hexa8MS3, Hexa8MS6, Hexa8MS9 aexbBMS12 are proposed
and tested in KACHUK AND BISCHOFF (2013b) and EK ET AL. (2014). Hexa8MS6 is

chosen for efficiency and accuracy, see for examples Se¢tibnThe influence of number
of velocity modes on accuracy and efficiency is given iokEET AL. (2014) and Subsec-
tions 6.3.3, 7.2.2, 7.2.3, 7.2.5. Further extensions oftianal selective mass scaling for
20- and 27-node hexahedral element are outlined in theauiboSection 8.2.
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5 Good ansatz spaces

5.4 Mass matrices using incompatible velocity
formulations

The shape functions for a nine-node quadrilateral elenrert@nstructed with the help of the
shape functions for a three-node element according to equ@t 8). In this case, consistency
of the mass matrix requires that the shape functions fomipetible velocityN is orthogonal
to at least constant velocity. A possible ansatz reads

N:@ N1(§)N1(n) 0 N3(&)N1(n) 0
“]| 0 Nl(f)Nl(I’)) 0 NS(E)Nl(r’) N

where each function is product of corner shape functiongHerthree-node truss element
Tr2-0. This element has eight incompatible velocity mogesdmeters) and it is denoted as
Q2IVM8. The consistency of the element Q2IVMS8 is checked ppéndix A and eigenfre-
quency benchmark in Section 6.3. The same ansatz may bearsthe fdiscretization of the
one-parametric family (4.31). This element is not congdédrere.

(5.42)

90



Spectral analysis

In this section, the most important results for spectral @isgersion analysis are given. The
details of the dispersion analysis are presented in Subse2t5.3. Here, examples from
TKACHUK ET AL. (2013); TKACHUK AND BISCHOFF(2013b, c) are collected. New results
for dispersion relations of VSMS are given in Section 6.2.

6.1 Dispersion relations for selected hybrid-mixed
singular mass matrices

6.1.1 Three-node truss element: Tr2-0

The dispersion analysis is performed on the basis of théngataation and the local stiffness
and mass matrices. In case of the truss element Tr2-0, thasees read

EA 4 -6 2 000
ke:I— —6 12 -6 |, m*=pAl| 0 1 0], (6.1)
€1 2 -6 4 000

with le being the element length. The solution of the equation ofonds a harmonic wave,
and the corresponding ansatz for it at jenode reads

Uj(t) = Ucexp(i(kj/2—Qct/le)) forj odd (6.2)
Uj(t) = Umexp(i(kj/2—Qct/le)) for j even (6.3)

with U andUy, being the complex-valued amplitudes at the corner and midadies, respec-
tively, andc = /E/p being the speed of sound. The amplitudggndU, form an unknown
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6 Spectral analysis

patch amplitude vectcﬂirep = [Um, U¢]. Substitution of the ansatz in the equation of motion
leads to a homogeneous system with the two unkndwgendU,

01000 [-6 12 6 0 0
_2 —_
< @ {o 000 oh{ 2 6 8 -6 ZD Ue 0. (&4

—6e€ -6 —Q2+127[ Ug 0
4cosk)+8 —6-6€¢ || Un|

(6.5)

A non-trivial solution of (6.5) only exists, if the deternaint of the system is zero. This
condition yields the characteristic equation, from whibk tispersion relation is obtained
with

,_ 6(1—cogk))

&= cogK)+2 ° (66

In the case of a 1D problem, the analytical solution prediots-dispersive wave propagation
Qo = K, i.e., the wave speed is constant for all wave numbers (spad-6.1). The semi-
discrete solutions are dispersive. The TAYLOR expansiothefdispersion relation (6.6) at
K=0is

1 1
02— kK24 —k* 4~ k61 O(k® 6.7
Ko+ 5K +360K +0O(k®), (6.7)

and coincides with the expression for the continuum protﬂl%w k2 up to the fourth order
term.

continuum truss- - - -

Tr2-0, acoustic

Figure 6.1: Dispersion for a quadratic truss element with constantoités, Tr2-0.
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6.1 Dispersion relations for selected hybrid-mixed singular mass matrices

Thus, the phase velocity for long waves - 0) and the values of the lowest eigenfrequen-
cies converge uniformly to the exact solution. Surprigmghe dispersion relation of the
element Tr2-0 coincides with the dispersion relation of a-twade truss element with CMM,
see BELYTSCHKO (1978). Moreover, the dispersion relation of the elemeBtTsee below
(6.16)) coincides with the dispersion relation of a thregletruss element with CMM, refer
to BELYTSCHKO (1978).

6.1.2 Four-node truss element: Tr3-1

The spectral analysis for the element Tr3-1 is performedogoasly to the element Tr2-0.
The stiffness matrix and HSMM read

3 —v6-1 v5-1 -1 0000
o 3EA|-V/5-1 4 -2 5-1 e PALIO 4 10
k= — , mf="—— . (6.8)
le | VB—-1 -2 4 —/5-1 10|01 40
-1 V5-1 —v/6-1 3 00O0O
The solution is assumed in the form of harmonic waves with
Uj(t) = Ucexp(i(kj/3—Qct/le)) forj mod3=0, (6.9)
Uj(t) = Umzexp(i(kj/3—Qct/le)) forj mod3=1, (6.10)
Uj(t) = Unpexp(i(kj/3—Qct/lg)) forj mod3=2, (6.11)
with U¢, U andUpp being the corner and the two midnode amplitudes.
The reduced matrices for the patch equation given in (2.0el23)
02 014000
Mred:—l—o 000O0O0TO0C(d, (6.12)
000041
V5—-1 2 4 —\/5-1 0 0 0
Ked=3 -1 5-1 —\5-1 6 —v5-1 +v56-1 -1 |, (6.13)
0 0 0 —-v5-1 4 -2 6-1
0= [Uce™® Um Ume Uc UméX Umpe® Ucex]. (6.14)
The characteristic equation finally results in
—~18e ' +12  1/2Q2-42 —~Q2+48 Unp
—6CcogK)+18 —18+12€K 12— 18€¥ Us | =0 (6.15)
12—-18e%  —€X(Q?—48) 1/2é%(Q?—84)] [Um
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6 Spectral analysis

The spectral analysis offers two branches for the disper&@tion. These branches may be
classified as acoustic and optical branches accordingtorPFA (2001) with the following
expressions for dispersion

13+2cosk) — Ry
3—cogK)

13+2cogK)+Ry

Qio=4
aco 3—-cogk) '

(6.16)

2
Qopt - 4

with Ry = /124+ 112 co$k) — 11cog(k). The TAYLOR expansion of the acoustic branch
Q2. is exact up t@D(k®), i.e. the first eigenvalue converges with sixth order, sgarei6.2.

Q
OR N WAOUO O N ®
T
\
1

acoustic optical ------ continuum truss- - - -

Figure 6.2: Dispersion for a cubic truss element with linear velocities-1.

6.1.3 Quadratic Timoshenko element

The exact dispersion relation for a TIMOSHENKO beam is giirerELIPPA (2010) and
FELIPPA (2001). It can be found from the characteristic equation

El r2 Elr2
) R Y. g ~4
—Q°c— —= Q Q" =0. 6.17
: (GA5|3+|5>K T GAJd 6.17)

This characteristic equation yields solution with two loaes, i.e. flexural (bending) and
shear. The TAYLOR expansions of these solutions for rectimgross-section and = 0.0,
no shear correction (i.€As = GA) are given here as a reference

11 5

Q2. —k*—1/4N%°Kk8 + = N8 — —_N6k10 L O (k12 6.18a
72 K2 11 5
Q% ear= g T185 - K*+1/4NK® — 144 A8+ EZ/\6K1°+ O(k'?), (6.18b)
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6.1 Dispersion relations for selected hybrid-mixed singular mass matrices

Instance Description Dispersion behavior

Ti2-2-2-2  Standard shape functiond-our branches. Flexural and shear branches match the
for displacements and ro-analytical expressions for continuum beam u®ta®)
tations and O(k®). Third branch is the continuation of flexu-

ral branch without gap. Fourth branch is optical optical
with a gap above the shear branch.

Ti2-2-0-0 Constant ansatz for transTwo branches. Flexural and shear branches match
lational and angular ve- the analytical expressions for a continuum beam up to
locities O(k®) andO(k?), respectively.

Ti2-2-0-1  Constant ansatz for transThree branches. Flexural and shear branches match the
lational velocity and lin- analytical expressions for continuum beam u®ta©)
ear angular velocities andO(k?), respectively. Third branch is optical with a
gap above the shear branch.

Ti2-2-0-2 Constant ansatz  forThree branches. Flexural and shear branches match
translational velocity the analytical expressions for a continuum beam up to
and quadratic angular O(k®) andO(k*), respectively. Third branch is optical
velocities lying between flexural and shear branches.

Ti2*-2-1-2 Linked interpolation Three branches. Flexural and shear branches match the
formulation according to analytical expressions for a continuum beam up up to
(5.21) O(k8) andO(k?), respectively. Third branch is the con-
tinuation of the flexural branch without a gap.

Table 6.1: Comparison of dispersion properties of TIMOSHENKO beammelst formulations
(TKACHUK ET AL. 2013).

where/

E is the length-to-thickness ratio of an individual element.

The spectral analysis for quadratic TIMOSHENKO beam isejtechnical. The length of
representative amplitude vectoféd is four, i.e. the corner and midnode displacements and
rotations. The resulting characteristic equation is cuicjuartic for singular and consis-
tent mass matrix, respectively. Expressions for dispareiations are found and analyzed
with the help of the computer algebra systbtaple The number of branches for dispersion
relations and their properties are summarized in Table 6.1.

The dispersion curves for a Ti2-2-0-2 element in the casdeéisto-bending ratit§GA =
10CEIl are given in Figure 6.3. Note, that the shear acoustic bréorchort wavesK — 0)
gives correct values for the phase velocity/ The errors for short shear and flexural waves
with k — mmare 1.3 % and 23.8 %, respectively. The smaller accuracyedfieiiural branch

is caused by the poorer ansatz space chosen for the translatelocity (only constant). The
larger relative error in the flexural branch leads to highspeksive ripples in the flexural part
of the solution in the wave propagation benchmark, see EigL6.
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6 Spectral analysis

200

long shear waves short shear waves

150

o 100f -
50 | |

0 : T : : ; :

0 1 2 3 4 5 6

K
flex. acoustic—e— exact flex.
optical - - - - exact shear --- - -

shear acoustic

Figure 6.3: Dispersion of a TIMOSHENKO Tr2-2-0-2 element vs. dispensid continuum TIM-
OSHENKO beam model\ = 1/4.

6.2 Dispersion relations for selected SMS templates

6.2.1 Truss elements

Two-node truss element

Consider a two-node truss element with constant velocépsHhunctions and one parametric
mass matrix template. The dispersion relation is compuikohviing the standard procedure.
The element matrices read

N=[3(1-¢§) 3(1+&)], w=[1], (6.19)
_EA[1 -1 CpA[2 1 B

ke_t{—l J, Me = —¢ L 2}, ¥ =pAle (1], (6.20)
_ pAle 1 1 PA (1 1 o PA[1 -1

o = > 1 1], A Y ol _TL J, Al = o [_1 1}. (6.21)
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6.2 Dispersion relations for selected SMS templates

7
6 - ]
S5 ]
4 - ]

&
3r ‘ ]
2 - ]
T ]
0 — : : : : ;

0 1 2 3 4 5 6
K
C1:2 C]_:SO ...........
Ci=5 - exact------

Figure 6.4: Dispersion of Tr2MS1 element vs. continuum truss model.

Note, the hybrid mixed mass matnmg satisfies the velocity patch tests A,B,C,D and E. The
solution for the dynamic equation is assumed in the from adranonic wave

Uj(t) = Ucexp(i(kj — Qct/le)) for all j. (6.22)

Substitution of latter ansatz in the equation of motion $tala patch equation with two
elements and one unknown

o? exp(—ik)
<f[[z 4 24+C[-1 2 -1]]+[-1 2 —1]) 1 Uc=0. (6.23)
exp(ik)

The latter equation may be solved f@7, yielding the dispersion relation for the acoustic
branch
2 12(1—cosk)

Qo= . 6.24
80 44 2cox + C1(1— cosk) (6.24)

The spectral relations fdZ; = [2,5,30] are shown in Figure 6.4.

The TAYLOR expansion of the acoustic brar@f., atk = 0 reads

1-Ci4, 1+4C1+5C?

2_ 2 8
Q=K+ 5 K =20 K°+O(K®). (6.25)
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6 Spectral analysis

If the mass scaling factor is chosen to @e= 1, then the TAYLOR expansion is exact up
to the sixth order and up to the fourth order, otherwise. Th&imum frequency may be

obtained from the acoustic branch. The extreme values ddithensionless frequency may
be obtained for very shork(= ) waves with

12
2 _
Thus, the critical time-step for the element in dependeh¢& @an be computed as
2 2 Ie C]_ + 1 |e
digrit = —— = —= = 6.27
terit O O 3 ¢ ( )

For reference, CMM and RSL resultdit. i = %; anddterit = ‘¢, respectively (BLYTSCHKO

ET AL. 2001). The growth of the time-step size is conform with o8 S methods witR/1+ C;.

Three-node truss element

Consider a three-node truss element with standard LAGRABI@pe functions and velocity
shape functions according to equation (5.33). Here, cahg&cobianJ| = '—5 and constant
section properties are assumed. The dispersion relatiorbealerived as follows. Shape
functions and element matrices read

N=[3(82-8) 1-82 §(82+8)],  w=[1 =1 §¢|. (6298
7 -8 1 (4 2 -1
keZE_IA -8 16 -8, me:p?ﬁ)le 2 16 2|, (6.29)
°l1 -8 7 -1 2 4
_ pAlL[12 O _pAle[2 8 2
7= 12 [o d’ 7 = 12 |[~le O Ig|’ (6.30)
2 2 -1 1 -2 1
ﬂ@flﬁT:pf;e 2 8 2|, Ag:p:;e 2 4 2|. (6.31)
-1 2 2 1 -2 1

Note, that the hybrid mixed mass matnx satisfies the velocity patch tests A,B,C,D and
E. The solution for the dynamic equation is assumed in theesi@mmm as for the element
Tr2-0 in equation (6.3). The representative patch contamwselements and the length of the
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6.2 Dispersion relations for selected SMS templates

representative amplitude vectdris two. The dynamic equation of motion reads

—92648600+C—4840 L[8 18 -8 0 0\g_,
30||-3 6 24 6-3] 2 —44-42 1 -8 14 -8 1)) 7
(6.32)
The latter equation leads to the biquadratic charactemspiation
2,0% + 3,0%+ 8, =0, (6.33)
where the coefficients of the equation are defined as

a4 =3c0k —9—-2Cy(2+cosk), & =48cox +312+12Ci(1—cosk) (6.34)
8p=720(cosk —1). (6.35)

Solving equation (6.33) faR? results in two branches for the spectral relation with
,  —dety @ —dad ,  —lo— /84803,

Qfco= 284 ) Qopt = ~ - (6.36a)

The spectral relations f&@; = [2,10] are shown in Figure 6.5.

7
6 i
5t 4
R
c
3
2+ e e i
1t i
0 f f f f f f
0 1 2 3 4 5 6
K
acousticCi =2 —e— optical,Cy = 10 -
optical,C; =2 —— exact------

acousticC; =10 - -e - -

Figure 6.5: Dispersion of Tr3MS2 element vs. continuum truss model.
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6 Spectral analysis

The TAYLOR expansion of the acoustic bran@f,, at k = 0 reads

- —22+4+21C{ —7C?
1 Cl 6+ + 1 1K8

10
720 K 302400 +O(k™). (6.37)

Q% =k2+

If the mass scaling factor is chosen to ®e= 1, then the TAYLOR expansion is exact up
to the eighth order and up to the sixth order, otherwise. Th&imum frequency may be
obtained from the optical branch. The extreme values of imedsionless frequency may be
obtained for very shori = m) or long waves K = 0) with

60
Q2 = max<12, o 1) : (6.38)

Thus, the critical time-step size for the element in depand®fC, can be computed as

2 2 e \f Ci+1)le
dtc“t—m—ng—m'”< 3\ 5 )E‘ (6:39)

For reference, CMM and RSL result dtsi; = %C and dtgit = \'[—gc , respectively, see B
LYTSCHKO ET AL. (2001). This means that f@; > 4 the critical time-step size is limited by
the first argument in the min function and does not decreagéuatiner for greater values of
C1. The critical time-step size can be maximally increased factor/2 w.r.t. RSL.

A stronger reduction of the maximum frequency requires agoansatz space for velocity

¥, e.g. ¥ = [1]. Derivation of element matrices and dispersion relatiamgHis mass scal-
ing is omitted. The resulting critical time-step size,j Cgl%‘. Thus, the time-step size is

proportional to\/1+ C; like at other SMS techniques. However, the acoustic braocthfs
ansatz is exact up to the fourth order.

6.2.2 Two-node Timoshenko element

Consider atwo-node TIMOSHENKO beam with rectangular ceegionGAs = GA, v =0.0
and exact stiffness, seeef\KIEWICZ AND TAYLOR (2006). Now, the dispersion analysis is
performed for a one parametric family of matrices, corresiiog to case 1. The velocity
shape functions read

v=[1 g, (6.40)

I.e. a constant translational velocity and no rotary vejoftinctions are assumed.

The main results are reported here, omitting the interntedigeps. Only two branches are
obtained, an acoustic flexural and an acoustic shear. TAY&xprAnsion of the flexural branch
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6.2 Dispersion relations for selected SMS templates

180
160
140L _
120 + _
100 + _

bending acoustic, C1=5—«—
shear acoustic, C1=5——
bending acoustic, C1=2-« - -
shear acoustic, C1=2--+ -
exact bending——

exact shear -----

Figure 6.6: Dispersion of Timoshenko Til-1-1-1MS2 element vs. contmubeam model\ =
1/4. VSMS with constant ansatz for velocity.

reads
2  _ 4 2 2 6 8
Wheng= K" — (1/4A“+1/12C; — 1/12A“C1 — 1/6) k> + O (K®) . (6.41)

This means only fourth order accuracy is attained. The mrealues of the dimensionless
frequency are obtained for very shor £ 1) shear waves. The maximum dimensionless
frequency is

144

Q2= v
max /\2(C1+ 1)

(6.42)

Thus, the critical time-step size for the element depend&a@i can be computed as

2 2 e h(Ci+1)le h
e — = — = _— = — 1. 4
deri Gnax  Qmax C 12, ¢ 6cY Cat (6.43)

Note, that if ¥ contains linear translational velocity, then the sheantiaor long waves is
unaffected by mass scaling. In this case, the critical titeg-is defined as

144 144
) , (6.44)

Q2. =
max max(AZ(C1+1)’A2(2/\2+1)
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6 Spectral analysis

The second term of the latter expression does not dependeandks scaling parametéy.
Hence, for such an ansalz, VSMS is not efficient. This is illustrated in Figure 6.6, waéwo
shear acoustic branches 61 = 2 and 5 intersect the axis with= 0 at values independent
of C;1. This value depends only on the slendernessd can be evaluated as

Qmax(A = 1/4) = 32V/2 ~ 45.25. (6.45)

12
AN TN

6.2.3 Three-node Timoshenko element

Consider a three-node TIMOSHENKO beam. The stiffness maffrithe element is com-
puted using two-point reduced integration and the massxmattomputed with VSMS for a
complete linear ansatz .

The main results are reported here, omitting the intermedi&ps. In this case, four branches
are observed: acoustic flexural, optical flexural, acousi®ar and optical shear. TAYLOR
expansion of the acoustic flexural branch reads

1 1
wrz)end: Kt — (ZA2+ 1_2C1) K®
1 1 -, 1.5 1 11 4\ 8 10
+(180C1+144cl+48/\ C1+240+144/\)K +0 (k™). (6.46)
This means that only the fourth order accuracy is attain€l ¥ 0. The extreme values of
the dimensionless frequency are obtained for very long wéve- 0), for the optical shear
branch, or very short wavesg & ), for the acoustic bending branch

720 72) . (6.47)

02 —max( 2 1<
max aX(/\Z(C1+1)’/\4

The mass scaling is efficient only if shear the branch is nesistently approximated (spoiled).
Otherwise, the maximum frequency depends on the slendefmed his also implies that
VSMS in the form used here is not efficient for rotational D&FSo, further research is
needed in this direction.
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6.3 Eigenvalue benchmarks

180
160
140L. . -
1200 . .
100 | S -
80 + _
60 o - _

-------

404+ T A

o ]
0 - | |

bending acoustic, C1=5-—«—
bending optical, C1=5——
shear optical, C1=5 -« -
shear acoustic, C1=5--+ -
exact bending——

exact shear -----

Figure 6.7: Dispersion of a Timoshenko Tr2-2-2-2MS2 element vs. contm model A = 1/4.
VSMS with a linear ansatz for translational velocity.

6.3 Eigenvalue benchmarks

6.3.1 NAFEMS FV32

As an example of a two-dimensional problem, the eigenfregqubenchmark FV32 of NAFEMS
(NAFEMS 1990) is considered. Geometry, mesh and materagggaties of the model are
presented in Figure 6.8. Boundary conditioRs= uy = 0 are imposed along theaxis. Here,
Q1, Q2 and S2 types of elements are tested. For the bilineadé-element Q1, enhanced
assumed strains formulation with four EAS modes is usedtitinass calculation and 38 3
guadrature rule is used for mass computation. For S2 and €2eelts, pure displacement
formulation with 3x 3 quadrature is used for stiffness computation, andidjuadrature rule

is used for mass matrix computation. The six lowest modeslaoen in Figure 6.9. The
reference values to the frequencies are given in Table 6, that modes 1, 2, 4 and 6 are
bending dominated modes, while modes 3 and 5 are longitudiodes.

Hybrid-Singular Mass Matrices
Consistency of hybrid singular mass matrix formulation€Q@P10V10 and Q2ES is tested

here. Results for the six lowest eigenfrequencies are presgen Table 6.2. Computed fre-
guencies agree with the reference values.

103
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ﬁ Y E = 200 GPa
77:\ V=03
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Figure 6.8: Setup of FV32 NAFEMS benchmark.
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Figure 6.9: The six lowes modes for FV32 NAFEMS benchmark computed witre@ment and
CMM.

fi,,Hz f,,Hz f3,Hz f4,Hz f5,Hz fg Hz

Reference  44.623 130.03 162.70 246.05 379.90 391.44
Q2P10V10 44.630 130.14 162.71 246.76 382.01 391.54
QZ2ES: 44630 130.12 162.71 246.81 382.03 391.54

Table 6.2: Six lowest frequencies for FV32 benchmark computed withrigysingular mass ma-
trices.
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6.3 Eigenvalue benchmarks

¥ from Q1IMS2 QIMS3 Q1MS4 QIl1ASMPB =2
fmax HZ 4036 4045 7198 4459
fnax/ fLEMM 0,35 0.35 0.63 0.39
condP;M®) 14.1 26.9 39.3 11.0
error in lowest 10% freq., % 56 38 31 49

Table 6.3: Comparison of different mass scaling formulations for FM32= 30.

Selective Mass Scaling

The proposed family of mass matrices is obtained from thesheariational formulations.
The influence of the proposed mass scaling techniques onvailges of structures is studied.
These problems are small enough so that the full spectraeabtained and analyzed. Ef-
ficiency of mass scaling is estimated by the reduction of tagimum frequencymax. The
spectrum computed for a LMM is taken as a reference. Additlgnthe comparison is done
by the condition number of mass matrices and the maximunn iertbe lowest 10% range of
the spectra, which is important for the structural response

The reduction of eigenfrequencies for Q1MS3 with differegiues of the scaling parameter
C, are shown in Figure 6.10. Increasé@fdecreases the maximum frequency. Epk 5 the
maximum frequency of the scaled mass matrix is higher thathesLMM. For C, = 20 the
maximum frequency is halved and f@; = 30 decreased by a factor of three. Comparable
reduction of maximum frequency can be obtained with Q1ASM& W = 2, however the
error in lowest eigenfrequencies for the proposed methainaller. Performance of the
proposed method for a set of ansatz function for veloditwith fixed penalty valu€; = 30

is examined and results are presented in Table 6.3. As &neferperformance of the element
Q1ASMS is also given.

A similar study is done for S2MS6 and Q2MS6 elements. Resoitthe six lowest eigen-
frequencies computed with S2MS6 are presented in Table \@dational mass scaling is
capable of accurate approximation of these six lowest gaqies. The error for S2ASMS
with scaling factor8 = 2 is much larger. Dependency of the critical time-step onirsga
parameteC, andf is given in Table 6.5. The following observations can be nfaoia the
table. The values of conditioning of mass matrix for vaadatil selective mass scaling are
larger than for ASMS. Conditioning for S2MS6 is by a factootlarger than for Q2MS6.
Similar observation are made for larger model of an archgaridee Table 7.1.
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11

Results for FV32 NAFEMS benchmark, 288 modes.
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Figure 6.10: Ratio of eigenfrequencies for different values of selectivass scaling parameters.
C, - proposed in paper witl# from (5.30),8 - method Il Q.0vVSSON ET AL. (2005).

fi,Hz f,,Hz f3,Hz f4,Hz f5,Hz fg Hz
reference 44.623 130.03 162.70 246.05 379.90 391.44
CMM 44.626 130.06 162.70 246.15 380.23 391.46
C.=10 44,625 130.01 162.70 245.72 378.04 391.30
C:=30 44,622 129.93 162.69 244.83 373.05 390.95
C, =60 44,618 129.79 162.68 243.36 363.58 390.31
S2ASMS,3=2 43.943 12299 16150 220.18 317.47 375.50

Table 6.4:Six lowest eigenfrequencies_g computed with S2MS6 elements for FV32 bench-

mark.

6.3.2 2D square membrane with distorted mesh

Consider a modal problem for a square unconstrained membamensions, material prop-
erties and mesh are shown in Figure 6.11. The stiffnessxiattomputed with % 2 quadra-
ture rule and four enhanced assumed strain modes. The CMM&kt6 are computed with
4 x 4 quadrature rule. Row sum lumping is used for LMM. A modedigéortion is introduced
to the mesh in order to find which mass scaling techniquesesrgts/e to mesh distortion.
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6.3 Eigenvalue benchmarks

S2MS6 Q2MS6
Mass type dtyi, us condM  digi, HS condvi
LMM 14.8 49 13.4 79
CMM 8.7 219 8.4 128
B =10 34.5 184 38.5 72

B =30 50.1 236 64.8 153
B =60 61.0 348 91.0 247

C1=30 31.4 299 31.7 149
C, =60 36.7 537 37.1 275
C1 =100 41.9 857 42.4 444

Table 6.5: Critical time-step and conditioning of mass matrix for FM&nchmark. S2 and Q2
element families.
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Figure 6.11: The model of a square membrane (left) and sub-model (righ) nvesh distortion

a= 0.5 m (right). Material propertiesE =207 GPa,v = 0.3, p = 7800 kg/n.
Mesh: 15x 15 elements.

15

The results of the eigenvalue analysis are summarized ile Bab. The values obtained for
consistent and lumped mass matrix are given in the first atwhskerow, respectively. These
values can be used as reference. Algebraic mass scaling ag& ovsSsSoN ET AL (2005)

is performed with3=2, VSMS withC1=30. The following data is presented in the columns:
the three lowest non-zero eigenfrequencies, the maximgené&equency, conditioning and
average fill-in of the mass matrices and the distortion apgl®r mode four computed with
equation (2.130). The condition number is computed for ttoelpct P;M. The following
observation may be made from Table 6.6. The maximum frequEmd_-MM is about half

of the one for CMM and the lowest frequencies are slightly lignaAll given mass scaling
methods reduce the maximum frequency by a factor two to twegpared to LMM.

Only algebraic mass scaling changes the order of the pexsémwest eigenmodes, see Fig-
ures 6.12 and 6.13. Modes four and six are interchanged. dMerethe structure has four
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6 Spectral analysis

Average mode 4 dis-

f4, Hz f5, Hz fe, Hz  fmax Hz condP;M) bandwidth  tortion ¢

LMM 133.105 140.466 140.731 1928.99 1 1 -

CMM 133.807 142.709 142.752 3707.33 12.39 8.3 -

AEE/IZS, 124.824 126.598 127.716 873.97 12.35 8.3 1.32

\(/:Sﬁ/l?)% 128.123 136.495 136.958 762.06 21.91 16.5 ©0.59
1=

Table 6.6: Comparison of different mass matrices for 2D square menebegample
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Figure 6.12: Eigenmode four for a square plate computed with algebrdéctee mass scaling
with B = 2,f =127.716 Hz.

symmetry planes and its eigenmodes four and five are mirrdieas, the corresponding fre-
guencies must be equal. The difference between the fretpsenicthe two symmetric modes
is the largest for the algebraic mass scaling among disduss¢hods (1.774 Hz). Algebraic
mass scaling leads also to the largest distortion afgleThus, the algebraic mass scaling
after OLOVSSON ET AL (2005) should be carefully used for distorted meshes.

Further observations can be made from the modes for the stifleguency, see Figure 6.14.
In case of the lumped mass matrix the mode is localized. A&pptin of SMS with off-
diagonal terms yields the highest mode that propagate beenbdel.

6.3.3 NAFEMS FV52

As an example of a three-dimensional problem, the eigenéecy benchmark FV52 of
NAFEMS (1990) is considered. Geometry and mesh of the madedfzown in Figure 6.15.
Material properties of the benchmark FV52 are identical ¥@F, see Figure 6.8. Boundary
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6.3 Eigenvalue benchmarks

S i

Figure 6.13: Eigenmodes five (left) and six (right) for a square plate coteg with algebraic
selective mass scaling wifh= 2, fs = 124824 Hz ands = 126598 Hz.

g f2h

Figure 6.14: Eigenmodes 256 for lumped mass matrix (left) and for algelsslective mass scal-
ing (right) with 8 = 2, f-MM — 192899 Hz andfASMS — 87397 Hz.
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Figure 6.15: Setup of FV52 NAFEMS benchmark.

conditionsu, = 0 are imposed along all four lower edges<(—0.5). For stiffness calculation,
eight-node solid elements with nine enhanced strains ae. us

The reductions of the eigenfrequencies obtained for Hex@BMement with different values
of scaling parameters are shown in Figure 6.16. A reductfotD&0, 55% and 65% is ob-
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Results for FVY52 NAFEMS benchmark, 454 modes.
1.2 T T T T T T T T T

C1=30 -
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i, mode number

Figure 6.16: Ratio of eigenfrequencies for different values of selectivass scaling parameters.
C, for element Hexa8MS&3 for algebraic selective mass scaling.

tained forC, = 10, 20 and 30, respectively. The accuracy of the lowest eiggnércies is
compared with ASMS. FoB = 2, the error in the lowest 10% range of eigenfrequencies is
40% compared to an error of 13% fGf = 10.

6.4 Summary of spectral analysis

In this chapter dispersion and modal analyses for HSMM anS%re carried out. Dis-
persion analysis provided important results about the ranrobbranches of the dispersion
relation and their quality (optical vs. acoustic, longinal, shear or flexural). Information
about these branches allowed to find the convergence ratifferent modes. For the dis-
cussed examples of truss and beam elements, HSMM reducesdbeof accuracy with
respect to CMM at least by two. VSMS may preserve the ordecaiacy, but then it is not
efficient in the reduction of the highest frequencies. Theans that the two alternative mass
formulations lead to higher dispersion error than LMM or CMM addition, the proposed
version of VSMS for elements with rotary DOF is not efficient.
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6.4 Summary of spectral analysis

Influence of HSMM and VSMS on the lowest eigenmodes is stuftiethree modal bench-
marks (NAFEMS FV32 and FV53, 2D square membrane). From tesilthese bench-
marks the following conclusions can be made. The proposeduiations for HSMM, i.e.
Q2V10P10 and Q2IVMS8, give good results for NAFEMS FV32 benahk. The accu-
racy of the lowest modes computed with Q1MS2, Q1MS3, Q1MSAMK6, S2MS6 and
S2ASMS are satisfactory for NAFEMS FV32 benchmark. The kiweodes computed with
Hexa8ASMS and Hexa8MS6 give satisfactory results in bemchkiNAFEMS FV52. Com-
paring the two competing mass scaling techniques (ASMS €88 Y), it is observed, that
ASMS is more sensitive to mesh distortions than VSMS (2D sguambrane benchmark).
The conditioning of mass matrix for VSMS is higher than forMS. However, VSMS shows
better accuracy of the frequencies.

The spectral analysis for linearized equations cannotgiveplete properties of VSMS and
HSMM. In the next chapter transient examples are studiedt, ititlude contact and finite
deformations.
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Transient examples

In the previous chapters, the theory of hybrid-singularsmaatrices and variational selective
mass scaling is developed and an error analysis for harnveewes is carried out. In this
chapter, the proposed methods are tested for several dymaotilems of three types (wave
propagation, impact and structural dynamics). In wave @gagion problems, the dispersion
error can be separately studied. The reduction of the spsigontact pressure oscillation is
studied in unilateral dynamic contact problems. In strradtdynamics problems, the behavior
of the system is studied for simple load cases. Time integras done with trapezoidal rule
(examples 7.1.1-7.1.4 and 7.2.1), NEWMARKmethod (examples 7.1.5 and 7.1.6) and the
central difference method (examples 7.2.2-7.2.5). Nuraétests are conducted using the
implementation of the elements in the computer algebragggeMaple or the in-house FE
codeNumPra For the examples 7.2.5 and 7.2.6, a comparison with theigntuobtained

in the commercial codeS-Dynais done. Advantages, disadvantages and limitations of the
proposed methods are summarized at the end of the chapter.

7.1 Examples with hybrid singular mass matrices

7.1.1 Wave propagation in truss

To illustrate the capabilities of the element for the waveagation problem, a problem with a
sharp shock front is considered. The initial conditionsespond to a rectangular wave packet
moving from the left side of a finite truss to the right, seelf@7.1. The length of the packet is
20 % of the total truss length. The length of the truss is largmuigh to avoid reflections within
the simulation time. The analytical solution predicts ti&t particle velocityg in the packet

is preserved during the wave propagation. Snapshots ofalloeity profile are presented in
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— EA=10*
— p=1
— vp=0.1
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dt=2.10"°
- | Teng= 0.005

Figure 7.1: Wave propagation benchmark for trusses.
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Figure 7.2: Velocity profiles at different time points for a quadratiads element with constant
velocities, Tr2-0.

Figures 7.2 and 7.3 for Tr2-0 and Tr3-1 eleméntsspectively. It shows reasonably small
dispersion, however dispersive ripples are present. Theie profiles obtained with Tr3-1
are less dispersive than the ones obtained with Tr2-0. $luae to the higher accuracy of the
dispersion curve (6.16), see Figures 6.2 and 7.3.

7.1.2 Projectile in rigid wall

The proposed finite element formulations for truss elem&ri2s) and Tr3-1 are tested in a
rigid wall impact problem. The setup for this test is analagto the wave propagation test
apart from the fact that the initial velocity is uniform inethruss. The contact condition is
applied on the node at the right end. The exact analyticatisol predicts a constant contact
force F&¥@%= ypA,/pE and a total impact duration dg = 2| \/g . For the specified data, the
numeric values aregxa'= 10 andT. = 0.02. The time history of the computed contact force

for different time step sizes is presented in Figures 7.47abdior the element Tr2-0 and Tr3-
1, respectively. The contact persists during the entireachfor both element formulations,

1Three-node truss element with constant velocity and fagfertruss element with linear velocity, respectively.

Shape functions are given in equations (5.8) and (5.20)furtrer details of element naming convention, see
page xviii.
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Figure 7.3: Velocity profiles for a cubic truss element with linear velies, Tr3-1, at different
time points.
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Figure 7.5: Contact force at a rigid wall impact problem for a cubic tressment with linear
velocities, Tr3-1.

and the computed durations of the impact are close to thedtieal one, which is not the
case for the standard mass matrix approach.
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E=10 v=0
A vo p=1 h=0.1
vo=01
=1
dt=1.10"°
- > teng=14-1073

Figure 7.6: Timoshenko beam wave propagation benchmark for 40 elemesgl. Constant ve-
locity vp is prescribed at left end of the beam.

The maximum overshoot of the contact fortgg¢F: for an element Tr2-0 is by a factor of
around 18 in the range of the studied time-steps, and the overshdotes with the increasing
size of the time step sizes. The reason for that is as folltwe integration with larger time-
stepsdt > 3lg/c cuts off the highest modes in the solution. The phase vgléwmitthe higher
modes possesses a larger error (see Figure 6.1). This shoaisalin the history of the
contact force, where spurious irregular oscillations mgbcond half of the impact are caused
by reflected higher modes. It also means, that the resolofispace and time discretization
should match. The choice of the time stin the range from R/c to S¢/c provides the
most accurate results in the contact force for this bencknidre maximum overshoag/F
produced with Tr3-1 element is around’ 1see Figure 7.5.

The maximum overshoot of the contact force computed with CBINLMM grows asdt—!

with dt — 0. Values for the overshoot of 1.7, 5.0 and 8.0 are obtainethfo problem with
quadratic elements and CMM fty/(cdt) values of 0.25, 0.5 and 1.0, respectively. A similar
behavior is also reported for MOREAU-JEAN’s scheme bRy (2013). The overshoots of
the contact force fole/(cdt) values of 0.963, 9.63 and 96.3 are 1.07, 2.75 and 27.5, respec
tively.

7.1.3 Wave propagation in a Timoshenko beam

The dispersion properties of the element may also be ewdeim the following test prob-
lem. Consider a semi-infinite beam with a free left end. A tanisvelocityv is prescribed
at the free end. We model this problem with a beam of finitetlemaking it long enough to
avoid spurious reflections from the right end (see Figurg A®egular mesh with slenderness
N =7.0is used.

The numerical solutions are compared with an analyticaltsni obtained in BLEY AND
CHAO (1955). Figure 7.7 compares the profiles of at a given timetferfour different ele-
ment formulations. We plot the velocity the velocity in tsaerse direction normalized with
Vo by connecting values at the midpoints of the elements, hemtée distribution for the for-
mulation Ti2*-2-1-2 is actually piecewise linear and disiouous. The analytical solution
is dispersive, i.e., shear and flexural wave propagate gfirdlie beam with a velocity de-
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Figure 7.7: Profiles of normalized transverse velocity/vp for a wave propagation test for a
Timoshenko beam &g,q= 1.4-103.

pending on the wave numbkr The maximum velocity of flexural waves is smaller than the
maximum velocity of shear waves by a factongEA/GAs ~ 1.4, for details see BLEY AND
CHAO (1955). Therefore, a sharp front is predicted between she@iflexural wave pack-
ages (see Figure 7.7 at the locatiqyirg ~ 3.5 withrg = \/m being the radius of gyration).
The formulations Ti2-2-0-0 and Ti2-2-0-1 can follow theritanuch better than Ti2-2-0-2
and Ti2*-2-1-2. The results for Ti2-2-0-2 and Ti2*-2-1-2eaalmost identical, because the
difference in their mass matrices reduces with large slere$s. Furthermore, the height of
the spurious oscillations of the velocity profile around ftwat is comparable with the ones
obtained in an identical wave propagation test for two-ndmeoshenko beam elements in
BELYTSCHKO AND MINDLE (1980).

7.1.4 Lateral impact of a Timoshenko beam

The performance in the case of elasto-dynamic contacttesdessing a bounce problem (Fig-
ure 7.8). A beam hinged on both ends with a sine profile fornit&l velocity is considered.
There is a rigid obstacle with initial gap,. We use a coarse mesh with four elements, such
that contact occurs only in the middle node, which is a massiede. The time interval is big
enough for one impact.
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E=10 I=1
l l * v=00 dt=1-10"%
95 Vo (X) A=As=h V2(X) = Voo sin(rx/1)
| =l33=A/12  w3(X) = —nvegcos1x/1)/I
h=01 Voo = 0.01
| g, =25-10"* teng= 0.08
- > Nele = 8

Figure 7.8: Setup of TIMOSHENKO bounce benchmark.
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Figure 7.9: Contact force at the center of the beam and evolution of tted &mergy. TIMO-
SHENKO bounce benchmark.

The numerical results for the contact force at the middleera@ given in Figure 7.9. The
results for the standard mass matrix consist of severalétepeith duration of one time step
each. In the case of HSMM, spurious oscillations of the adrftace are eliminated. All the
formulations proposed herein provide almost similar ress@lince rotational inertia — which
makes the difference between the formulations — are notsignjficant in this test problem.

A similar behavior for the impact of a beam with an obstacleefgorted in BzzOLINI AND
SALAUN (2011) and BzzOLINI ET AL. (2013), where small differences have been obtained
for linear and constant velocity field approximations in tase of the Euler-Bernoulli beam
model.

7.1.5 Lateral impact of beam modeled with solid elements

The previous problem described in Figure 7.8 can be solvedy 2D solid elements. The
model setup is shown in Figure 7.10. No friction between itiel obstacle and the beam is
assumed. Two meshes are used for computation. Both meskhesiaelement in thickness
direction. Eight or 16 elements are used in axial directidiar the transient simulation,
NEWMARK B method with time-step sizdét = 1.25- 10~*is used.
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7.1 Examples with hybrid singular mass matrices

Figure 7.10: Setup of bounce benchmark modeled with solid elements Q2R1.0
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Figure 7.11: Contact force at the center of a beam (left) and total enewgjution (right) for
impact problem of beam modeled with solid elements (Q2 vé?1p%10). Results
for 1 x 8 (above) and k 16 (below) meshes.

The results of the simulation are presented in Figure 7.Xre Hstandard nine-node quadri-
lateral elements Q2 and the element formulation Q2P10vVda@ampared. The history of the
contact force at the center of the beam computed with HSMMbéshess spurious oscilla-
tions and allows persistent contact. Energy losses and gai@ to activation or release from
contact in case of standard mass matrix are much higher.

Although all numerical results of the newly proposed apphoare at least as good and quite
often superior to results in the standard case, there is @vebdck. The condition number of

the time integration matrix of the mid-point ru(ed%M 4 K) starts growing for very small
time-stepsdt < 1})—903), see Figure 7.12. The reason to this is that the singular %M* for
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Figure 7.12: Dependency of conditioning of algorithmic tangent on ieatime-step for a beam
modeled with solid elements Q2P10V10.
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v=0.3
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dt=1875ns

Figure 7.13: Impact of a circular disk onto a rigid obstacle modeled wi2b Jolid elements
Q2P10V10.

such small time-step sizes, dominates the trniHowever, a simple JACOBI preconditioner
solves this problem for all examples considered here.

7.1.6 Impact of a disk onto rigid wall

Another example computed with Q2V10P10 elements is preddmtlow. Consider a fric-
tionless impact of a thin circular disc onto a rigid obstadlee setup of the problem is shown
in Figure 7.13. It is expected that the disk bounces withihartsperiod of time. The disk
has a smooth surface. Hence, the contact force — in contréfs¢ fprojectile problem 7.1.2 —
should be smooth in time. In addition, the total energy mespieserved in the absence of
internal or external friction and external forces.

Solutions with NEWMARKSf method for three time-steps size§ s, 025 us and 01825Ls
are carried out. The histories of the contact force and &stetgy are presented in Figure 7.14.
Standard Q2 elements with CMM show stable results for a 8tep-size (b us (dt > 2L¢/c).

No clear advantage in the history of the contact force at tiaeli® node or in the evolution of
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Figure 7.14: Contact force and energy evolution for impact of a circuliskn a rigid obstacle
(Q2 vs. Q2P10V10)dt = 0.5 us (above)dt = 0.25 us (middle) andit = 0.1825 s

(below).

the total energy can be seen for HSMM. For time-ste@8 is and 01825us (dt < 2L¢/c),
HSMM shows superior results. The contact force is smootH, tae contact is persistent
during the whole impact. The change of the total energy isisaantly less than for CMM.

The method of hybrid-singular mass matrices can be viewedragularization of dynamic

contact problems. Like in a penalty method a certain st#ffnis assigned between nodes
with mass and locations where contact is collocated. Inrashto a penalty method, contact
constraints are fulfilled exactly (no penetration allowed)s only the massless nodes are
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subject to contact constraints, the distance betweendconbdes" and "mass nodes" plays
the role of springs in a penalty method (typically one halboe third of an element’s length).
For example, in the case of the impact of a one-dimensiomakthode element, contact
occurs at the corner node, but inertia is condensed in thdlenitbde. An attractive feature
of this sort of regularization is that the equivalent penatiffness is automatically adjusted,
in case of lateral and edge contact, to bending/shear andoraemstiffness of the element,
respectively.

7.2 Examples with selective mass scaling

7.2.1 Wave propagation in a Timoshenko beam

The artificial dispersion brought by selective mass scatiaig be demonstrated by a wave
propagation example for a long TIMOSHENKO beam. The probsstup is identical to
the setup from Subsection 7.1.3. The results are presemtéigure 7.15 for Ti2-2-2-2MS1
and Ti2-2-2-2MS2 elements. The velocity profile obtained@&M (C; = 0) contains less
dispersion. The flexural part of the wave for/rqg < 3.5 is presented accurately and the
shear part of the wave foq /rg > 3.5 shows moderate oscillations. Application of VSMS
with constant velocity ansatz (Ti2-2-2-2MS1) leads to sambial dispersion, especially in the
shear part of the solution. The velocity jump between the praxs of the waves is not clear.
Moreover, forC; = 20, the maximum value of velocity is attained inside the diomahich

is unphysical. Results with linear ansatz space are morga@ec However, the potential for
increasing the critical time-step size with this ansatmmted, see Subsection 6.2.3.

7.2.2 Tip loaded cantilever beam

The model for a transient problem is shown in Figure 7.16tidhkzero displacements and
velocities are assumed. The beam is loaded at the tip by amptatarceF. The structural
response is compared using the history of the tip displanemesee Figure 7.17. The deflec-
tions obtained with a LMM and the proposed SMS are almosttidaireven for high scaling
values. For the same reduction of time step size, the methad€50N ET AL (2005) yields
a greater error.

Computation with a regular LMM requires 12900 time stepst the number of time steps

for different mass matrices, the following results are otgd. The consistent mass matrix
requires 21106 time steps, which is almost twice as muchrdsM®1. The method proposed

herein adds inertia to the consistent mass matrix (4.14préfbre, after mass scaling, the
required number of time steps is always less. The applicaifche ansat2l from (5.32)
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Figure 7.15: Profiles of normalized transverse veloaity/vo for wave propagation test for TIM-
OSHENKO beam ateng= 1.4-1073. VSMS with constant velocity ansatz space
(above) and linear ansatz space (below).
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E =207 GPa
v=00

100 mm

clamped F=2N p = 7800 kg/n?
ny =50
3mm n=1
n,=3
1mm tend=2ms

Figure 7.16: The model of tip loaded beam (©OvSSON ET AL 2005).

w/mm

t/ms

B =100, 1186 steP - -
LMM, 12900 steps (retr.)------
C1 =1000, 719 steps——

Figure 7.17: Tip deflectionw of a cantilever beam.

does not decrease the time step substantially; it is evee than for LMM, therein ansatz
(5.32) is not pursued further. Ansatz (5.35) and (5.30) teaal comparable reduction of the
number of the steps, e.g. 2248 and 2392Z3p+100, 717 and 719 fa€, = 1000, respectively.

For comparison, mass scaling with= 100 from Q.OvSSON ET AL (2005) cuts down the

number of steps to 1186.

The accuracy of SMS can be monitored by the kinetic energgdtim the artificially added
massT® —T = %UAOU. The small ratio of the artificially added kinetic energy ke ttotal
energy indicates a small change in the structural respdosejore elaborate error estima-
tors using parametrized variational principles s&KING ET AL. (1993), FELIPPA ET AL.
(1995) and @sTRO (2011). For the problem at hand, the ratio of the artificiargy to the
total energy is presented in Figure 7.18. It is clear fromfitpere that the proposed method
accumulates much less artificially added energy than théadeproposed in OOVSSON
ET AL. (2005).
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7.2 Examples with selective mass scaling
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B = 25, 2310 steps- - -
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C; = 1000, 719 steps——

Figure 7.18: Ratio of kinetic energy stored in artificially added massotaltenergy.
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Figure 7.19: Axial tip displacement for the compression wave benchmark.

7.2.3 Cantilever beam under a longitudinal load

Consider the beam from the previous subsection under dprapplied longitudinal load
F = 2 N. The axial displacement during5dms is given in Figure 7.19. The analytical solu-
tion predicts a standing wave in the beam and the axial tiplaiement is a staggered line
with the amplitudeAu = 2FI/EA~ 645 nm and the perioiong = 2!/\/E/p ~ 77 us. The
LMM catches the behavior of the problem very good. The algietmass scaling produces
reasonable error. The result obtained with VSMS is accémtab

The difference in the performance for a transverse and fodgial load can be explained
by different distribution of mode participation factorgesFigure 7.20. Structurally signif-
icant modes must have relative participation factors gretitan 103. The transverse and
longitudinal loads actuate the modes from a cluster in thgnpéng and the middle of the
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1 [ T T T T
_ 1e-005}
[y i
é 1e'010_- * 24
~  1le-015f
Jhing .
1e-020}
le-025L R E PR E— R ]
10 1000 10000 100000 1e+006
flHz
transverse load x axial load

Figure 7.20: Normalized mode participation factors.

spectrum, respectively. Thus, the choice of optimal SM&ireg the knowledge of the mode
participation distribution.

7.2.4 Arch bridge under point load

Consider an example for a 2D model of an arch bridge discusS&ACHUK AND BISCHOFF
(2013a). The model for a transient problem is shown in FigL2é. Initial zero displacements
and velocities are assumed. The model is loaded in the mafdlee left arch by an abrupt
point loadF. The structural response is compared using the historyeofditical displace-
mentw under the applied load, see Figure 7.22.

Computation with lumped mass matrices required 3691 and #6%-steps for S2 and Q2
elements, respectively. For S2 element, the following olag®ns can be made. The applica-
tion of a small variational mass scaling fac@r = 10 with 1693 steps leads to very accurate
results. Larger values of mass scaling factor result inelacgnditioning of the mass matrix
without substantial reduction of the time-step size ang #re not recommended. Usage of
algebraic mass scaling wifh= 10 with 832 steps increases inertia and results in phages$hif
the displacement. For Q2 elements, a similar behavior isrekbd. However, the conditioning
of the mass matrix for variational mass scaling is better.

The conditioning of the mass matrix reflects on the numbeeoéssary iterations for compu-
tation of the acceleration vector. The preconditioned wgaie gradient method with Jacobi
preconditioner is used for the numerical experiments. Htetive error of residual norm is
taken as 10°. For the Q2 element with values of algebraic mass scalingfsg= 10, 30

and 100, the average number of iterations is 25, 41 and 68ectgely. For values of varia-
tional mass scaling factofG; = 30, 100 and 300, the average number of iterations is 37, 65
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7.2 Examples with selective mass scaling

and 111. These numbers perfectly correlate with the expgeuateber of iterations, which is
proportional to the square root of the condition number.

13

Figure 7.21: A model of an arch bridge. Material properties:= 30 GPa,v = 0.2, p = 2400
kg/m®, plane stress, thickness 1 m. Mesh: 512 elements (eight- or nine-node
quadrilaterals). Load: point forde = 100 kN applied in the middle of left arch.
Duration:t,,s= 0.1 s.
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Figure 7.22: Displacement under external load. Results for S2 (above )@ (below) element
families.
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7 Transient examples

Q2
Mass type dtyi, us cond® dtyi, us condv®
LMM 26.8 19 42.0 29
CMM 42.4 93 26.5 62
B =10 134.9 43 115.5 51
B =30 227.1 98 194.5 115
B =100 410.3 190 351.7 303
C,=30 71.8 159 71.5 77
C, =100 85.2 372 84.7 191
C, =300 103.6 903 103.0 470

Table 7.1: Critical time-step and conditioning of mass matrix for tehabridge model.
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Figure 7.23: Dependence of the critical time-step size on mass scalcigrf@, for S2 (left) and
Q2 (right) element families. Computed values vs. fitted eurv

It was found that the critical time-step and conditioningdiss matrix grows witiC;, see
Table 7.1. Least square fit of the data yields the followingrapimated relations

S2MS6:
dtcrit

2MS6:
Q dtcrit

dtcritzl_i_g\él/cil

dte.
tcm%1+§<4/cfl

condM® =~ condM cum + 3Cq,

4
condM® =~ condM cum + =C1.

(7.1)

- (7.2)

The quality of this fit is illustrated in Figure 7.23. One careghat the rise of the critical
time-step is the same for eight- and nine-node elementsheA\same time, conditioning of
scaled mass matrik° for an eight-node element is much larger. Thus, it can pibh

usage for large mass scaling valu&as

Another approach to evaluate the mass scaling methods iparorg response curves for a
harmonic analysis or computing the frequency responseaemste criterion (ALEMANG
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Figure 7.24: Spectral response of the arch bridge evaluated at the ganif@oint computed with
S2 (left) and Q2 (right) element families.

2003). The boundary conditions and loading is identicah® transient analysis. The fre-
guency range is chosen from 10 to 20 Hz. In this range, theereée system computed with
CMM has the five lowest eigenfrequencies, see Figure 7.2#oksm sampling for frequency

response is used with 121 sampling points. A RAYLEIGH modeldamping is used. The
stiffness proportional damping coefficient is assumed tadrm®. The coefficient of mass
proportional damping is set ta@ s .

Frequency response curves for consistent, algebraigadlyariationally scaled mass matrices
for S2 and Q2 element families are shown in Figure 7.24. \dafaemass scaling factoyfs
andC, are chosen to produce approximately equal critical tine@sbf 110 ms. Algebraic
mass scaling leads to larger errors in spectral responges;which confirms with results of
the transient computations, see Figure 7.22. The errorerrdguency response function is
evaluated using the frequency response assurance ari{efRAC) given in equation (2.128).
As a reference response, the values obtained with CMM aré. usRACs computed for
Q2ASMS with3 = 10 and Q2MS6 withC; = 300 are 0.50 and 0.90, respectively. FRACs
computed for S2ASMS witl} = 10 and S2MS6 witlC; = 10 is 0.46 and 0.91, respectively.

7.2.5 Six-throw crankshaft

Previous examples use simple geometric domains, regukteseind comparably small num-
bers of well-shaped elements. Here, the proposed metho8848 are tested for an example
with real-life geometry. The tetrahedral meshes are predwath free mesh generators and
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Figure 7.25: Mesh of six-throw crankshatft.

1]

the model has more than 2DOFs. However, boundary conditions and the load case dire sti
rather academic.

A one-piece, six-throw crankshaft shown in Figure 7.25considered. The material of the
crankshaft is assumed to be steel with YOUNG’s mod@us 210 GPa, POISSON coeffi-
cientv = 0.3 and densityp = 7850 kg/ni. The part’s length is 750 mm and the weight is
approximately 18 kg. The diameter of the flywheel is 160 mm.

The geometric model of the crankshatft is prepare@atidWorkg)2012and exported as a
surface model via IGES format to the pre- and postproceS#0r10.0.9 In GiD, a single
volume is created, which includes 504 points, 798 lines @@sirfaces. Small features like
oil drilled holes with diameter 1-3 mm are kept in the geomseatrodel.

For simulation purposes, several linear tetrahedral nsesfite target element sizes of 7 mm
and 8.5 mm are built. These models include 120450 and 11028849)193218 and 181720
finite elements, respectively. The distribution of the destledges of finite elements and
the mesh quality factor are shown in Figure 7.26. The meshtgdactor for tetrahedra is
measured iliD as

_ @ (7.3)

Syl
whereV is the volume of the elemen,are the lengths of tetrahedron’s edges, see CIMNE
(2013).

An harmonic analysis is performed wittB8mm mesh. Additionally, the rim of the flywheel is
fixed in all the three directions. A point load is applied a free end of the crankshaft along
the x-direction as shown in Figure 7.25. The frequency rarage chosen from 15 to 45 Hz
and from 150 to 180 Hz, respectively. These ranges corresfmthe four lowest bending

2The model is kindly provided by SUDHIR GILL and can be dowrled from http://grabcad.com/library/crank-
shaft- -37.
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Figure 7.26: Crankshaft mesh built in GiD with target mesh size 7 mm.

modes in x- and y-directions, see Figure 7.28. Uniform sarggbr the frequency response
is used with 61 sampling points. A RAYLEIGH model for dampiisgused. The stiffness
proportional damping coefficient is set to zero. The coeffitof mass proportional damping
is assumed to be.01 s,

Frequency response curves for consistent, algebraigadlyariationally scaled mass matrices
are shown in Figure 7.27. The values for the mass scalingriapt and C; are chosen to
produce equal critical time-step of 187 ns. Note, that trepoase curves for variational
mass scaling lies behind the curves for CMM. This illustsatee accuracy of the approach.
Algebraic mass scaling produces substantial error forrdgpiencies 162 and 168 Hz already
for B = 30, which confirms earlier observations about deficiencylgélaraic mass scaling
for bending dominated problems. The error in the frequeesponse function is evaluated
using the frequency response assurance criterion givequaten (2.128). As a reference
response, the values obtained with CMM are used. FRAC cadpor range [15-45] Hz
for Tetra4dASMS with = 30 and TetraMS6 witlC; = 300 are 0.87 and 1.00 (exact up to
the sixth digit), respectively. FRAC computed for range(4EB0] Hz for Tetra4ASMS with
B = 30 and TetraMS6 witlC; = 300 are 0.18 and 0.9998, respectively.

The 7 mm model is used for an explicit transient analysis. hia tase, no displacement
boundary conditions are applied. Duration of the analysis ins. Estimation of the critical
time-steps for LMM inLS-Dyn& andNumProare 143 and 335 ns. LS-Dynauses a local
estimation of the critical time-step size, wherédasmProuses the global estimate. A local
estimate is conservative, which explains the difference.

Dependency of the added mass diagonal terms and the spegglagmventional mass scaling
is presented in Table 7.2. As the model contains small numignort elements, the CMS is
very efficient for increasing the time-step by a factor of. t@hen, less than 1 % of mass is

3Herein smp version 971 release 5.1.1 for win64 is used.

131



7 Transient examples

T T T H T T T T T T T
1000 | .
= £
i 100 + . i
10 E 1 1 1 1 1 1 1 1 1 1
15 20 25 30 35 40 45 150 155 160 165 170 175 180
f/lHz f/lHz
CMM —— CMM ——
Tetra4AMS6C; =300 — — Tetra4AMS6C; =300 — —
TetradASMS3 =50 - - - TetradASMS =30 - - -

Figure 7.27: Spectral response of crankshaft evaluated at excitationt for different mass ma-
trices (for range [15-45] Hz left and [150-180] Hz right).

Ll

Figure 7.28: Absolute displacement amplitudes of crankshaft at excitdtequency 26 Hz (left)
and 162 Hz (right).

added to the model which in most engineering applicatioasteptable. However, increase
of the critical time-step to 360 ns leads to 16 % of added nvalsish is unacceptable.

In NumProimplementation, uniform values of mass scaling parameteht whole model are
used. Dependency of the critical time-step on the scalingrpaters is presented in Table 7.3.
Efficient increasing of the time-step is obtained for bothsmscaling techniques. However,
VSMS requires twice as much PCG iterations and producegtagaenuch non-zero entries in
the mass matrix. Thus, the overhead for linear system soliticase of VSMS is by a factor
of four greater than for ASMS, see the estimate of speedwgngn equation (2.110).

Resulting displacements are given in Figure 7.29. Compard displacements is given in
Figure 7.30. VSMS gives result which are in good correspoodevith LMM.
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Mass type dtyii, n's Am/m, % speed-up

LMM 14.3 0 1 (ref)
CMS 50.0 0.006 35
CMS 100.0 0.035 7.0
CMS 187.0 0.2 11.8
CMS 360.0 16.21 22.5
SMS 187.0 0.2 9.8

Table 7.2: Added mass and speed-up for conventional mass scalingedghke 7 mm crankshaft
model. Value of added magsmfor SMS is given in sense of equation (2.88).

Mass type dti, ns  #iter

LMM 33.5 1
CMM 210 10
B=5 820 12

B =10 111 18
B =30 187 27
B =50 240 33
C;=30 623 10
C;=100 109 28
C,=300 187 54
C,=1000 339 64

Table 7.3: Critical time-step size and average number of PCG iteratiwith JACOBI precondi-
tioner for the mass matrix for the 7 mm crankshaft model.

so07
GiD

Figure 7.29: Absolute displacement of crankshaft at time 1 ms. Tetra4M36= 300.
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Figure 7.30: Evolution of displacements at the tip of crankshaft (nodecamputed with
TetradMS6C, = 300 and LMM.

L}

Figure 7.31: Model of a femur bone.

7.2.6 Femur bone

So far, SMS is not tested on real-life examples with hexadletieshes. A free model of
human femur bone is used for this purpbse

The length of the femur bone model is approximately 395 mne fMilesh contains 6714 nodes
and 5702 trilinear hexahedral elements, see Figure 7.3&.nTésh quality is evaluated with
internal tools ofGID, see Figure 7.32. The mesh quality for the femur model isbétian
the mesh quality for the six-throw crankshatft, as it was posdl withHEXARmesher (Cray
Research, USA). However, the shortest edge43 inm (25 times smaller than the average)
and the smallest angle is®.

LS-DynaandNumProare employed for simulation. The defal$-Dynaformulation with
one point quadratureE(FORM=1) and the implementation iNNumProwith 2 x 2 x 2 are
used for internal force computation. The mass matriXinmProis computed with 3« 3 x 3
quadrature.

4VAKHUM project, FP5 project 1998—2001, six mesh refinememésavailable in JAN (2001)
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Figure 7.32: Mesh properties for the femur bone model.

The original model is available in six mesh refinement grdises coarse to fine. Here, model
refinement one (the most coarse) is used. This model has mtorra materials with 151
grades. It uses for every point an elastic isotropic mdteEwawith v = 0.3. The YOUNG's
modulus and the density are mapped onto the elements usira@T Here, the material is
assumed to be uniform isotropic wih= 5 GPa,v = 0.3, p = 1.042 kg/n? as average values
for the provided model. The total mass of the bone 466 kg.

An estimation of the critical time-step sizes for LMM r'8-Dynaand NumProare 405 and
15.7 ns. The difference in the critical time-step sizes betwbertwo codes can be explained
by different quadrature rules used. The difference is aafpe@ronounced for highly dis-
torted elements. e.g. with the smallest angle between &lg#&s

The dependency of the added mass diagonal terms and the gpeta Conventional mass
scaling is presented in Table 7.4. The CMS is quite efficientrfcreasing the time-step by a
factor of 15. Further scaling of mass leads to a large added transédtioass. This is usual

for such high-quality meshes.

The dependency of the critical time-step size and conditgof the mass matrix for a set
valuesf3 andC; are given in Table 7.5.

For such a mesh, CMS can speed-up up to the factorsofvlhereas VSMS can speed-up up
to the factor of 10 without loss of accuracy.

The harmonic analysis is performed in a range from 100 to 25Qvith the sampling fre-
guency of 3 Hz. In this range, the second bending mode istsduaee the mode in Fig-
ure 7.33 and corresponding a peak of response function uré€ig34. A RAYLEIGH model
for damping is used. The stiffness proportional dampindfaent is set to zero. The coeffi-
cient of mass proportional damping is assumed to.b& 6.

135



7 Transient examples

Mass type dtyi, US Am/m, % speed-up

LMM 0.405 0 1 (ref)
CMS 0.500  0.0047 1.24
CMS 0.600 0.142 1.48
CMS 0.700 1.43 1.73
CMS 0.800 6.74 1.97
CMS 1.600  201.59 3.92

SMS 1.600 201.59 3.52

Table 7.4: Added mass and speed-up for conventional mass scalingedpialithe femur bone
model, refinement 1. Value of added mdss for SMS is given in the sense of equation
(2.88).

Mass type dtyit, ns condv

LMM 15.7 24.2
CMM 1.2 173

B=10 4763  46.2
B=30 1848  116.1
B=50 6627  350.7

C1=30 117 66.7
C, =100 609 122.4
C1=235 1853 265.8
C, =300 2505 333.5

Table 7.5: Critical time-step and conditioning of mass matrix for teenur bone model.

Frequency response curves for consistent, algebraicadlyariationally scaled mass matri-
ces are shown in Figure 7.34. The values for the mass scalgré3 andC, are chosen to
produce an equal critical time-step of 1853 ns. Note, thatrédsponse curve for variational
mass scaling lies behind the curves for CMM. This illustsates accuracy of the approach.
Algebraic selective mass scaling wih= 30 produces substantial error for the frequency of
223 Hz, which is the second bending frequency. The peak ofgfgonse function corre-
sponding to the second bending mode is shifted to 202 Hz. FB#@puted for the range
[100-250] Hz for Hexa8BASMS witl8 = 30 and HexabMS6 witlC; = 235 are 0.245 and
0.99956, respectively.
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i

Figure 7.33: Absolute displacement amplitudes of femur at excitatiegfiency 223 Hz.
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Figure 7.34: Spectral response of crankshaft evaluated at excitationt fory different mass ma-
trices for range [100-150] Hz.

7.3 Summary for transient examples

In this chapter numerical examples for elasto-dynamic adnivith HSMM and dynamic
problems for VSMS are considered. From the results of thehmaarks carried out, the
following conclusions can be made. The proposed formuiatior HSMM, i.e. Tr2-0, Tr3-
1, Timo2-2-0-2 and Q2V10P10, significantly reduce spuriossillation of contact forces.
Besides, the evolution of the total energy shows much smaitéicial gain/loss for these
elements. The advantages of HSMM are specially pronourmetinie-step values adt <
2l¢/c. Based on this observations, the newly developed elemantserecommended for use
in impact modeling.

Proposed formulations for VSMS for solid elements, i.e. @BYIQ2MS6 and S2MS6,
TetraAMS6 and Hexa8MS6, are competitive with ASMS. VSMSdgemore accurate re-
sults especially for bending dominated problems modelligal solid elements or on distorted
meshes. However, ASMS is more accurate for wave propagptimsiems and ASMS re-
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quires from 30 to 50% less iterations for computation of sre¢ion with PCG. Besides, an
example for TIMOSHENKO beam elements Ti2-2-2-2MS1 and Z42-2MS2 shows that the
current formulation of VSMS is not efficient.
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Conclusions and outlook

8.1 Conclusions

In this thesis, a unified approach for singular and selelgtisealed mass matrices is proposed.
This is a powerful theoretical framework that provides fisiof consistent mass matrices.
They can be used in elasto-dynamical contact problems aplitiexdynamics. Moreover,
novel techniques are used for the evaluation of the accuratliese mass matrices, like
inertial patch tests and the frequency response assuraitegon. Together with a set of
benchmarks, these techniques prove the efficiency andawcof the proposed approach.
Detailed conclusions for singular and selectively scaladrites are given below.

Hybrid singular mass matrices

An alternative spatial discretization of elasto-dynanmootact problems that uses hybrid sin-
gular mass matrices is proposed. It is based on the threenfietlified HAMILTON's prin-
ciple with independent fields of velocity, momentum and @ispment. This approach allows
to reduce the differential index of the semi-discretizestsgn from three to one. As result,
it efficiently reduces spurious temporal oscillations af ttontact pressure and allows pre-
cise energy preservation during impact. The formulatioesdwot increase the total number of
unknowns, as the discretization parameters for velociyraomentum are eliminated locally.

The first major result of the thesis is the proposed disagtim of the three-field modified
HAMILTON's principle for contact problems. It combines avab expression for a hybrid
singular mass matrix, a condition for vanishing of mass aiage nodes and a new class of
polynomial shape functions. It was shown that a diagonalesftthe element mass matrix
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vanishes if the shape function belonging to the correspmndode is orthogonal to all mo-
mentum shape functions. New shape functions that fulfillditeogonality condition have

been proposed. The elements use GAUSS-LOBATTO quadratimesgas node location (see
also LAMICHHANE AND WOHLMUTH (2007)) and fulfill the interpolation condition only at
the corner (vertex) nodes. It has been verified that the etizettion satisfies the conditions
for computability and stability needed within the framekwof a hybrid-mixed approach.

The main advantage of the approach w.r.t. standard masgesais significant reduction of
spurious temporal oscillations of the contact pressuresigtent contact was obtained for all
considered benchmarks. There is still some overshoot dhcopressure; most importantly,
it stays finite for very small time stefdslt — 0), in contrast to formulations with a standard
consistent mass matrix. The maximum contact pressure ggweuickly to the analytical
value for time stepdt ~ |¢/c and stays close to it for larger time steps.

One limitation of the concept of hybrid singular mass masics the need of implicit time in-
tegration. Further studies are necessary to check coinpatiss and efficiency of the method
for various contact-impact applications (crash, deepvirg, robot dynamics, etc.). Another
approach for time integration is an explicit/implicit sohe where alinner nodes can be still
handled explicitly. Another issue is that the proposed metiequires at least quadratic shape
functions and a re-parametrization of the shape functisneeded. Elements with quadratic
shape functions are not very popular for strongly non-linablems, because of their lack
of stability. However, some very stable high-order elermeare coming to the market (see
Impetus AFEA0de with quadratic and cubic elements for blast and impdt®@ interest for
element technology for high-order elements will grow anid titpe of elements may find its
niche.

The conducted spectral analysis proves that the order ekecgence of the proposed method
for the lowest eigenfrequencies is lower than when usingdstal consistent and lumped mass
matrices. This it due to the poorer function spaces useddlmrcity and momentum. More-
over, the number and physics of the spectral branches eotaiith HSMM is different from
the ones obtained with LMM or CMM. Usually, the applicatiohHSMM allows to elimi-
nate one or two optical branches. The behavior of elemenigire propagation problems
is acceptable. Dispersive ripples are observed for shaypksivaves, but the size of these
ripples is comparable with LMM. They can be almost eliminlaéter using special filtering
techniques, but this question lies too far outside the sobpleis thesis. A separate study is
conducted on the satisfaction of the inertial patch tese rasults of this study are summa-
rized in Appendix A. The element Q2V10P10 passes the weakpeast 'D’ and 'E’ for any
shapes, but, unfortunately, the element Q2V10P10 passexathh test of type 'A, 'B’ and
'C’ only for trapezoidal shapes. The element Hexa27V57Rtivs similar properties. This
guestion should be studied further.
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The method can be easily extended to shells and membranesllaasw2D and 3D bulk
structures. The derived shape functions may be extendedehysrof a tensor product struc-
ture. Well tuned ansatz spaces are given for the 2D nine-almfeent Q2V10P10 and the
3D 27-node solid element Hexa27V57P57. The element Q2 3Rested with eigenvalue
benchmark FV32 and two impact benchmarks. The results séthenchmarks show that all
theoretical results from 1D elements are transferred tbdrigimensions. Namely, the spuri-
ous temporal oscillations of contact forces are substinteduced for an arbitrary relation
between time-step and element size and preservation obthleenergy during the multiple
impacts is better satisfied for HSMM, especially fgf(cdt) > 2. However, conditioning of
the algorithmic tangent may cause problemsl{gtcdt) > 10°, but such time-step sizes are
outside of practical interest.

Variational selective mass scaling

Variational methods for selective mass scaling are therskowajor result of this thesis. It
is proposed to use a new penalized HAMILTON's principle as starting point of spatial
discretization. Together with appropriate ansatz spamegdiocity and momentum, the pro-
posed approach results in parametric familiesarfsistentmass matrices. The usage of these
mass matrices decreases the maximum eigenfrequency gfsfeesand increases the critical
time step. At the same time the lowest eigenfrequenciesimahge of interest and structural
response are not significantly changed.

The theoretical basis of this part of the thesis is the nevamatric principle for elasto-
dynamics. It is a modification of HAMILTON's principle wheftenematic and kinetic equa-
tions are satisfied via a penalty method. Its discretizatielus a general expression for mass
matrices depending on three free parameters. Three subefthat are efficient for numeri-
cal implementation are chosen and evaluated. It is alsostioat the mass scaling technique
presented in OOVSSON ET AL (2005) can be obtained as a special case of the present for-
mulation and thus, it is variationally justified. The mairagtical result is a study of several
instances of proposed mass scaling. Ansatz spaces foiityedoe constructed that preserve
rotational inertia. The numerical examples show that tret tesults are obtained with a for-
mulation with the velocity field just containing the rigid dypmodes. This formulation also
outperforms the method presented inddSSON ET AL. (2005) in the investigated examples.

For the first time, the spectral analysis for elements wittSSMperformed and the dispersion
relations are obtained. A dispersion analysis provideomant result about the number of
branches of dispersion and their quality (optical vs. atoul®ngitudinal, shear or flexural).
Information about these branches allowes to find the coevesg rate for different modes.
For the discussed examples, VSMS may preserve the ordercafay, but then it is not
efficient in reduction of the highest frequencies. This nsetirat the variational selective
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mass scaling formulation increases artificial dispersibrfluence of VSMS on the lowest
eigenmodes is studied for several modal benchmarks. Camgptire two competing mass
scaling technigues (ASMS and VSMS), it is observed, that A38more sensitive to mesh
distortions than VSMS. The conditioning of the mass matax YSMS is higher than for

ASMS. However, VSMS shows better accuracy of the frequancie

All proposed mass matrices for VSMS pass the patch testhabia solid basis for the usage
of this method. Unfortunately, ASMS passes the patch tdgtfonthe translation modes.

An efficient SMS requires good conditioning of the mass mafuch studies are performed
for different variants of VSMS. Generally, conditioningttviVSMS is worse than for ASMS
for an equal time-step size. But for the same reduction ottmeputational time, the VSMS
provides more accurate results.

Variational selective mass scaling can also be appliedigir-brder elements. Here it is pro-
posed to use the new formulation in 2D: eight- and nine-nagedlateral elements. Choice
of ansatz spaces for velocity with complete linear ansdtmval an efficient implementation
for selective mass scaling. This selective mass scalinggsvefficiently even after finite ro-
tations. The accuracy is higher than for ASMS. High valuespafed-up are obtained for the
nine-node element. However, conditioning mass matrix igihtenode prohibits high values
of the mass scaling factor.

8.2 QOutlook

This thesis is dedicated to a variational framework of slagand selectively scaled matrices
and initial testing of the proposed approach. Further adgrakents and tests are needed.

New developments regarding tledement typesnay be carried out. For hybrid singular
mass matrices more testing of nine-node quadrilateral Znwb2le hexahedral element is re-
quired. Further, ten-node quadratic tetrahedral elemeubsc quadrilateral Q3 and quadratic
shells can be studied. For selectively scaled mass mathagsorder elements for 3D, like
TetralOMS12 and Hexa27MS12, should be evaluated. Vanatgelective mass scaling may
also be developed for thick shells, where anisotropy of el#ia geometry requires non-
isotropic penalty factors for in-plane and out-of-planeediions. Besides, VSMS can be
applied to NURBS based elements. Static elimination of ti eariables is not easy for
patches with large number of degrees of freedom. Hencenattee ansatz spaces must be
developed in this case.

New developments regarding themulationsmay be suggested. The orthogonality condi-
tion (4.23) for shape functions in HSMM approach may be redax his would allow singular
mass matrices for standard LAGRANGE shape functions. VStShe developed for po-
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lar/micromorphic continua. This may provide large savifagseexplicit simulations of granu-
lar/polymeric materials, biomechanics or MEMSs. The sappr@ach may be also used for
shell theories with rotational degrees of freedom.

New developments regarditigne integratiomrmay be proposed. The domains with SMS and
HSMM can be united in an explicit-implicit time integrati@eheme in order to get a stable,
accurate and efficient method for crash simulation. Morothe penalized HAMILTON's
principle can be directly discretized with space-time edats.

New developments regardiraternative field problemand multi-physicsare also possible.
Singular mass and heat capacity matrices have potentidicappn for coupled thermo-
elasto-dynamic contact problems, where numerical inlitialsi and oscillation of contact
pressures are common. Selective scaling of heat capacdiede applied for hyperbolic
(non-FOURIER'’s) heat conductance equations in order tease the critical time-step sizes
for the explicit integration schemes.

Finally, I am looking forward for industrial applicationshich expose more issues connected
to the variational methods for consistent singular andestalass matrices. Remarks, sugges-
tions and ideas are welcomedtkhchuk-anton@rambler.tu
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A Patch test for selected elements

The definition and notation for an inertial patch test aregiin Section 5.1. Here, the patch
test is conducted for Q1, S2, Q2 and Hexa8 element familiesxafonal shaped patches
of elements are used for 2D elements. An assembly of sixrtisteelements is used for

3D element, see Figure A.3. The nodes in a patch are placédtsatthe Jacobian of the

individual elements is a polynom of the highest possibleeporéxact locations of nodes are
given in Figures A.1 and A.2 for Q1 and S2 elements, respagtilThe mesh of Q2 elements
is completed with mid-element nodes for S2 elements.

The patch test is conducted automatically in a speciallgmmedViaple worksheet. Re-
sults of these tests are given in Tables A.1, A.2, A.3 and A.4.

Constant velocity Rigid rotation Linear velocity
Mass type A B C DEADBCUDEAUBC D E

CMM 0000DO0OO0DO0ODO0O0ODO0OO OO OTOoTaOo o
IMM@RSL) O O O O O - - =« =« - - - - - .
QIASMS O O O O O - - - - =« =« = - - -
Q1MS2 00000 - - - - - - - <« - -
Q1MS3 00o0ooooooo - - - - -

Table A.1: Patch test for the inertia term with the Q1 family.
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Figure A.2: Setup for an inertia patch test. S2 element. Density 1.0.

Constant velocity Rigid rotation Linear velocity
Mass type A B CDEADBTZ CWDEAIDBC D E

CMM 0000D0OO0ODODO0OO OO OO OoOoOGO oTa oo
LMM(MHRZ) - - - O O - - - - - « - - - -
S2ASMS O O 0O O O - - - - =« - - -« - -
S2MS6 000000 OO0O OO OO OO OO oTao o

Table A.2: Patch test for the inertia term with the S2 family.
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Mass type

Constant velocity

Rigid rotation

Linear velocity

A B C D E A

B C D E A

B C D E

CMM
LMM (RSL)
ASMS
Q2MS6
Q2V10P10
Q2V10P10

OooOoono

O

(trapezoidal shape)

Q2IVM8

O

I R

O

O

I R

O

O

I

O

I

O

O

[

O

O

O

O

O

O

O

O

I B A

O

O

I B A

O

O

O

O

O

O

O

O

O

O

Ooono o

O

O

Ooono o

O

Table A.3: Patch test for the inertia term with the Q2 family.

Figure A.3: Setup for the inertia patch test in 3D with Hexa8 element.diygm = 1.0.

Constant velocity

Rigid rotation

Linear velocity

Mass type A B C D E ABCDEADB C D E
CMM g o oo oo oo oo oo o b .
LMMMHRZ) - - - O O - - - - - - - - - -
HexaBASMS OO0 O O0O O O - - - - - - - - - -
Hexa8MS6 O OO0 O O O O ODb o oo - - - - -

Table A.4: Patch test for the inertia term with the Hexa8 element family
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B Derivation of the penalized Hamilton’s principle of
elasto-dynamics using a semi-inverse method

The semi-inverse method is one of the most powerful methodshe derivation of weak
forms. For details of the semi-inverse method, seeiBvel (1985) and H (2000). Here,
the penalized HAMILTON's principle given in equation (3.8)derived using this method
as an alternative to penalty method. The motivation for tldgvation is to show that the
high-order LAGRANGE multipliers, semi-inverse and tentplanethods have comparable
capabilities for problems, where at least one non-paracnedriational principle is known.
The advantage of the semi-inverse method w.r.t. the higerdtAGRANGE multipliers or
penalty methods is that the semi-inverse method enablestien of parametric variational
principles even for problems without known variationahgiples. This issue is important for
coupled problems (more concrete goals are set in Outlocdpen8.2).

The starting point for the derivation is the equation (2.6&re, the displacement, the velocity
and the linear momentum are assumed to be independent.e&ldis o a following IBVP

(p=L*oun(u)+b in.7 x %
p=pv in . x %y
v=u in .% x %g
u=0 in . x 0%, (B.1)
oinn =1t in.7 x 0%
u(0,.) = ug in %o
U(O,) =V in A.

Now comes a crucial step of the semi-inverse approach. Teiltdmian functionalHSEN

is assumed in the most general form usinfgee function the generalized LagrangidfEN
and the generalized boundary terBECEN, Then, using the system (B.1) and equivalent
transformations, the shape of the functional is recoveréds, step one reads

HGEN(u,v,p):/ﬂLGEN(u,U,V,p) dt+BTCEN(u, 0, v,p) — stat (B.2)

In contrast to 81kul (1992b), here the boundary term is allowed to depend on tloeite

v. This makes the difference in the derivation, increasimgiiimber of free parameters in the
final expression of generalized LagrangidfFN from one to three. The second step of the
derivation is to take first variation of equation (B.2)

0LGEN aLGEN ) 0LGEN aLGEN
GEN _ GEN __
SH _/j< SO+ e Ol =BV + 3 5p>dt+5BT —=0. (B.3)
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In the third step, the weak form (B.3) is simplified using ettpra(B.1). In order to do this,
the termdL®EN/dv is assumed to be null-Lagrangian, i.e. to be functionallyedelent on a
system of equations (B.1). Here, it is assumed in the form

aLGEN

5 = C1(p—pU) +(p—pV) +Csp(U—v), (B.4)

whereCLg are free parameters.

In the fourth step, a partial integration of the tedi®EN/gv is performed, leading to

GEN & . pv2\  ~ (. va\ .
L= = Cy(p—pu) v+ pv—"—5- +Csp U-v——=> 481 (u,u,p), (B.5)

with §; being an integration constant function independent.ohe functiong; depends
only on three paramete(s, u,p).

In the fifth step, the generalized LagrangibREN is further specified by exploitation of
ALCEN/9p The termdLCEN/dp reads

aLGEN - agl
0p = C1V+V+a—p (BG)

The latter equation must be zero up to null-Lagrangian. Hewethe termdgi/dp is in-
dependent ofr. It reduces to zero only in case of a special form of boundamnsé. Here,
following combination of null-Lagrangian is used

06 _ G 9% 2 (SR
Civ+v+ p (1+Cl)< ’ (1- Cz)>+[dp+(1+cl)( +(1-Cy) )]
(B.7

From equation (B.7), the integration functign Can be expressed. Partial integration of
001/0p yields the expression

Gi=-(1+Cy) (22—§+(1 Co)u- p) + 82 (u,u), (B.8)

wheredp is an integration constant function. Thus, the expressioth@® generalized La-
grangian further reduces to

- 2 - 2
Lo~ Ey(p—pi v+ (pv— 5 )+ Cap (v )

Cop?

(B.9)
—(1+Cy) (W +(1-Cy)u- p) +82(u,0).
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In the sixth step, the term%'-— and ‘9'-
equation as follows

JLGEN B dgz JLGEN N - - - dgz

gu _ ou’ S =PV(C—C)—(1+C)(1-Cp+ . (B.10)

As the next step, integration by parts of the te@\gGLEN is performed and the latter expression
is substituted in equation (B.3). This yield an equation otion in the form
(9292 0°F . | 0

p—Gep U= gaonli+ 57 =0, (B.11)

—pv(Cs—C1) + (1+C)(1—Cy)

Assuming independence %{2 onu, the following expression fag,'is obtained

- ~ ~ ~ ~ pUZ
G2=MN(u)—(C3—2C1+Cr,—C1Cy)—,

= (B.12)

with M(u) being the full potential energy of the system. Thus, fromdbeaplete expression
of LEN and kinetic energy in the form

LCEN — M(u) —T°, (B.13)
1, [PU (C3—2C1+C—CiCo)l (Cs—Ca)l —(1+Cy)(1-Cy)17|u

=3 [pv” (C3—Cy)l (—1—Ca)l —(1-Cy)l v | d&.
& p —(1+ é]_)(l—ézﬂ —(1—C~:1>| (61+1)C~:2| %

(B.14)

is obtained. This template for kinetic energ§ has three free parametefs_s. It can be
shown, that it is equivalent to the equation (3.8) with freegmeter<; 3.
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J}" Anton Tkachuk

This thesis presents a unified variational approach for the derivation of alternative mass
matrices. Singular mass matrices within implicit dynamics allow substantial reduction of
spurious temporal oscillations of contact pressures as well as more accurate preservation
of the total energy. Application of selective mass scaling in explicit dynamics increases the
critical time step size and results in a substantial speed-up for many practical problems,
like deep drawing and drop test simulations. The unified approach is based on a novel
mixed parametric HAMILTON’s principle with independent variables for displacements,
velocities and momenta and free parameters. The independent fields are linked in sense of
penalty method with penalty factors free parameters. This provides the necessary flexibility
during spatial discretization in choosing ansatz spaces and free parameters. Their skillful
tuning results in consistent mass matrices with desired properties.

The presented approach is validated for several eigenvalue problems and transient
benchmarks. The proposed alternative mass matrices yield accurate values for the lowest
eigenfrequencies. The proposed singular mass matrices significantly reduce the spurious
oscillations of contact forces. Variational selective mass scaling yields accurate results
especially for bending dominated problems.
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