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Kurzfassung

Kurzfassung

Singuläre und selektiv-skalierte Massenmatrizen sind fürdie Finite-Elemente Modellierung
zahlreicher Probleme von großem Nutzen, zum Beispiel für die Niedriggeschwindigkeits-
aufprall-, Tiefzieh- oder Falltestsimulation. SinguläreMassenmatrizen erlauben eine erheb-
lich Verringerung der unerwünschten Oszillationen in der Kontaktkraft. Die Anwendung
selektiver Massenskalierung für explizite Dynamiksimlationen führt zu einer Reduktion des
Rechenaufwandes ohne maßgeblichen Verlust an Genauigkeit. Bekannte Methoden für sin-
guläre und selektiv-skalierte Massenmatrizen basieren auf speziellen Quadraturregeln oder al-
gebraischen Umformungen der Standardmassenmatrizen. Dievorliegende Arbeit widmet sich
der Ableitung variationell streng konsistenter Massenmatrizen und deren Analyse. Die theo-
retische Grundlage dieser Arbeit ist ein neues parametrisches Hamiltonsches Prinzip mit unab-
hängigen Variablen für Verschiebung, Geschwindigkeit undImpuls. Die numerische Grund-
lage ist eine hybrid-gemischte Diskretisierung dieses neuen Prinzips und eine geschickte
Auswahl von Ansatzräumen und freien Parametern. Die Qualität der neuen Massenmatrizen
wird mit verschiedenen Benchmark-Tests gründlich analysiert und bewertet.

Die Arbeit gliedert sich in drei Teile. Im ersten Teil werdendie wesentlichen Grundlagen
und Notationen eingeführt. Es beinhaltet die zugrundeliegende Kontinuumsmechanik, die
lokale Form des Anfangs-Randwertproblems für ein elasto-dynamisches Kontaktproblem,
sowie dessen Lösung mit der Methode der finiten Elemente. Darüber hinaus werden die
zentrale Differenzenmethode für nicht-diagonale Massenmatrizen und eine theoretische Ab-
schätzung über die Reduktion der Rechenzeit mit selektiverMassenskalierung dargestellt.
Außerdem wird auf die Motivation für die Implementierung alternativer Massenmatrizen einge-
gangen. Im zweiten Teil der Arbeit wird der neue variationelle Ansatz für elasto-dynamische
Probleme vorgestellt. Der Grundstein der Arbeit ist die Herleitung des neuen Hamilton-
schen Prinzips mit Penalty-Faktoren und eine Erweiterung des modifizierten Hamiltonschen
Prinzips für kurze einseitige Gleitkontakte. Diese Formulierungen werden im Raum mit dem
BUBNOV-GALERKIN-Ansatz diskretisiert. Als Ergebnis erhält man Familien singulärer und
selektiv-skalierter Massenmatrizen. Die entsprechendenAnsatzfunktionen werden für ver-
schiedene Familien von Finiten Elementen gebildet. Diese Familien beinhalten Stab- und
TIMOSHENKO-Balkenelemente für eindimensionale, sowie Kontinuumselemente für zwei-
und dreidimensionale Probleme. Die Ansatzfunktionen für singuläre Massenmatrizen werden
für quadratische und kubische Elemente hergeleitet, für selektiv-skalierte Massenmatrizen bis
zur dritten Ordnung. Im dritten Teil der Arbeit werden die neuen Massenmatrizen analysiert
und bewertet und ein Ausblick für weitere mögliche Entwicklungen ist angeführt.

Zur Bewertung der neuen Massenmatrizen wurden die Ausbreitung harmonischer Wellen,
freie und erzwungene Vibrationen, sowie Aufprallproblemeuntersucht. Als erstes wird die
Ausbreitung harmonischer Wellen mithilfe einer FOURIER-Analyse, angewendet auf die
semi-diskrete Bewegungsgleichung, untersucht. Diese Analyse führt auf einen Satz von Dis-
persionsrelationen. Ein Vergleich der analytischen Dispersionsrelationen mit den dazuge-
hörigen kontinuierlichen erlaubt eine effiziente Fehlerabschätzung. Auf diese Weise können
die vorgeschlagenen Stab- und Balkenelemente analysiert werden. Als zweites werden Eigen-
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wertprobleme für zwei- und dreidimensionale Probleme gelöst. Hierbei wird der Fehler in den
niedrigen Frequenzen (Moden), sowie im gesamten Spektrum berechnet. Als drittes werden
für die neuen Massenmatrizen spektrale Antwortkurven im interessanten Frequenzbereich für
erzwungene Vibrationen ermittelt. Diese werden mit den Kurven für konsistente Massenma-
trizen mithilfe des FRAC-Kriteriums (frequency response assurance criterion) verglichen. Die
Werte des FRAC-Kriteriums zeigen den Fehler für lineare Probleme. Anschließend werden
mehrere transiente Beispiele mit singulären und skalierten Massenmatrizen berechnet. Diese
Beispiele bestätigen die erwartete Überlegenheit singulärer Massenmatrizen für Aufprallprob-
leme, d.h. die unerwünschten Oszillationen des Kontaktdrucks können erheblich reduziert
werden. Variationell selektive Massenskalierung reduziert den Rechenaufwand für explizite
dynamische Simulationen. Im Ausblick werden mögliche Weiterentwicklungen im Hinblick
auf neue Elementtypen, alternative schwache Formen, sowiemulti-physikalische Anwendun-
gen vorgeschlagen. Als Nebenprodukt dieser Arbeit können Patch-Tests für Trägheitsterme,
ein Überblick über parametrische und nicht-parametrischevariationelle Prinzipien der Elasto-
Dynamik, sowie eine Herleitung des Hamiltonschen Prinzipsmit einer halb-inversen Meth-
ode erwähnt werden. Die Anwendung der FE-Technologie für Massenmatrizen eröffnet neue
Möglichkeiten in verschiedenen Bereichen der Dynamiksimulation, wie Falltest- und Auto-
mobilcrashsimulationen, sowie die Simulation phononischer Kristalle und Bauteile.
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Abstract

Abstract

Singular and selectively-scaled mass matrices are useful for finite element modeling of numer-
ous problems of structural dynamics, for example for low velocity impact, deep drawing and
drop test simulations. Singular mass matrices allow significant reduction of spurious temporal
oscillations of contact pressure. The application of selective mass scaling in the context of ex-
plicit dynamics reduces the computational costs without substantial loss in accuracy. Known
methods for singular and selectively-scaled mass matricesrely on special quadrature rules or
algebraic manipulations applied on the standard mass matrices. This thesis is dedicated to
variationally rigorous derivation and analysis of these alternative matrices. The theoretical
basis of this thesis is a novel parametric HAMILTON’s principle with independent variables
for displacement, velocity and momentum. The numerical basis is hybrid-mixed discretiza-
tion of the novel mixed principle and skillful tuning of ansatz spaces and free parameters. The
qualities of novel mass matrices are thoroughly analyzed byvarious tests and benchmarks.

The thesis has three main parts. In the first part of the thesis, the essential fundamentals and
notations are introduced. This includes the basic continuum mechanics, the local form of an
initial boundary value problem for an elasto-dynamic contact problem and its treatment with
finite elements. In addition, an extension of the central difference method to non-diagonal
mass matrices and a theoretical estimate of speed-up with selective mass scaling is given.
Besides, a motivation for implementation of alternative mass matrices is given.

In the second part of the thesis, the novel variational approach for elasto-dynamic problems is
presented. The corner stone of the thesis is the derivation of the novel penalized HAMILTON’s
principle and an extension of the modified HAMILTON’s principle for small sliding unilat-
eral contact. These formulations are discretized in space with the BUBNOV-GALERKIN
approach. As a result, families of singular and selectively-scaled mass matrices are obtained.
The corresponding shape functions are built for several families of finite elements. These fam-
ilies include truss and TIMOSHENKO beam elements for one-dimensional problems, as well
as solid elements for two and three dimensions. Shape functions for singular mass matrices
are derived for quadratic and cubic elements. Selectively-scaled mass matrices are given for
elements up to the order three.

In the third part of the thesis, the novel mass matrices are analyzed and an outlook for fu-
ture work is given. Propagation of harmonic waves, free and forced vibrations and impact
problems are used for evaluation of the new mass matrices. First, the propagation of har-
monic waves is studied with the help of a FOURIER analysis applied to the semi-discretized
equation of motion. This analysis results in a set of dispersion relations. Comparison of
the analytical expressions for discrete dispersion relations with the corresponding continuous
ones allows efficient error estimation. In this way, the proposed truss and beam elements are
analyzed. Secondly, eigenvalue problems are solved for two- and three-dimensional problems.
The error in the lowest frequencies (modes) and in the whole spectrum is computed. Thirdly,
spectral response curves for forced vibrations are obtained for the new mass matrices in ranges
of interest. These curves are compared with the ones obtained with consistent mass matrices
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via the frequency response assurance criterion. The valuesof the frequency response assur-
ance criterion indicate the error for linear problems. Finally, several transient examples are
solved with singular and scaled mass matrices. These examples confirm expected superiority
of singular mass matrices for impact problems, i.e. spurious temporal oscillations of contact
pressures are significantly reduced. Variational selective mass scaling reduces computational
cost of explicit dynamic simulations. In the outlook, possible developments regarding new
element types, alternative weak forms and several multi-physic applications are proposed.

As by-product of this thesis, patch tests for inertia terms,an overview of parametric and
non-parametric variational principles of elasto-dynamics and a derivation of the penalized
HAMILTON’s principle with a semi-inverse method can be noted. Besides, the topic of finite
element technology for mass matrices is posed. This can opennew horizons for evolving
branches of computational dynamics such as drop test and carcrash simulations, phononic
crystals and devices.
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1
Introduction

1.1 Motivation

In the context of finite element simulation of structural dynamics, consistent or lumped mass
matrices are not always the optimal choice from the point of view of accuracy, robustness or
computational cost. It is known that the dispersion error ofthe weighted sum of the consistent
and the lumped mass is smaller than for each of them (FELIPPA 2006). Standard mass matrices
also lead to spurious oscillation of contact forces or divergent results for penalty treatment of
contact with large values of contact penalty stiffness or for treatment of contact constraints
using LAGRANGE multipliers. The usage of singular mass matrices significantly reduces
such spurious oscillations (KHENOUS ET AL. 2008; HAGER ET AL. 2008). Application of
Selective Mass Scaling (SMS) in explicit dynamics increases the critical time-step size and
results in a substantial speed-up for many practical problems, like deep drawing and drop test
simulations (OLOVSSON ET AL. 2005; BORRVALL 2011).

The reduction of the dispersion error using alternative mass matrices is a well studied subject,
e.g. see KRENK (2001), FELIPPA (2001), IDESMAN ET AL. (2011), GUO (2012) and refer-
ences therein. This question is not directly addressed in this thesis. This thesis is focused on
singular and selectively-scaled mass matrices. In contrast to previous works on this subject,a
unified variational approachis used to construct matrices with desired properties. The unified
variational approach is based on a novel mixed parametric HAMILTON’s principle, which
provides the necessary flexibility in choosing ansatz spaces and free parameters. Consistent
spatial semi-discretization of this principle results infamiliesof consistent mass matrices. The
most useful members of these families are selected, evaluated and reported in this thesis.

In the following, some examples are presented to illustratethe problems of the standard mass
matrices and motivate the usage of singular and selectively-scaled mass matrices. As it is
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Figure 1.1: Evolution of the total energy (left) and the history of the contact force (right) computed
for a typical impact simulation (see Subsection 7.1.6) obtained with NEWMARK β
method, consistent mass matrix and LAGRANGE multipliers method for contact.
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Figure 1.2: Contact force computed with different penalty factors (SPF) for example from Sub-
section 7.1.6.

mentioned above, the standard mass matrices may produce oscillation of contact forces, see
Figure 1.1. Moreover, each release or activation of the contact constraint leads to an artifi-
cial gain or loss of the total energy. Using the penalty method for dynamic contact problems
leads either to overpenetration, if the contact stiffness is small, or to highly oscillating con-
tact forces, if the penalty factor is large, see Figure 1.2. In this thesis, these problems are
substantially reduced using specially constructed singular mass matrices.

SMS is implemented in commercial codes and extensively usedin industrial applications to
reduce the computation time in explicit dynamics. There arealso alternative methods to save
computational time, like dynamic condensation or mesh adaptivity. SMS is competitive with

2



1.1 Motivation

Option Simulation time, s Speed-up w.r.t baseline

Baseline (fine mesh from start) 5493 1
Mesh adaptivity 599 9.2
Dynamic condensation 157 35
Selective mass scaling 119 46

Table 1.1:Speed-up for different methods inRADIOSSfor the NUMISHEET2008 S-rail bench-
mark (ROY ET AL. 2011).

Figure 1.3: Deformation of a steel tube in a drop test, see OLOVSSON AND SIMONSSON (2006).

Option Simulation time, s Speed-up

No mass scaling (base model) 4268 1
Double density 3149 1.2
Selective mass scaling,β = 10 1346 2.0
Selective mass scaling,β = 50 621 3.4

Table 1.2:Speed-up for different methods mass scaling strategies in asteel tube in a drop test
benchmark (OLOVSSON AND SIMONSSON2006).

the alternative methods for reduction of computational time as a study for metal sheet forming
shows, see Table 1.1. Here, SMS enables a speed-up of 46 times! More modest results
are obtained in a drop test simulation, see Figure 1.3. A speed-up from 2.0 to 3.4 times is
reported in OLOVSSON AND SIMONSSON (2006) for the explicit finite element codeKRYP,
see Table 1.2.

SMS can also be applied to a full-scale model of a car. In Figure 1.4, the deformed shape of
aDodge Neonmodel1 is shown, which is computed after 40 ms of crash with the commercial
codeLS-Dyna. The history of contact forces is given in Figure 1.5. The base model uses time-
step 1µs. Speed-up values of 1.13 and 1.17 are obtained with SMS for time-step sizes of 2
µs and 3µs, respectively. The higher computational costs for contact treatment and solution
of linear system of equation at each time-step2 outweigh the benefits of larger time-step for
this model.

1Available at http://www.ncac.gwu.edu/vml/models.html
2SMS leads to non-diagonal mass matrices.

3



1 Introduction

Figure 1.4: Deformed shape of aNeon1996 model after 40 ms for the initial velocity 15.6 m/s.
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Figure 1.5: History of the contact force forNeon1996 model during the first 40 ms.

These examples illustrate the range of applications of SMS and significant reduction of com-
putational time for existing SMS techniques. However, there is a big potential for the im-
provement of the existing methods and for extending the range of applications.

4
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1.2 Goals

This thesis follows the standard procedure for derivation of new finite elements: searching for
appropriate weak formulation, setting the discretizationprocedure and approximation spaces,
benchmarking and testing. In the context of singular and selectively scaled mass matrices,
these steps are

• derive new parametric variational principles for elasto-dynamics with displacement, ve-
locity and momentum as independent variables

• find appropriate discretization and approximation spaces for displacement, velocity and
momentum

• evaluate critically the proposed discretization schemes and select the most efficient
ones.

1.3 Overview

The thesis is organized in eight chapters and two appendices. In Chapter 2, a current approach
to finite element discretization of dynamic structural problems is given. First, the basic contin-
uum mechanics and the local form of an initial boundary valueproblem for an elasto-dynamic
contact problem are given. The theories for selected thin-walled structures are also provided.
Secondly, an overview over spatial finite element discretization of non-linear continuum and
standard treatment of contact are given. Then, a topic of singular and scaled mass matrices is
thoroughly investigated. The benefits of singular mass matrices for dynamic contact problems
are explained and existing methods for construction of singular mass matrices are presented.
Besides, methods for conventional and selective mass scaling for explicit dynamics are de-
scribed. Furthermore, the standard time integration schemes are presented. This includes the
central difference method3 and NEWMARK β method, which are used later in the numeri-
cal examples. The methods for assessment of quality of the numerical solution conclude the
Chapter 2.

Chapter 3 is devoted to the derivation of the novel penalizedHAMILTON’s principle and the
modified HAMILTON’s principle. The latter is extended for small sliding unilateral contact
problems. The derived formulations can be directly discretized. In addition, the equivalence
of the proposed penalized and modified HAMILTON’s principles to the local formulation is
shown by the derivation of the EULER-LAGRANGE equations.

3The standard procedure and a modification by OLOVSSON AND SIMONSSON (2006) for non-diagonal mass
matrices needed for SMS. A theoretical estimate of speed-upfor SMS is also derived.
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In Chapter 4, different families of mass matrices are discussed. First, the family of consistent
scaled mass matrices is built. Among the family three usefulinstances are chosen. Then the
Hybrid-Singular consistent Mass Matrix (HSMM) is discussed, and its stability is considered.
Moreover, the condition for the construction of a HSMM with zero components at certain
nodes is derived. The latter condition requires special shape functions for the displacements.
In Chapter 5, such functions for arbitrary line elements arebuilt. On the basis of these func-
tions, 2D and 3D extensions are proposed. Then good ansatz spaces for selectively-scaled
mass matrices are proposed for truss, beam and solid elements.

The newly developed mass matrices are rigorously analyzed for three important applications,
namely free vibrations, wave propagation and impact problems. The quality of the solution for
the modal analysis is indirectly assessed for 1D examples using dispersion analysis. Accuracy
of 2D and 3D elements is assessed by NAFEMS eigenvalue benchmarks. The results of
such an analysis for the elements are presented in Chapter 6.Numerical examples for wave
propagation and impact problems are presented in Chapter 7.Finally, the main results and the
features of the new method and an outlook are given in Chapter8.

In Appendices A and B the inertial patch tests for selected elements and an alternative deriva-
tion of the novel penalized HAMILTON’s principle are considered.

6



2
State of the art

In this Chapter, an current approach to FE discretization ofdynamic structural problems is
given. First, the basic continuum mechanics and the local form of an Initial Boundary Value
Problem (IBVP) for an elasto-dynamic contact problem are given in Sections 2.1 and 2.2. The
theories for selected thin-walled structures are also provided in Subsection 2.2.6. Secondly, an
overview over spatial FE semi-discretization of non-linear continuum and standard treatment
of contact is given in Section 2.3. Then, the question of singular and scaled mass matrices
is thoroughly investigated in Subsections 2.3.4 and 2.3.5,respectively. The benefits of sin-
gular mass matrices for dynamic contact problems are considered and existing methods for
construction of singular mass matrices are presented. Besides, methods for conventional and
selective mass scaling for explicit dynamics are described. Furthermore, the standard time
integration schemes are presented in Section 2.4. This includes the central difference method
and NEWMARKβ method, which are extensively used in later numerical examples in Chap-
ter 7. The methods for assessment of quality of the numericalsolution conclude the Chapter.
These methods, i.e. dispersion analysis, frequency response assurance criterion and modal
assurance criterion, allow evaluation of the influence of new mass matrices on eigenmodes
and eigenfrequencies.

2.1 Basic Continuum Mechanics

In this section, a brief overview of continuum mechanics is given (for further reading cf.
GURTIN (1981); MARSDEN AND HUGHES (1983); HOLZAPFEL (2000); BONET (2008)).
First, basic notions of kinematics, strain and stress measures are introduced. Then, constitutive
equations for hyperelastic material and balance laws are postulated. A statement of the initial
boundary value problem and its weak form conclude the section.
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ϕ(X,t)
B0

P
P

B

O

t = 0

e2

e3
x

e1

currentt

u

X

Figure 2.1: Mapping between the reference and the current configuration.

2.1.1 Kinematics and stress measures

Throughout the thesis, a Lagrangian description of motion relative to an inertial Cartesian
frame is used. We denote withO the origin of the coordinate system and with(e1,e2,e3) – the
orthonormalized basis vectors. LetB0 be a reference configuration of a body at timet = 0
andB be a current (deformed) configuration. Consider an arbitrary material pointP given by
its position vectorX ∈ B0 at the reference configuration. We denote withx a current position
of a pointP. The motion can be mathematically described by a time-dependent mappingϕ
between the reference and the current configuration

x = ϕ(X,t), ϕ(X,t) : B0×I → B, (2.1)

with I = [0,tend] being the time interval. We assume that the inverse mapping from the current
to the reference configuration exists with

X = ϕ−1(x,t), ϕ−1(x,t) : B×I → B0. (2.2)

We assume also that the mappingϕ is sufficiently smooth, namely it is one time piecewise
continuously differentiable in space and twice piecewise continuously differentiable in time.
From now on, we usex as a function ofX andt.

Displacement and deformation

The displacement of a material pointP is the difference between its current and reference
position vectors with

u = x−X. (2.3)
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2.1 Basic Continuum Mechanics

The velocity and the acceleration are defined as the first and the second time derivatives of the
material point position vector with

v(X,t) =
∂x
∂ t

= ẋ, a(X,t) =
∂ 2x
∂ t2

= ẍ. (2.4)

Note, that the material coordinateX is independent of time, thus the velocity and the acceler-
ation can be expressed in terms of the displacement vectoru with

v(X,t) =
∂ (u+X)

∂ t
=

∂u
∂ t

= u̇, a(X,t) =
∂ 2(u+X)

∂ t2
= ü. (2.5)

During the deformation process, the relative position of the material points inB is changed.
A material point is zero-dimensioned object, and so it is impossible to define a deformation of
a single point. The common approach considers an infinitesimal material fiber dx intersecting
the pointP. A material fiber is defined as a smooth one-dimensional set ofmaterial points.
Undergoing deformation, the fiber rotates and stretches. The total deformation of the fiber dx
is computed via mappingϕ with

dx = (x+ dx)−x = ϕ(X + dX,t)−ϕ(X,t) = FdX, (2.6)

with F = ∂x
∂X being the deformation gradient, see Figure 2.2. The volumetric deformation,

or the ratio of initial infinitesimal material volume dV to an current volume dv around the
material pointP, can be computed using the Jacobian of the deformation gradient

dv
dV

= det(F). (2.7)

We regard here only proper mappingsϕ with det(F) > 0. This guarantees that the material
volume does not turn inside out. The velocity gradientḞ is defined as the material gradient of
the velocity vector with

∂v
∂X

=
∂ ẋ
∂X

= Ḟ. (2.8)

Along the infinitesimal material fibers and volumes, infinitesimal material area elements may
be introduced via cross-product of infinitesimal fibers dR1 and dR2. The transformation of
area elements da and dA is governed by NANSON’s formula with

da= det(F)F−T dA. (2.9)

The normal of the body surface follows the same transformation rules as the material area
element, which is used for correct treatment of contact conditions.
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dr2

dr1

da

dA
dR2

dR1

ϕ(X,t)
B0

P
P

B
P’

P’

dX

dx

currenttt = 0

Figure 2.2: Mapping of line and area elements.

In the following, strain and deformation measures for finitedeformations are introduced by
the difference of the squares of the material fiber in currentand reference configuration with

ds2− dS2 = dx · dx− dX · dX = dX ·FTFdX− dX · dX

= dX · (C− I)dX = dX ·2EdX, (2.10a)

where

C = F−TF, E =
1
2
(C− I) , (2.10b)

with C being the right CAUCHY-GREEN deformation tensor andE being the GREEN-
LAGRANGE strain tensor. This completes the summary of kinematics.

Stress measures

Internal forces are developed in deformable bodies as reaction to external action, which can
be surface traction̂t, body forcesb̂ or contact traction with another bodytc. The measure
of intensity of the internal forces is stress. The CAUCHY stress theorem postulates that the
stress state at a material point in the body can be defined by a second-order tensorσ, called
true stress tensor. The true stress tensor relates the stress vectort on a plane with an arbitrary
normaln as

t = σn. (2.11)

This relation is illustrated in Figure 2.3.

The normal vectorn and the stress vectort belong to the current configuration. The first
PIOLA-KIRCHHOFF stressσPK1 relates the reference normal vector to the current stress vec-
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B

currentt

n

tP

Figure 2.3: Internal traction vectort on virtual cut surface with normaln.

tor. σPK1 is obtained from the true stress via transformation with

σPK1 = (detF)σF−T. (2.12)

This transformation results in a tensor with both referenceand current basis components and
it is called apartial pull back.

None of the stress tensors are energy conjugate with the strain tensors defined above. For this
reason, the second PIOLA-KIRCHHOFF stressσPK2 is introduced with

σPK2 = (detF)F−1σF−T. (2.13)

This transformation is acomplete pull backto the reference configuration with an additional
weighting factor detF. The partial push forward of the first PIOLA-KIRCHHOFF stressσPK1

and the complete push forward of the second PIOLA-KIRCHHOFFσPK2 read as follows

σ =
1

detF
σPK1FT, σ =

1
detF

FσPK2FT. (2.14)

2.1.2 Constitutive equations for hyperelastic materials

Generally, the behavior of a solid material can be elastic and inelastic (plastic, viscoelastic or
viscoplastic). It can depend on temperature and strength ofelectric and magnetic fields, etc.
Even more complicated behavior is observed if the material undergoes phase transformation,
e.g. for shape-memory alloys. Herein, only hyperelastic constitutive relations are used. More-
over, we neglect internal dissipation and thermal conduction, which means that no entropy is
produced and the processes are isentropic. Thus, the constitutive equation used here relates
the current stress only with a current value of strain.

Hyperelastic material is an ideal elastic material, for which the stress-strain relationship is
derived from an elastic energy density functionW. It is defined to be specific to the reference

11



2 State of the art

volume and for the isentropic process it is related to the internal energy functionW = ρ0u.
Following standard derivations, the stress is obtained as the derivative of the elastic energy
functionW w.r.t. the GREEN-LAGRANGE strain tensor (see balance of energy below) with

σPK2 =
∂W
∂E

= 2
∂W
∂C

= 2ρ0
∂u
∂C

. (2.15)

The material tangentD relates infinitesimal increments of stress and strain. It can be computed
as the second derivative of the free energy function

dσPK2 = d
∂W
∂E

=
∂ 2W
∂E2 dE = DdE, (2.16a)

with

D =
∂ 2W
∂E2 = ρ0

∂ 2u
∂E2 . (2.16b)

The material tangent is a fourth-order tensor and in case of hyperelastic material, it possesses
major and minor symmetries with

Dijkl = Dklij = Djikl . (2.17)

Now, we recall the elastic energy density function, stress-strain relations and the material tan-
gent for most common materials, see OGDEN (1997); HOLZAPFEL (2000). The constitutive
relation for the ST. VENANT-KIRCHHOFF material reads as follows

W=
λ
2
(Tr(E))2+µ Tr(E2), (2.18a)

σPK2 = λ Tr(E)I +2µE, (2.18b)

D = λ I ⊗ I +2µ(I ⊗ I)
23
T . (2.18c)

For neo-Hookean material, the relations read

W=
µ
2
(TrC−3)−µ ln(detF)+

λ
2
(ln(detF))2, (2.19a)

σPK2 = µ(I −C−1)+λC−1, (2.19b)

D = µ
(
C−1⊗C−1)

23
T
+2(µ −λ ln(detF))C−1⊗C−1. (2.19c)

Note, that ST. VENANT-KIRCHHOFF and neo-Hookean materialsare isotropic and their
stored energy function depends only on the invariants ofE or C.
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2.1 Basic Continuum Mechanics

2.1.3 Balance laws

As it was mentioned in the previous subsection, we limit ourselves to hyperelastic constitutive
equations and we neglect internal dissipation and heat conduction. Therefore, the entropy
balance inequality is omitted here (for a deeper description of thermodynamics of continua cf.
GURTIN (1981); MARSDEN AND HUGHES (1983); HOLZAPFEL (2000); BONET (2008)).

We assume no mass production or influx. The action of the system is limited to an external
body loadb̂ and an external surface loadt̂ and a flow of internal tractiont defined by the
CAUCHY theorem. Now we can postulate the balance for basic mechanical quantities: mass,
linear momentum, moment of momentum and energy. First, consider an open subsetU ⊃ B

with a sufficiently smooth boundary∂U . For this subset, we define the massm, the linear
momentump, the moment of momentuml, the kinetic energyT, the internal energyU and
the total energyEtot as follows

m(U ) =

∫

U

ρ dv, p(U ) =

∫

U

ρvdv, l(U ) =

∫

U

x×ρvdv, (2.20a)

T(U ) =

∫

U

ρ
2

v ·vdv, U(U ) =

∫

U

ρu(E)dv, Etot = T+U, (2.20b)

with ρ being the density. The balance of mass for the subset of material pointsU postulates
that in absence of mass production and mass influx, the rate change of the mass is zero.
Application of the Transport theorem according to HOLZAPFEL (2000) and MARSDEN AND

HUGHES (1983) results in

d
dt

m(U ) =

∫

U

ρ dv=
∫

U

(ρ̇ +ρ divv) dv= 0. (2.21)

Using the Localization theorem for the latter integral and dividing it overρ , one gets

ρ̇
ρ
+divv =

ρ̇
ρ
+

∂v
∂X

∂X
∂x

=
d
dt

(ln(ρ)+ ln(detF)) = 0. (2.22)

The latter equation can be integrated in time. Substitutionof the initial values of detF(t =
0) = detI = 1 andρ0, yields the equation for the balance of mass

ρ detF = ρ0 = const. (2.23)

The balance of linear momentum postulates that the rate of change of linear momentum is
equal to the total force from volume and surface loads, i.e.

d
dt

p(U ) =
d
dt

∫

U

ρvdv=
∫

U

ρb̂dv+
∫

∂U

t da=
∫

U

ρb̂dv+
∫

∂U

σnda. (2.24)
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The balance of mass together with the Transport theorem leadto the following statement
d
dt

∫
U

ρvdv=
∫
U

ρ v̇dv. Application of the Divergence theorem to the term
∫

∂U
σnda yields

∫

U

ρ v̇dv=
∫

U

(
divσ+ρb̂

)
dv. (2.25)

Finally, usage of the Localization theorem results in the local statement of the balance of linear
momentum

ρ v̇ = divσ+ρb̂. (2.26)

The balance of moment of momentum postulates that the rate ofchange of moment of mo-
mentum is equal to the total moment from volume and surface loads, i.e.

d
dt

l(U ) =
d
dt

∫

U

x×ρvdv=
∫

U

x×ρb̂dv+
∫

∂U

x× tda=
∫

U

x×ρb̂dv+
∫

∂U

x×σnda.

(2.27)

The terms d
dt

∫
U

x×ρvdv and
∫

∂U
x×σnda are recast using the balance of mass, vector

algebra and the Divergence theorem

d
dt

∫

U

x×ρvdv=
∫

U

v×ρvdv+
∫

U

x×ρ v̇dv=
∫

U

x×ρ v̇dv, (2.28a)
∫

∂U

x×σnda=

∫

U

div(x×σn) dv=
∫

U

(
x×divσ+

3
E σ

)
dv, (2.28b)

with
3
E being the Fundamental tensor of 3rd order (LEVI-CIVITA permutation tensor). Sub-

stitution of the latter two expressions into the balance of momentum yields

∫

U

(
x×
(
ρ v̇−divσ−ρb̂

)
+

3
E σ

)
dv= 0. (2.29)

Using the balance of linear momentum and the Localization theorem, the local form of balance
of momentum is obtained in a form

3
E σ = 0⇔ σT = σ. (2.30)

Thus, the balance of moment of momentum implies the symmetryof the CAUCHY stress
tensor. The second PIOLA-KIRCHHOFF stress is also symmetric, which is easily checked
using the transformation formula betweenσPK2 andσ.
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2.2 Large sliding frictionless contact

The balance of energy postulates that the rate of change of energy is equal to the total power
from volume and surface loads, i.e.

d
dt

Etot(U ) =
d
dt
(T+U) =

∫

U

v ·ρb̂dv+
∫

∂U

v · t da=
∫

U

v ·ρb̂dv+
∫

∂U

v ·σnda. (2.31)

Recasting the termsddt (T+U) and
∫

∂U
v ·σnda yields

d
dt
(T+U) =

∫

U

ρv · v̇dv+
∫

U

ρ
∂u(E)

∂E
: Ėdv, (2.32a)

∫

∂U

v ·σnda=
∫

U

div(σv)dv=
∫

U

[(
∂v
∂x

: σ

)
+v ·divσ

]
dv. (2.32b)

Substituting the latter expressions in the integral form ofthe energy balance given in equation
(2.31), together with collecting terms, yields

∫

U

(
v ·
(
ρ v̇−divσ−ρb̂

)
+

(
ρ

∂u(E)
∂E

: Ė− ∂v
∂x

: σ

))
dv= 0. (2.33)

The first term in the integral is zero. The term∂v
∂x : σ in equation (2.33) can be recast with

∂v
∂x

: σ =
(

˙FF−1
)

:
1

detF
FσPK2FT =

1
detF

(
FTḞ

)
: σPK2 =

1
detF

sym(FTḞ) : σPK2

=
1

detF
Ė : σPK2 =

1
detF

σPK2 : Ė.
(2.34)

In the derivation, the symmetry (2.30) and the push-forwardof the second PIOLA-KIRCHHOFF
stress (2.14) are used. Substitution of equation (2.34), together with the local form of the mass
balance (2.23) yield the local statement of energy balance w.r.t. the reference quantities

ρ0
∂u(E)

∂E
: Ė = σPK2 : Ė. (2.35)

2.2 Large sliding frictionless contact

In this section, a concise description of large sliding frictionless contact is given. A description
of frictional contact with a rigorous derivation of tangential behavior is given in the classical
textbooks WRIGGERS(2006) and LAURSEN (2002).

First, the motion of the contacting bodies is described and the basic assumptions and notations
are introduced. Secondly, the impenetration condition andthe traction contact condition are
stated in a practical form. Finally, variation of the kinematic and traction values is given.
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Figure 2.4: Kinematic of two contacting bodies.

2.2.1 Motion, assumptions and notations

Without loss of generality, a two-body contact is considered, see Figure 2.4. The bodies are
defined by their reference positionsB1

0 andB2
0. The motion of the bodies is described by

independent mappingsϕ1 andϕ2 with

ϕ1 : B
1
0×I → B

1, ϕ2 : B
2
0×I → B

2. (2.36)

The superscripts 1 and 2 refer to bodiesB1
0 andB2

0 throughout this section. At the current
position at timet, the bodies occupy the configurationsB1 andB2. The DIRICHLET and
NEUMANN boundary conditions are defined for the bodies analogously to the case without
contact.

The parts of the boundary where contact may occur are denotedwith ∂B1
c and ∂B2

c and
the pull back of these boundaries to the reference configurations are denoted with∂B1

c0 and
∂B2

c0. For well-posedness consideration, it is necessary that the part of the boundary with
DIRICHLET condition and the contact boundary do not overlap, i.e.

∂B
1
c0∩∂B

1
u =∅, ∂B

2
c0∩∂B

2
u =∅. (2.37)

Moreover, we assume here that the contact part of the boundary belongs to the zero traction
subset of the NEUMANN boundaries∂B1

t and∂B2
t , i.e.

∂B
1
c0 ⊃ ∂B

10
t := {X ∈ ∂B

1
t : t̂ = 0}, ∂B

2
c0 ⊃ ∂B

20
t := {X ∈ ∂B

2
t : t̂ = 0}. (2.38)
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t = 0
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B2
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c0

actualt
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τ 2
1

τ 2
2

Figure 2.5: Parametrization of a contact surface.

The quantities relevant to contact require an appropriate coordinate system. It means that at
least one of two adjacent surfaces is parametrized. Historically, it is the surface with super-
script 1 and it is called theslavesurface. The opposite surface with superscript 2 is called
master surface. Here, we use convective covariant coordinates on the contact surface∂B1

c

defined as

∂B
1
c = {x1(ξ1,ξ2) : (ξ1,ξ2) ∈ Γiso

c }, (2.39)

whereΓiso
c is some generic parametrization, see Figure 2.5. Now, we define the actual contact

surface as the overlap between∂B1
c and∂B2

c with

γc = ∂B
1
c ∩∂B

2
c (2.40)

and the unit normal on∂B1
c as

n1 =
τ 1

1 ×τ 1
2

|τ 1
1 ×τ 1

2 |
, (2.41)

with τ 1
α with α = 1,2 being the tangential vectors on a surfaceγc. As the actual contact surface

is common (according to equation 2.40), the normal of the adjacent body must be the opposite
to n1 with

n2 =−n1. (2.42)
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Note, that the pull back images of the actual contact surfaceγc to the reference positions
∂B1

c0 and∂B2
c0 do not coincide. The pull back of the normal vectorsn1 andn2 is defined by

NANSON’s formula. It uses deformation gradients from two independent mappingsϕ1 and
ϕ2. Thus, this pull backs are generally not opposite, i.e.

detF1(F1)−T
n1 6= detF2(F2)−T

n1 =−detF2(F2)−T
n2. (2.43)

The tangential vectors can be computed by

τ 1
α =

∂x1(ξ1,ξ2)

∂ξα
, α = 1,2. (2.44)

The distance function between a point of the master surfacex2 and the slave surfacex1 is
defined as

d(ξ1,ξ2) = min
X2∈∂B2

c0

|x2−x1|. (2.45)

The minimizer for the distance function is called the closest point projection or the proximity
point X̂2 with

X̂2(ξ̂1,ξ̂2) = arg min
X2∈∂B2

c0

|x2−x1|. (2.46)

If the surface∂B2
c0 is smooth, the necessary condition for minimum of the distance reads as

follows

∂
∂ξα

|x2−x1|= x2−x1

|x2−x1| ·τα = 0, α = 1,2. (2.47)

This condition requires that the projection vectorx2−x1 is orthogonal to the tangent plane
and that it is parallel to the normaln1. Having this definition and assumption at hand, the
contact gap and traction can be introduced.

2.2.2 Contact gap and traction

The normal gap is the main measure of impenetration. It is defined as

gN = (x̂2−x1) ·n1. (2.48)

18



2.2 Large sliding frictionless contact

The normal gap can be positive or negative. The impenetration condition requires that

gN ≥ 0. (2.49)

Variation of the normal gap w.r.t mappings reads

δgN = δ (x2−x1) ·n1+(x2−x1) ·δn1. (2.50)

The variation of the unit normal vector is orthogonal to itself. Thus, the latter expression
reduces to

δgN = δ (x2−x1) ·n1. (2.51)

Now, we consider the traction on the contact surfaceγc. First, they must satisfy the balance of
momentum. For the massless interface this requires

t1
c =−t2

c. (2.52)

The contact tractions, which we assumed earlier, acting on the tractionless part∂B10
t and

∂B20
t , are in coherence with the traction flux inside the bodies, defined by the CAUCHY

stress field, i.e.

t1
c = σ1n1, t2

c = σ2n2. (2.53)

The contact traction vector is usually decomposed in a normal and a tangential part

t1
c = tcNn1+ tcατα . (2.54)

We assume that there is no adhesion in normal direction between the bodies. Thus, the normal
traction can be only compressive.

tcN ≤ 0. (2.55)

Since the traction acts only when the gap is zero, the gap and the normal traction can not be
simultaneously non-zero. Thus, the normal behavior can be stated in a form

gN ≥ 0, tcN ≤ 0, gNtcN = 0. (2.56)

These relations are well-known SIGNIORINY’s condition or KARUSH-KUHN-TUCKER
conditions in mathematical programming, see KIKUCHI AND ODEN (1988) and CURNIER

ET AL . (1995). The impenetration condition and non-negative traction condition are called
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the primal and dual feasibility conditions, respectively.These conditions are inequality con-
straints. The equalitygNtcN = 0 is called the complementarity condition.

2.2.3 Boundary and initial conditions

For the closure of the problem of mechanical motion discussed above, boundary and initial
conditions are required. The boundary conditions are DIRICHLET (for the prescribed motion)
and NEUMANN (for the prescribed tractions) conditions with

u = û(X,t) in ∂Bu×I , t = σn = t̂ in ∂Bt ×I . (2.57)

The initial conditions describe the state of system at reference positiont = 0. Here, it is
assumed that the reference configuration is stress-free (F = I , σ = σPK2 = 0). In addition,
materials are hyperelastic and no initialization of the internal variables is required. Thus, the
initial conditions impose the initial displacement and velocity with

u|t=0 = u0, in B0, v|t=0 = v0 in B0. (2.58)

2.2.4 Strong and weak form of contact IBVP

In the previous subsections, the individual field equationsand conditions of a two-body con-
tact are considered separately. Here, these equations are composed in an IBVP w.r.t. the
unknown displacement. This IBVP is difficult to solve analytically and such attempts are not
presented here. A detailed description of analytical solution of contact problems can be found
in ALEXANDROV AND POZHARSKII (2002), JOHNSON (2003) and GALIN AND GLADWELL

(2008). Some exact solutions for non-linear elasticity aregiven in OGDEN (1997) and FU
AND OGDEN (2001). The presented IBVP is a possible starting point for the derivation of
weak forms or variational formulations. A standard form based on thePrinciple of virtual
work (PWV) and LAGRANGE multipliers treatment of normal contactconcludes this sub-
section. Alternative variational formulations, which is one of the main foci of this thesis, are
discussed in Section 3.

The IBVP is stated as follows:

Findui : Bi
0×I →Bi andtcN : ∂Bc0×I →R such that they satisfy the kinematic equations

Fi = I +
∂ui

∂X
, E =

1
2
(Fi,TFi − I) in B

i
0×I , (2.59a)

gN = (x̂2−x1) ·n1, (2.59b)
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2.2 Large sliding frictionless contact

the balance of linear momentum

ρüi = divσi +ρ i b̂i in B
i ×I , (2.59c)

the constitutive equation for given strain energy functionsWi(E)

σi =
1

detFi F
i ∂Wi

∂E
Fi,T in B

i ×I , (2.59d)

the initial and boundary conditions

ui |t=0 = ui
0 in B

i
0, u̇|t=0 = v0 in B

i
0, (2.59e)

ui = ûi(X,t) in ∂B
i
u×I , t i = σini = t̂ in ∂B

i
t ×I , (2.59f)

σ1n1 = n1tcN in ∂B
1
c ×I , σ2n1 =−n1tcN in ∂B

2
c ×I , (2.59g)

and the normal contact conditions

gN ≥ 0, tcN ≤ 0, gNtcN = 0 in ∂Bc0×I . (2.59h)

Following the classical text books on computational contact mechanics WRIGGERS (2006)
and LAURSEN (2002), the weak formulation using PWV is written as

∑
i=1,2

[∫

Bi
0

σi
PK2 : δEi +ρ i

0(b̂
i − v̇i) ·δui dv+

∫

∂Bi
t

t̂ ·δuda+
∫

γc

δui ·n1tcNda

]
+Gc ≥ 0,

(2.60)

with Gc being the term enforcing the contact constraint andδui being the kinematically ad-
missible variation of displacement. Here, the LAGRANGE multipliers form

Gc = δ
∫

γc

λNgN da. (2.61)

For details about the discretization of this problem, see PUSO AND LAURSEN (2004a), YANG

ET AL . (2005), HUEBER ET AL. (2006), HARTMANN ET AL . (2007) and POPP ET AL. (2009).

2.2.5 Linearized equations of elasto-dynamic contact

The linearization of the IBVP (2.59) or the weak form (2.60) are adequate if the deformations
and rotations of the bodies are small (F ≈ I ) and relative sliding of the bodies and change of
normal is negligible. In this case, a linearized strains anda linearized material law can be used
inside the domain. On the contact surface, the linearization of closest point projection and the
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impenetration conditions are used. A concise derivation ofthis formulation is given below.
For more detailed descriptions of standard treatment see WRIGGERS (2006) and LAURSEN

(2002) and for an extensive study of the problem with use ofvariational inequalitiessee
K IKUCHI AND ODEN (1988).

The linearized or engineering strain law reads

ε = Lu , (2.62)

with L being the differential operator for a given type of problem.In case of 2D and 3D
elasticity, the differential operator is the symmetric part of the gradient, i.e.

Lu = symgradu =
1
2

(
∂u
∂X

+
∂u
∂X

T
)
. (2.63)

In Cartesian coordinates, the operatorL in the VOIGT notation reads

L =




∂
∂X1

0

0 ∂
∂X2

∂
∂X2

∂
∂X1


 in 2D, L =




∂
∂X1

0 0

0 ∂
∂X2

0

0 0 ∂
∂X3

∂
∂X2

∂
∂X1

0

0 ∂
∂X3

∂
∂X2

∂
∂X3

0 ∂
∂X2




in 3D. (2.64)

Consistent notation for differential operators is used forthe description of the kinematics in
selected thin-walled structure theories. The adjoint operator to the operatorL is denoted asL∗.

The constitutive equation in case of a linear material law reduces to HOOKE’s law

σlin = Dε. (2.65)

Combination of the equation given above leads to the following statement of the IBVP






ρü = L∗σlin(u)+ b̂ in I ×B0

u = 0 in I ×∂Bu

σlinn = t̂ in I ×∂Bt,0

u(0,.) = u0 in B0

u̇(0,.) = v0 in B0.

(2.66)
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Figure 2.6: Linearized kinematic on the contact surface.

The contact conditions use a linearized gap function

glin
N = (x2−x1) ·n = (u2−u1) ·n−gN,0, (2.67)

with gN,0 = (X2−X1) ·n being the initial gap, see Figure 2.6.

2.2.6 Selected linearized models for thin-walled structures

In the theories discussed above, continuous domains are considered. In many applications,
slender structures are used. For these structures, it is economically motivated to use assump-
tions and reduce the dimensionality of the problem. If two dimensions of a structural member
are much smaller than the third one, it is called arod. It is possible to reduce all quantities of
a rod to the center line.

Straight rods are usually classified in subclasses by the carried loads. Trusses carry axial
force, beams carry bending moments and transverse forces, shafts carry torque. There are
special designations for members subjected simultaneously to a combination of forces, like
axial and transverse forces and bending moments for a beam-column. Herein, two models are
used: trusses and TIMOSHENKO beams. The matrix notation forthe displacement vectoru,
material matrixD, differential operatorL etc. previously introduced for continuum models, is
also used in the context of structural theories. The material matrix and density are understood
here as quantities which are pre-integrated through the thickness .
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Figure 2.7: Truss model.

The primal kinematic unknown for the truss is the axial displacementu1, see Figure 2.7.
Following the matrix notation, the quantities defined within the truss model reads

u = [u1] , v = [v1] , p = [p1] , ε = [ε11] ,

σlin = [Aσ11] , ρ = [ρA] , D = [EA] , L∗ = L =

[
d
dx1

]
,

(2.68)

with A andE being cross-sectional area and YOUNG’s modulus, respectively.

For the truss, contact can occur only at the end points. The linearized impenetration conditions
read

u1(x= b)≤ g∂B, tc(u1−g∂B) = 0, tc ≤ 0, (2.69)

whereb is theX1-coordinate of the right end, see Figure 2.7.

The primal displacements for a two-dimensional TIMOSHENKObeam are the center line
deflectionu2 and the rotation of the cross-sectionϕ3, see Figure 2.8. The TIMOSHENKO
beam model in matrix notation reads

u =

[
u2

ϕ3

]
, v =

[
v2

ω3

]
, p =

[
p2

l3

]
,

L =

[
0 d

dx1
d
dx1

1

]
, L∗ =

[
0 d

dx1
d
dx1

−1

]
, D =

[
GAs 0

0 EI

]
,

σlin =

[
V
M

]
, ε =

[
γ
κ

]
, ρ =

[
ρA 0
0 ρ I33

]
,

(2.70)

with v2 andω3 being the linear and angular velocities,p2 andl3 being the linear and angular
momenta,GAs and EI being shear and bending stiffnesses,V and M being the transverse
shear force and the bending moment,γ andκ being the shear strain and the curvature of
the center line,I being the effective momentum of the section in bending andI33 being the
second moment of inertia, which might slightly differ fromI . In this thesis, the possible
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Figure 2.8: TIMOSHENKO beam model.

difference between the effective momentum and the second moment of inertia of a section is
neglected. The gyration radiosrg is defined as

√
I/A. The shear correction factor is defined

asγs= GAs/GA.

For the beam model, contact may occur on the upper or lower surface along the whole length.
Contact tractions on these surfaces lead to stresses and strains in thickness direction. These
strains are usually neglected in standard beam models, but due to these strains the distance
between a point where contact actually occurs and the centerline changes. This effect qual-
itatively influences the distribution of the contact traction, see PELEH AND SUHOROLSKIY

(1980) and GRIGOLYUK AND TOLKACHEV (1987). A shell theory that includes this effect
may also be found in NAGHDI (1975). Moreover, the modern commercial codes include this
effect as an option, see WHIRLEY AND ENGELMANN (1993). In this thesis, the effect of
through-the-thickness strains on contact conditions is neglected. The contact conditions refer-
ring to the center line read

u2 ≤ gB, tc(u2−gB) = 0, tc ≤ 0 in B. (2.71)

2.3 Discretization in space

In the following section, a semi-discretization in space, which is used in this work, is pre-
sented. It is based on a total Lagrangian formulation using displacement parameters only,
e.g. see ZIENKIEWICZ AND TAYLOR (2006); BONET (2008). Then, a brief description of the
Node-to-Segment approach for unilateral and bilateral contact is given.

the focus of this thesis is discretization of inertial terms. A thorough overview of different
mass matrices is given for beam, plate, solid and shell finiteelements. This overview includes
mass lumping techniques and mass matrix templates, singular mass matrices, conventional
and selective mass scaling.
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2.3.1 Residuum, algorithmic tangent and consistent mass matrices

Consider a quadrilateral parent finite element in parametric, reference and actual configu-
ration, according to Figure 2.9. Let us denote the mappings from the parametric space to
reference and actual configurations withϕR andϕa, respectively. These mappings can be
written as the function between corresponding point positionsx, X andξ

X = ϕR(ξ), ϕR(ξ) : [−1,1]× [−1,1]→ B0 (2.72)

x = ϕa(ξ,t), ϕa(ξ,t) : [−1,1]× [−1,1]×I → B. (2.73)

Exploitation of the isoparametric approach means usage of equal approximation functions for

1 2

3
4

e1

e2

O

ξ

η

reference
ϕ

X

isoparametric

x

ϕR

ϕa

current

Figure 2.9: Element geometry.

the reference position vectorX and the displacementu

Xh = NΞ, uh = NU, (2.74)

whereN is the matrix of shape functions,Ξ is the vector containing the reference positions of
nodes andU is the global displacement vector. First, we compute the Jacobian of the mappings
ϕR andϕa as

JR =
∂Xh

∂ξ
, Ja=

∂xh

∂ξ
= JR+

∂uh

∂ξ
. (2.75)
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The deformation gradientF can be expressed in tensor notation via the latter Jacobianswith

F = Ja(JR)−1 =

(
JR+

∂uh

∂ξ

)
(JR)−1 = I +

∂uh

∂Xh = I +
∂NU
∂Xh (2.76)

or in VOIGT notation with the help of the linear B-operator

F = I +B0U, (2.77)

with B0

B0 =




∂N1
∂X1

0 ∂N2
∂X1

0 · · ·
0 ∂N1

∂X2
0 ∂N2

∂X2
· · ·

∂N1
∂X2

0 ∂N2
∂X2

0 · · ·
0 ∂N1

∂X1
0 ∂N2

∂X1
· · ·



. (2.78)

With the deformation gradient at hand, other strain measures, stresses and internal forces may
be computed using equations (2.10), (2.18) and (2.19).

The inertial forces are proportional to the accelerations.The standard approach uses equal ap-
proximations for velocity, acceleration and displacementdescribed in equation (2.74). More-
over, the variation of the displacementδu in the PVW expression is discretized with the same
shape functions, leading to

u̇h = NU̇, üh = NÜ, δuh = NδU, (2.79)

whereU̇, Ü andδU are the vectors of global velocities, accelerations and kinematically ad-
missible displacements. Substitution of this discretization in the virtual work principle

δWint,h(u,δu)−δWext,h(u,δu)+δWkin,h(u,δu) = 0,

δWint(u,δu) =
∫

B0

δE : SdV,

δWext(u,δu) =
∫

B0

δu ·ρ0b̂dV+

∫

∂Bt,0

δu · t̂ dA,

δWkin(u,δu) =
∫

B0

δu ·ρ0üdV,

(2.80)

results in the standard equation of motion

MÜ+Fint(U) = Fext, (2.81)

with Fint andFext being the internal and external force vector.
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Formulation (2.80) uses the pure displacement. More advanced formulations (mixed, en-
hanced assumed strain and assumed natural strain) are treated in detail in STEIN ET AL .
(2004). Alternatively, an updated Lagrangian formulation(see BATHE (2006)) and arbitrary
Lagrangian Eulerian formulation (see BELYTSCHKO ET AL. (2001)) may be used.

2.3.2 Standard contact techniques

During the last fifty years, many contact formulations for FEM have been proposed. They dif-
fer in many aspects, but we will focus on the type of spatial discretization of contact constraint
(Node-to-Node, Node-to-Surface, Surface-to-Surface), the form of contact virtual work (pure
LAGRANGE, penalty, etc.), the type of contacting bodies (bilateral contact of deformable
bodies, unilateral contact) and the type of temporal discretization treatment of contact con-
straints for dynamics.

Initially, Node-to-Node (NTN) discretization of contact was proposed by FRANCAVILLA AND

ZIENKIEWICZ (1975). This approach imposes an impenetration condition to pair initially ad-
jacent nodes in normal and tangential direction. However, this method is restricted to small
sliding contact and it requires matching meshes. Further, several variants of Node-to-Segment
(NTS) discretizations were proposed in SIMO ET AL . (1985) and BENSON AND HALLQUIST

(1990). They enable the solution of static and dynamic problems with large sliding and with
non-matching meshes. It is possible to extend the formulation to self-contact1, see CAR-
PENTER ET AL. (1991) and GEE (2004), which is important in post-buckling of shells and
progressive folding in car crash simulation. Many commercial codes use them, because for-
mulation and implementation are not complicated. Moreover, they allow explicit and implicit
time integration.

However, NTS formulations possess several unavoidable drawbacks (see PUSO AND LAURSEN

(2004a, b)):

• one-pass algorithms fail the contact patch test

• two-pass algorithms produce overconstraint

• non-smooth contact surfaces cause jumps in the tangent stiffness when slave nodes slide
between adjacent master segments

• discrete constraints cause jumps in the contact forces whenslave nodes slide off the
boundaries of the master surface. This occurs even for flat surfaces.

Surface-to-Surface (STS) discretization allows to eliminate the aforementioned deficiencies.
However, STS formulation needs more advanced techniques for contact detection, build-

1also called single surface contact algorithm in literature
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ing contact segments, integration over the segments and calculation of a consistent tangent.
For details see PUSO AND LAURSEN (2004b), GITTERLE ET AL. (2010), CICHOSZ AND

BISCHOFF (2011) and POPP(2012).

Another important part of the contact formulation is its weak form Gc, see equation (2.60).
Inequality constraints can be fulfilled either exactly by LAGRANGE multiplier form or ap-
proximately in terms of some regularization techniques according to WRIGGERS(2006) and
LAURSEN (2002). The LAGRANGE multiplier method can not be used directly, as it is not
known beforehand which of the constraints are active or inactive. Therefore, LAGRANGE
multipliers are combined with an active set strategy, semi-smooth NEWTON methods or lin-
ear and non-linear complementarity functions, see HAGER (2010).

For dynamic contact problems, further issues are preservation of linear and angular momen-
tum and energy, see LAURSEN AND CHAWLA (1997), BETSCH AND HESCH (2007), HAGER

ET AL . (2008) and CICHOSZ AND BISCHOFF (2011). These algorithms usually impose con-
servation laws as additional constraints on a systems, modify treatment of internal form and
lead to correction terms for loss or gain in contact events. The effort of implementation of
these methods is substantial, nevertheless they are more and more widely used in commercial
codes in the last decade.

Known dissipative algorithms are based on modified predictor-corrector schemes for NEW-
MARK, see PANDOLFI ET AL . (2002); DEUFLHARD ET AL. (2008) and ROTHE’s method
KRAUSE AND WALLOTH (2009). They are discussed in Subsection 2.3.4.

2.3.3 Mass lumping and mass customization

Diagonal or Lumped Mass Matrices (LMM) have many important applications. The most
important usage is explicit dynamics, where the diagonal form of the mass matrix simplifies
the calculation of the global acceleration vector. Moreover, the critical time-step for consistent
mass matrices (CMM) is by factor two to three smaller than fora LMM. Other merits of LMM
are better storage requirements, easier application of velocity boundary conditions and contact
conditions.

There are three common methods for obtaining LMM

• Optimal or nodal quadrature,2 proposed by FRIED AND MALKUS (1975)

• Special mass lumping or HINTON-ROCK-ZIENKIEWICZ (HRZ), proposed by HIN-
TON ET AL. (1976)

• Row-sum-lumping, see HUGHES (2000) and COOK ET AL. (2007)

2sometimes called Spectral Finite Elements.
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Figure 2.10:Locations and weights for optimally accurate nodal quadrature rules.

Optimal mass lumping is proposed in FRIED AND MALKUS (1975). The basic idea of this
mass lumping is to place nodes at the location of a high order quadrature rule. Then, shape
functions that fulfil interpolation conditions are used, which automatically yields a diago-
nal mass matrix. In case of line elements, the locations are the GAUSS-LOBATTO points.
Tensor product of GAUSS-LOBATTO points is used for quadrilaterals and hexahedrals, see
Figure 2.10. For these elements, the weights are always positive and the order of conver-
gence for eigenfrequencies is preserved (FRIED AND MALKUS 1975). For triangular and
tetrahedral elements, special locations are used which aretabulated in FRIED AND MALKUS

(1975) and LUO AND POZRIKIDIS (2006). However, for high-order triangles and tetrahedrals,
the weights may be negative. Alternatively, the nodes may belocated at so-called FEKETE
points. FEKETE points for a domain are those which maximize the determinant of the VAN-
DERMONDE matrix for a given polynomial basis (PASQUETTI AND RAPETTI 2006). For
triangles up to order 18 and tetrahedrals up to order nine, such points are tabulated in TAYLOR

ET AL . (2001) and CHEN AND BABUŠKA (1996), respectively.
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A diagonal mass matrix can also be obtained from CMM via a special procedure called mass
lumping. Special mass lumping, or HRZ, scales the diagonal terms of CMM as follows

mHRZ
e,ii = θme,ii , me,ii =

NGP

∑
k=1

ρ0N2
i wk|J||ξ=ξk,η=ηk,ζ=ζk

, (2.82a)

θ =
mtrans

∑j me,jj
, mtrans=

∫

B

ρ0dB =
NGP

∑
k=1

ρ0wk|J||ξ=ξk,η=ηk,ζ=ζk
. (2.82b)

HRZ result in positive definite mass matrices by construction.

The other common procedure for mass lumping is Row Sum Lumping (RSL). The algorithm
adds all entries of CMM in a row to diagonal. It can be efficiently applied for many ele-
ments. The problem is that for high-order elements, such as for eight-node quadrilateral or
ten-node tetrahedral elements, RSL results in mass matrices with negative diagonal terms
(COOK ET AL. 2007; BATHE 2006).

2.3.4 Singular mass matrices

The literature on singular mass matrices is not so rich, because they may only be obtained
for a few cases. Initially, singular mass matrices were obtained for optimal mass lumping
with zero nodal weights or row-sum lumping for special typesof elements, e.g. the six-
node triangle. Another source of SMM is mass matrix customization. Such a procedure
allows avoiding stopping bands in semi-discrete FE latices(FELIPPA 2006). Singular mass
matrices are used in reduction methods for generalized eigenvalue problems, mass (dynamic)
condensation and GUYAN reduction, see for details HUGHES ET AL. (1976), COOK ET AL.
(2007) and VYSLOUKH ET AL . (1973).

A recent application of singular mass matrices is found in dynamic contact problems (HAGER

ET AL . 2008; KHENOUS ET AL. 2008; HAURET 2010; RENARD 2010). The usage of singu-
lar mass matrices improves numerical stability of the semi-discrete problem: the differential
index of the underlying differential-algebraic system is reduced from three to one, and spuri-
ous oscillations in the contact pressure, which are commonly reported for formulations with
LAGRANGE multipliers, are significantly reduced. A more rigorous analysis is given below.

Standard spatial discretization of dynamic contact problems using LAGRANGE multipliers
leads to systems of differential algebraic equations (DAE)with differential index of three (see
ASCHER AND PETZOLD (1998))

M Ü+Fint(U,U̇,t) = Fext(t)+G(U,t)Z, (2.83a)

GTU−g0 ≥ 0, Z ≤ 0, Z
(
GTU−g0

)
= 0. (2.83b)
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We note that the non-penetration and complementary conditions given by (2.83b) do not act
on all nodes but only on a proper subset. The numerical solution of such a system is challeng-
ing. Standard time integration schemes for ordinary differential equations (ODE) applied to
System (2.83) may produce oscillating Lagrange multipliers and a substantial loss or gain in
the total energy (LAURSEN (2002) and ASCHER AND PETZOLD (1998)). This type of spuri-
ous oscillations does not occur or is significantly reduced in case of DAE systems with smaller
index. This observation motivates the combination of spaceand time discretization with the
goal to reduce the index.

There are three principal approaches to reduce the index. The first is a modification of the alge-
braic constraints to a differential equation, e.g. BAUMGARTE stabilization one-index form
(BAUMGARTE 1972) and GEAR-GUPTA-LEIMKUHLER two-index form (GEAR ET AL.
1985). In the second approach, system (2.83) is solved directly in terms of predictor-corrector
methods (see KRAUSE AND WALLOTH (2009); DEUFLHARD ET AL. (2008)). The third fam-
ily makes use of a singular mass matrixM∗. In case of linear elasto-dynamic systems, equation
(2.83) can thus be reduced to

[
M i 0
0 0

][
Üi

Üc

]
+

[
K ii K ic

K ci K cc

][
Ui

Uc

]
=

[
Fi

Fc

]
+

[
0

Gc

]
Z, (2.84a)

(Gc)T Uc−g0 ≥ 0, Z ≤ 0, Z
(
(Gc)T Uc−g0

)
= 0. (2.84b)

with Ui andUc referring to inner nodes and contact nodes, respectively.

As all equations that include the Lagrange multiplierZ are now algebraic, the index of the
system reduces to one. This is a much more suitable problem from the point of view of time
integration. We follow this approach in this paper, which has been originally introduced for
unilateral contact problems in KHENOUS ET AL. (2008).

A known complication of singular mass matrices is infinite eigenfrequencies in spectra, see
BATHE (2006). First, initial conditions regarding velocity haveno physical meaning at mass-
less modes (displacement initial conditions are disputable). Second, phase velocity for part
of short waves (modes) is infinity. This also leads to infinite(absent) branches in dispersion
relations, see Section 6.1. Third, explicit time integration schemes can not be used.

Another motivation for singular mass matrices can be derived from the TONTI diagram,
see Figure 2.11. Here, only the primary loop of the diagram isshown with displacements
being the master field. All kinematic quantities, such as velocity, strain or contact gap are
computed from the displacements. Then, the kinetic quantities, such as the stress, the linear
momentum and the contact traction, are computed from the kinematic quantities. Finally,
equilibrium in the domain is satisfied. In the discrete setting, the flowchart is very similar.
However, the contact part of the boundary in the continuous setting has no inertia, whereas
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Figure 2.11:Primary loop of TONTI diagram for linear elasto-dynamic contact problem (above)
and its discrete counterpart (below).

the contact nodes get some mass via CMM or LMM. Thus, removingthe mass from the con-
tact surface leads to recovery of the initial structure of the continuous equations.

A slightly different argumentation comes when the contact of thin-walled structures is consid-
ered. In this case, the potential contact domain and problemdomain coincide. The removal of
mass from whole contact domain then means removal of mass from the whole domain. Here,
it is proposed to redistribute inertia inside the domain element-wise and to split all nodes in
the massless and the inner nodes. Thus, this procedure just reduces the differential index from
three to one.

2.3.5 Mass scaling

Scaling of inertia for explicit time integration is a commonprocedure since the 1970s. The
aim of mass scaling in context of non-linear structural mechanics is to increase the critical
time-step for explicit time integration without substantial loss in accuracy in the lower modes.
Conventional Mass Scaling (CMS) adds artificial mass only todiagonal terms of the lumped
mass matrix and thus, preserves the diagonal format of the mass matrix. It is usually applied
to a small number of short or stiff elements, like spot-weldsin car crash, whose high eigenfre-
quencies limit the time step size. CMS is also used for scaling of rotary inertia of beam and
shell elements. This allows to increase the critical step size of these elements up to a corre-
sponding critical step of truss or membrane elements. However, translational and rotational
inertia of the structure increase, which may cause non-physical phenomena. Selective Mass
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2 State of the art

Scaling (SMS) adds artificial terms both to diagonal and non-diagonal terms, which results
in non-diagonal mass matrices, but at least it allows preservation of translational mass. Thus,
SMS can be used uniformly in the domain with less non-physical artefacts.

In this subsection, existing CMS and SMS methods for beam, shell and solid elements are
described and their properties are discussed. The effect ofmass scaling on the quality of the
solution is discussed in Section 6.4.

Conventional mass scaling

First, consider an EULER-BERNOULLI two-node column-beam element with cubic trans-
verse and linear longitudinal displacements. For the time being, the influence of rotary inertia
of the cross-section is neglected. The element critical time-step size for the row-sum diago-
nalized mass matrix is the minimum of the axial and flexural time-steps

dtecrit = min

(
le
c
,

√
3l2e

12crg

)
, (2.85)

with c being the phase velocity of longitudinal waves andrg being the radius of gyration for
the section. Analysis of this expression shows that for shorter elements withle/rg < 4

√
3, the

critical time-step is limited by flexural waves, see BELYTSCHKO ET AL. (2001). Therefore,
the rotary inertia for these elements is artificially increased to match the axial critical time-
step. This was proposed by KEY AND BEISINGER (1971) and leads for an element with
constant cross-section to the mass matrix in the form

me=
ρ leA
420




210 0 0 0
0 α l2e 0 0
0 0 210 0
0 0 0 α l2e


 , (2.86)

whereα = max(17.5,840r2
g/l2e) is the mass scaling factor.

An appropriate scaling factorα = 17.5(1+12r2
g/l2e) is also obtained for a two-node TIMO-

SHENKO beam element with circular cross-section, cf. BELYTSCHKO AND M INDLE (1980).
A short overview on scaling for these two types of beams is given in Table 2.1.

A similar procedure is applied for plate and shell elements,see HUGHES ET AL. (1978). The
rotational inertia for a rectangular ’thick’ plate elementwith isotropic material is scaled with
the factorα = l2e/(12t2), wherele andt are the element size and the thickness of the plate. For
a distorted element, a more precise estimate is made in BELYTSCHKO AND L IN (1985). In
addition, such scaling leads to an isotropic nodal rotational inertia matrixM̄xx= M̄yy= M̄zz=
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2.3 Discretization in space

element type
mass
type

influence of
rotary inertia

dtflex
crit dtshear

crit mass scalingα

two-node
BERNOULLI
column-beam;
cubic transverse;
axial linear

RLM no
√

3l2e
12crg

- max
(

17.5,840
r2
g

l2e

)

RLM yes
√

3l2e
√

l2e+12r2
g

12crg
√

l2e+3r2
g

- max
(

17.5,630
r2
g

l2e

)

CMM no
√

21l2e
210crg

- not used

CMM yes
√

21
√

l4e+180l2er2
g+1680r4

g

210crg

√
l2e+12r2

g
- not used

two-node linear
TIMOSHENKO
beam

CMM yes
le
√

5l2e+216r2
g

c
√

15l2e+180r2
g

le√
3c

not used

LMM no
le
√

75l2e+3240r2
g

60crg

l2e
2
√

3crg
max

(
17.5,210

r2
g

l2e

)

Table 2.1:Element time-steps and mass scaling factors for BERNOULLI and TIMOSHENKO
elements based on the maximum flexural and shear frequency. Exact stiffness is used
for both elements. For TIMOSHENKO elements, a square cross-section with shear
correction factorγs = 5/6 is assumed.

M̄r = ρAel2e/36, so that the rotary inertia is invariant under finite rotations. For a 3D 4-node
shell element, such nodal mass matrix reduces to

mnode=
ρ tAe

4




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 αt3 0 0
0 0 0 0 αt3 0
0 0 0 0 0 αt3




. (2.87)

In case of truss, membrane and solid elements, the LMM is scaled by a factor ofq. This
reduces the element time-step size by the factor of

√
q and increases the translational and

rotary inertia of the element by factorq. Usually, such scaling is applied to a small number
of short or stiff elements with an overall increase of the mass of the model up to 1-3%. The
amount of the added mass should be carefully controlled, seefor recommendations WHIRLEY

AND ENGELMANN (1993).

It is also possible to add artificial inertia to incompatiblemodes (MATTERN 2012; SCHMIED

ET AL . 2013). In this way, static elimination of incompatible mode parameters can be avoided
and at the same time, locking phenomena are circumvented. However, the stiffness of modes
associated with the incompatible displacements is large and these modes provide the highest
eigenfrequencies, which motivates the application of massscaling to these modes.
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Selective mass scaling

Selective mass scaling was proposed in OLOVSSON ET AL. (2004, 2005). The original idea
relies on the followingalgebraicconstruction of the scaled mass matrixm◦

e of an individual
element as

m◦
e = me+λ◦

e, with λ◦
e =

△me

n

(
I −∑

i
oT

i oi

)
, (2.88)

whereme andλ◦
e are LMM and Mass Augmentation (MA),n is the number of nodes per

element,△me is the artificially added mass andoi is some set of orthonormalizedrigid body
modes. Initially, it was proposed to include only translational rigid body modes (OLOVSSON

ET AL . 2005). Herein, this method is referenced as Algebraic Selective Mass Scaling (ASMS).
A later implementation includes also rigid body rotations (BORRVALL 2011). Hence, the
properties of the algebraic SMS are defined by the linear hullof vectorsoi and the amount of
added mass△me.

Example: 3-node 2D membrane element with constant density and nodal coordinatesΞ =

[X1,Y1,X2,Y2,X3,Y3]. The LMM and two orthonormalized rigid body modes for such anele-
ment read

me=
m
3




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




, (2.89a)

o1 = 1/
√

3
[
1 0 1 0 1 0

]T
, (2.89b)

o2 = 1/
√

3
[
0 1 0 1 0 1

]T
, (2.89c)

wherem= ρAet is the translational mass of the element andAe =
1
2(Y1X3+Y2X1+X2Y3−

Y1X2−Y2X3−Y3X1) is the area of the element. Substitution of the two rigid bodymodes in
equation (2.88) yields mass augmentation

λ◦
e =

△me

6




2 0 −1 0 −1 0
0 2 0 −1 0 −1
−1 0 2 0 −1 0
0 −1 0 2 0 −1
−1 0 −1 0 2 0
0 −1 0 −1 0 2




. (2.90)
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2.3 Discretization in space

e1

e2

O

o3 - rotation wrt COG

o1 - RBM in x-direction
o2 - RBM in y-direction

reference

[xG,yG]

[X1,Y1]

[X3,Y3]

[X2,Y2]

Figure 2.12:Rigid body modes of a 3-node element with 2 DOFS per node.

Thus, the translational massm and the center of gravity[xG,yG] computed with ASMS has
correct values. The values for moments of inertia w.r.t. thecenter of gravity[IXX ,IXY ,IYY ] are
overestimated by the factor of 4+6△m/m. In order to get the correct value for the polar mo-
mentum(IXX + IYY), the third rigid body mode vector should be also used in equation (2.88).
Taking into consideration orthogonality with the vectorso1,2, the vectoro3 reads

o3 =
ô3

|ô3|
,with (2.91)

ô3 =




Y2+Y3−2Y1

2X1−X2−X3

Y1+Y3−2Y2

2X2−X1−X3

Y1+Y2−2Y3

2X3−X1−X2




. (2.92)

In this case, the local scaled matrixm◦
e is fully occupied, i.e. it has entries coupling inertia in

x- andy- direction.

In a total Lagrangian approach, assembly of the local scaledmass matrices is carried out once
at the beginning of the computation. It leads to a global selective scaled mass matrix

M◦ =
⋃

e

m◦
e. (2.93)

Matrix M◦ has a non-diagonal structure. Therefore, calculation of the global acceleration
vectoran requires at each time-steptn a non-trivial solution of the linear system

M◦an = fn, (2.94)
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wherefn is the global nodal force vector. It is proposed to use a preconditioned conjugate gra-
dient method (PCG) with JACOBI preconditioner, see OLOVSSON AND SIMONSSON (2006).

SMS has the following effect on the structural behavior. Thecritical time-step roughly in-
creases by the factor of

√
1+β with β being the ratio of the added mass to the element mass

△m/m (OLOVSSON AND SIMONSSON 2006). The eigenmodes of the structure are distorted
and the order of the modes may be changed. The phase velocity for short waves is signifi-
cantly reduced and the dispersive error for these waves is increased, see Subsection 6.2. In
case of translational rigid body modes being taken, the rotary inertia of the structure is in-
creased. If all rigid body modes are taken, then the rotary inertia is preserved. However in this
case, the scaled mass matrix obtains coupled terms between inertia in x-, y- and z-direction
(BORRVALL 2011). The condition number of the global mass matrixM◦ increases by factor
approximately 1+2β and the number of iterations needed for solving the systemM◦an = fn

grows proportionally to
√

1+2β .

ASMS is implemented in the commercial explicit FE codesLS-Dyna, Impetus AFEA3 and
RADIOSS4. It proved to be efficient for some applications such as deep drawing and cutting
of metal sheets, car roof crash and drop tests (ARNAUDEAU 2010; BORRVALL 2011; PAGANI

AND PEREGO2013; ROY ET AL . 2011). The theoretical estimate of the speed-up that can be
obtained with SMS is given in Subsection 2.4.2. The obtainedspeed-up in real-life application
varies from two to forty, see also Chapters 1 and 7.

SMS for solid-shells and shells modelled with solid elements received in literature special
attention. The typical spectrum of such structures is shownin Figure 2.13. Through-the-
thickness modes limit the critical time-step size. However, these modes are not important for
the global structural response and they may be suppressed via adding inertia for the stacks of
the nodes, see OLOVSSON ET AL. (2004). A similar approach is given for dynamics of solid-
shells in COCCHETTI ET AL. (2013) and PAGANI (2013). These works also include analytical
estimates of the critical time-step and study on the distortion sensitivity of the proposed for-
mulation.

MINDLIN’s theory of elasticity with micro-inertia can be another possible starting point for
derivation of SMS. This theory includes inertia for displacement and micro-rotations. After
several simplifications of this general theory, the following equation of motion for isotropic
media may be obtained:

ρ
[
üi −

(
d2

1+d2
2

)
üj,ij −d2

2üj,ij
]
= (λ +µ)uj,ij +µui,jj , (2.95)

3LARS OLOVSSON is one of the active developers ofImpetus AFEA. Some advanced mass scaling methods are
implemented in the code, e.g. mass scaling for quadratic andcubic tetrahedral and hexahedral elements, mass
scaling for clusters of nodes. However, the methods are not published (see http://www.impetus-afea.com/).

4Selective mass scaling is calledAdvanced mass scalingin RADIOSS.
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2.3 Discretization in space

thickness modes

mode number

fr
eq

u
en

cy

shear modes

flexural modes
membrane modes

Figure 2.13:Characteristic distribution of eigenfrequencies for a thin-walled structure modelled
with solid elements (black) and effect of mass scaling of thickness inertia (red).

with ui being the displacement,λ andµ being the LAMÉ constants.d1 andd2 are the length
scale parameters related to the micro-structure, see ASKES ET AL. (2011). Finite element
discretization of inertial terms leads to the element mass augmentation matrixλ◦ with

λ◦ =
∫

B

ρNTNdB+

∫

B

(LN)T
ρ̂LN dB, (2.96)

ρ̂ = d2
1I ⊗ I +d2

2 (I ⊗ I)
23
T . (2.97)

Here, ρ̂ is the matrix of local micro-inertia properties andL is the symmetric part of the
gradient (2.64). Matrix ˆρ reduces for the 2D case to

ρ̂ = ρ




d2
1+d2

2 d2
1 0

d2
1 d2

1+d2
2 0

0 0 d2
2


 . (2.98)

A variation of equation (2.96) called Enhanced Selective Mass Scaling (eSMS) is given in
GAVOILLE (2013). There, isotropic mass scaling is obtained for the length scale parameters
d1 = 0 andd2

2 ∼ β . Moreover, the value for the scale parameterd2 is adjusted to the size of
each element leading to a mass augmentation matrix in the form

λ◦ = βem

∫
B
(LN)T LN dB

Tr
∫
B
(LN)T LN dB

, (2.99)

with βe andm being the element scaling factor and mass, respectively, and Tr being the trace
operator for a matrix.

Stiffness proportional mass scaling is recovered in equation (2.96), if the ratio of LAMÉ pa-
rametersλ/µ and the squares of the scale parametersd2

1/d2
2 are equal. Stiffness proportional

scaling was proposed earlier in (MACEK AND AUBERT 1995; OLOVSSON ET AL. 2005),
though. Positive features of stiffness proportional mass scaling are eigenmode preservation
and controlled eigenfrequency reduction.
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A variationally based method for SMS was proposed recently in TKACHUK AND BISCHOFF

(2013c). The starting point of the proposed approach is a newparametrized variational princi-
ple of elasto-dynamics, which can be interpreted as penalized HAMILTON’s principle. It uses
independent variables for displacement, velocity and momentum in a three-field formulation.
The penalized HAMILTON’s principle imposes relations between velocity, momentum and
displacement via the penalty method. Consistent discretization of the latter principle results
in a parametric family of mass matrices. In this way, the translational inertia, center of gravity
and polar momenta of individual elements may be preserved, which guarantees convergence
of the method with mesh refinement. A distinctive feature of the method is variational rig-
orousness. Besides, the mass augmentation is prescribed via ansatz spaces for velocity and
momentum. This method is discussed in detail in Sections 4.1, 6.2 and 7.2.

A classification of mass scaling methods the discussed aboveis given in Figure 2.14. The
conventional mass scaling was extensively studied in the 1970s and 1980s. After the pioneer-
ing papers (MACEK AND AUBERT 1995; OLOVSSON ET AL. 2004, 2005; OLOVSSON AND

SIMONSSON 2006), the selective mass scaling received a great deal of attention. New meth-
ods were proposed in ASKES ET AL. (2011); COCCHETTI ET AL. (2013); TKACHUK AND

BISCHOFF (2013c, b); GAVOILLE (2013); SCHMIED ET AL . (2013). Besides, approximately
20 papers and conference talks describe speed-up of SMS for different applications.

Selective

Mass scaling

Conventional

Rot. scal. for EB-beam, KEY AND BEISINGER(1971)

Rot. scal. for ’thick’ plates, HUGHES ET AL. (1978)

Rot. scal. for Timoshenko beam, BELYTSCHKO AND M INDLE (1980)

Rot. scal. for shells, BELYTSCHKO AND L IN (1985)

Uniform scaling of mass matrix, from 90s inLS-Dyna

Thin-walled, OLOVSSON ET AL. (2004); COCCHETTI ET AL. (2013)

Algebraic selective mass scaling, OLOVSSON ET AL. (2005)

Enhanced selective mass scaling, GAVOILLE (2013)

Stiffness proport., MACEK AND AUBERT (1995); ASKES ET AL. (2011)

Variational selective mass scaling, TKACHUK AND BISCHOFF(2013c)

Figure 2.14:Classification of mass scaling methods.
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2.4 Integration in Time

2.4 Integration in Time

In this section, methods of solution for second order initial value problems are discussed.
Here, the methods used in the thesis are presented, including central difference and NEW-
MARK β methods. The description follows the notation used in BELYTSCHKO ET AL. (2001)
with an extension of the central difference method to non-diagonal mass matrices presented
in OLOVSSON AND SIMONSSON (2006).

2.4.1 Central difference method

The central difference method is a common method for explicit time integration. Its simplicity
and robustness motivate the usage of the method for a broad range of applications. The most
important applications include crash worthiness and manufacturing simulations. Another ad-
vantage is the structure of the algorithm allowing efficientparallelization and scalability on
modern supercomputer architectures. For example, car crash simulation speed-up satisfactory
up to 200 processors and 10 million DOFs for a hybridLS-DYNAversion (MENG ET AL.
2010; MAKINO 2008). Some applications on special computer architectures scale well up to
65K processors and 320 million DOFs (RAJAN 2007).

In the following, we consider for simplicity an algorithm with a constant time-step△t (an
algorithm with variable time-step can be found in BELYTSCHKO ET AL. (2001)). The initial
time and the state of the system are denoted witht0, U0 andU̇0. The termination time istend.
Displacements and accelerations are defined at full time-stepstn asUn andÜn, respectively.
Velocities are defined in half-stepstn+1/2 as U̇n+1/2. The central difference formulas for
velocity and acceleration read

U̇n+1/2 =
Un+1−Un

△t
, Ün =

U̇n+1/2− U̇n−1/2

△t
. (2.100)

Equations of motion are evaluated at the full time steptn

MÜn = Fn = Fext
n −Fint

n −Fvbc
n . (2.101)

The internal force vectorFint
n is evaluated for the current displacementUn as described in

Section 2.3. The force vectorFvbc
n arises from velocity boundary conditions and the off-

diagonal terms of the scaled mass matrixM◦. It is assembled over all nodes with velocity
boundary conditions to the vector

Fvbc
n =

⋃

vbc

M◦ ¨̂Un, with ¨̂Un =
˙̂Un+1/2− ˙̂Un−1/2

△t
, (2.102)
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1. Initialize t = t0, U = U0, U̇ = U̇0

2. Compute LMMM or SMSM ◦ and preconditioner for mass matrixP
3. Get global force vectorFn = Fext

n −Fint
n −Fvbc

n
4. Compute acceleration̈Un = M−1Fn

5. Time updatetn+1 = tn+△t
6. Partial update of velocitẏUn+1/2 = U̇n+

△t
2 Ün

7. Enforce velocity b.c.̇Un+1/2 =
˙̂Un+1/2

8. Update nodal displacementsUn+1 = Un+△tU̇n+1/2

9. Get global force vectorFn+1 = Fext
n+1−Fint

n+1−Fvbc
n+1

10. Compute acceleration̈Un+1 = M−1Fn+1

11. Partial update of velocitẏUn+1 = U̇n+1/2+
△t
2 Ün+1

12. Update time-step counter ton+1
13. Output
14 If tn+1 < tend go to 5.

Figure 2.15:Flowchart for explicit time integration.

where ˙̂U are vectors of prescribed velocity. This term vanishes in case of LMM.

Thus, the update for velocity and displacement results in

U̇n+1/2 = U̇n−1/2+△t,M−1Fn, Un+1 = Un+△tU̇n+1/2. (2.103)

The algorithm for the central difference method is presented in Figure 2.15. Calculation of
the global acceleration vector is performed at stages 4 or 10. If SMS is used, then the ac-
celeration vector is computed with a direct solver for smallsystems or with a Preconditioned
Conjugate Gradient method (PCG) with JACOBI preconditioner, see Figure 2.16. According
to OLOVSSON AND SIMONSSON (2006), the acceleration vector from the previous step is
used as starting value for the iterative solution. The tolerance for the iterative solvertola is
usually in a range from 10−3 to 10−8 depending on the application.

The central difference method is conditionally stable. Forlinearized systems an the critical
time-step size can be estimated on the basis of the maximum natural frequencyωmax of the
system, see HUGHES (2000) and BELYTSCHKO ET AL. (2001). Thus, the time-step size
should satisfy the condition

△t <
2

ωmax
. (2.104)

It is recommended to reduce the time-step further by the factor SCFACfrom 0.67 to 0.9 de-
pending on the application. The maximum natural frequency can be estimated from an it-
erative algorithm according to BENSON ET AL. (2010) or from an elementwise computation
according to BELYTSCHKO ET AL. (2001).
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2.4 Integration in Time

1. Initialize acceleration with values from previous time-stepÜn,0 = Ün−1

2. Compute initial residualr0 = Fn−M ◦Ün,0

2. z0 = P−1r0

3. p0 = z0

4. while |r0|> tola|Fn| do

5. αk =
zT

k zk

pT
k M ◦pk

6. Ün,k+1 = Ün,k+αkpk

7. rk+1 = rk−M ◦pk

8. zk+1 = P−1rk+1

9. βk =
zT

k+1zk

zT
k rk

10. pk+1 = zk+1+βkpk

end do

Figure 2.16:Flowchart for calculations of acceleration vector with PCG.

3 mm

100 mm

1 mm

clamped

ν = 0.0

ρ = 7800 kg/m3

nx = 50

ny = 1

nz = 3

E= 207 GPa

tend= 2 ms

F = 2 N

Figure 2.17:Tip loaded beam, problem setup (OLOVSSON ET AL. 2005).

2.4.2 An estimate for speed-up for SMS

The theoretical estimate of speed-up for SMS can be done comparing computational costs for
LMM and SMS for the following simple example (OLOVSSON ET AL. 2005)5. The model
for the example problem is shown in Figure 2.17. Initial zerodisplacements and velocities
are assumed. The beam is loaded at the tip by an abrupt forceF. The time-step scaling factor
SCFAC is 0.67 for LMM and SMS. The model hasnele= 50×3×1 eight-node hexahedral
elements,nnode= 400 nodes andndof = 1200 degrees of freedom.

The computational costs of explicit time integration with LMM can be roughly estimated as
follows. The initialization steps 1 to 4 (Figure 2.15) result in costs ofO(ndof), which is small
in comparison with discussed below costs. The most expensive part of the time integration
loop (steps 5 to 14) is the computation of the global internalforce vector (step 9)6. The global

5Two major drawbacks of this example are regular mesh and absence of contact. Distribution of element distor-
tions and local critical time-steps have a significant influences on the efficiency of SMS. Treatment of contact
usually takes 20 to 40% of the computational time in real lifeapplications. However, the cost of treatment of
the contact is proportional to the number of time-steps, which does not change the form of the final expression.

6The output (step 13) is never done at each step due to limitations of hard disk capacity and slowness of I/O
operations. The number of output frames is usually by a factor of 1000 smaller than the total number of time-
steps. The time spent on output is usually below 5 % and it is neglected here in the estimate.
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internal force vector is assembled fromnele local internal force vectors. Computation costs of
a constant stress solid element with FLANAGAN AND BELYTSCHKO (1981) hourglass control
and bilinear elasto-plastic material is costele= 1388 FLOP7 (HALLQUIST ET AL . 2006). Thus,
the computational cost for the global internal force vectoris

COSTele= costele×nstep= 1388×150= 208200 FLOP. (2.105)

The internal force vector is assembled at each time-step. The CFL criterion predicts the critical
time-step of△tcrit = le/c= 0.18µs. Taking in account a SCFAC of 0.67, this results in a time-
step value△tLMM = 0.125µs and total number of time-stepsnstep= 16000 (for end time
tend= 2ms). Thus, the computational cost estimate for LMM reads

COSTLMM ≈COSTelenstep=costelenele
tend

△tLMM
crit SCFAC

=208200×16000=3.33 GFLOP.

(2.106)

Explicit time integration (Figure 2.15) with SMS leads to several overheads: computation
of the scaled massM◦ and preconditionerP (step 2), evaluation of the vectorFvbc (step 3
and 9) and computation of the accelerationÜ (step 4 and 10). The scaled massM◦ and
the preconditionerP are computed in the beginning of the simulation. The computational
cost for step 2 isO(nele). It is negligible in comparison with the costs for the internal force
vector COSTelenstep. The cost of evaluation of the vectorFvbc is proportional to the number
of nodes with prescribed velocity boundary conditions. This number is problem dependent
(in the example, it is eight). In this estimate, it is assumedthat the number of these nodes is
small in comparison to the total number of nodes and the costsare negligible. The costs for
computation of the acceleration̈U is the costs of a single PCG iteration COSTPCG times the
number of iterationsniter, i.e.

COSTsolver= COSTPCG×niter. (2.107)

The average number of iteration for the relative tolerancetola = 10−5 is eight. The costs for a
single PCG iteration COSTPCGcan be estimated as

COSTPCG= 2×bandwidth×ndof = 2×5×1200= 12000 FLOP. (2.108)

This yields an estimate COSTsolver of 108000 FLOP.

The number of time-steps for SMS depend on mass scalingβ via a factor
√

1+β . Forβ = 8,
the time-step is scaled by factor three to△tSMS= 0.375µs (△tSMS

crit =
√

1+β le/c= 0.54µs).
The total number of time-steps for the end timetend= 2ms is 5333. Thus, the estimate for the

7Floating point operations.

44



2.4 Integration in Time

computational costs of explicit time integration with SMS reads

COSTSMS≈(COSTele+COSTsolver)nstep=(COSTele+COSTsolver)
tend

△tSMS
crit SCFAC

= (208000+108000)×5333= 1.69 GFLOP, (2.109)

Finally, it leads to the theoretical estimate of speed-up for SMS

SPEED-UP=
COSTLMM

COSTSMS≈
△tSMS

crit

△tLMM
crit (1+COSTsolver/COSTele)

=
3.33
1.69

=1.97. (2.110)

Note, that the speed-up is proportional to the ratio△tSMS
crit /△tLMM

crit . Besides, small ratios for
COSTsolver/COSTele allow large theoretical values for the speed-up. In the example, the ratio
is 0.52, which reduces the theoretical speed-up from three to 1.97. Fast iterative solution for
accelerations requires good conditioning8 and small bandwidth of the scaled mass matrixM◦,
which is discussed in Subsection 6.3.2. In addition, the computational costs costele for other
FE formulations may be up to 11000 FLOP, likeLS-Dynaeight-node hexahedral element
(ELFORM = -2 or 3) or ten-node tetrahedral element (ELFORM = 16 or 17). For these
elements, the ratio COSTsolver/COSTele is less and SMS has larger potential. This example
illustrates, that the efficiency of SMS is reached at good balance between the costs for global
internal force calculation and iterative solution for acceleration.

2.4.3 Newmark β method

The second most popular method in computational structuralmechanics is the NEWMARKβ
method proposed in NEWMARK (1959). NEWMARKβ is a one-step and self-starting method
and it is available in most implicit commercial codes. It relies on the following update rules
for displacement and velocity

Un+1 = Un+ U̇n+
△t2

2
(2β Ün+1+(1−2β )Ün), (2.111a)

U̇n+1 = U̇n+△t
(
γÜn+1+(1− γ)Ün

)
, (2.111b)

with β andγ being parameters of the method. The parametersβ andγ determine accuracy
and stability of the method, e.g. see HUGHES (2000).

8The number of PCG iteration should be less than 50.

45



2 State of the art

1. Initialize t = t0, U = U0, U̇ = U̇0

2. Compute mass matrixM
3. Get global force vectorFn = Fext

n −Fint
n −Fvbc

n
4. Compute acceleration̈Un = M−1Fn

5. Time updatetn+1 = tn+△t

6. PredictorUn+1 = Ũn+1+△t2β Ün+1 andU̇n+1 =
˙̃Un+1+△tγÜn+1

(Loop over NEWTON-RAPHSON iterations:)
7. Get global forceFn+1 = Fext

n+1−Fint
n+1−Fvbc

n , assemble global tangentKT

8. Compute algorithmic right hand side and tangent (2.115)
9. Solve for△Ui

n+1
10. Check for convergence
11. Update of velocity and acceleration
12. Update time-step counter ton+1
13. Output
14 If tn+1 < tend go to 5.

Figure 2.18:Flowchart for NEWMARKβ time integration.

The solution is split in predictor and corrector steps. The predictor step is written as

Ũn+1 = Un+△tU̇n+
△t2

2
(1−2β )Ün, (2.112a)

˙̃Un+1 = U̇n+△t(1− γ)Ün. (2.112b)

The corrector step reads as follow

Un+1 = Ũn+1+△t2β Ün+1, (2.113a)

U̇n+1 =
˙̃Un+1+△tγÜn+1. (2.113b)

The unknown acceleration̈Un+1 at the new time-step is expressed using the corrector equation

Ün+1 =
1

△t2β

(
Un+1− Ũn+1

)
. (2.114)

Substitution of the acceleration in equilibrium equation (2.81) attn+1 leads to the following
equation with respect to the unknown displacement vectorUn+1

(
1

△t2β
M +

γ
△tβ

C
)

Un+1+Fint(Un+1)=Fext(tn+1)+

(
1

△t2β
M +

γ
△tβ

C
)

Ũn+1−C ˙̃Un+1.

(2.115)

The latter equation is usually solved with the NEWTON-RAPHSON algorithm. HavingUn+1

at hand, the acceleration and velocity attn+1 are updated. The algorithm is presented in
Figure 2.18.

46



2.5 Assessment of quality of space and time discretization

Instabilities for non-linear problems are common for dynamic contact problems. Certain mod-
ifications to the algorithm should be made, if contact condition are included. This question
is covered in PANDOLFI ET AL . (2002); LAURSEN (2002); HARTMANN AND RAMM (2008);
DEUFLHARD ET AL. (2008); SUWANNACHIT ET AL . (2012).

2.5 Assessment of quality of space and time

discretization

2.5.1 Temporal discretization

A good time integration scheme is crucial for accurate and reliable solution of dynamic prob-
lems. The analysis of one-step and multi-step time discretization schemes for linear systems
of ODE is available in HUGHES (2000); SAMARSKII (2001). This analysis considers amplifi-
cation matrices on a single step and provides results for numerical damping, period elongation
(dispersion), convergence and stability. Yet, it is difficult to conduct such an analysis for non-
linear systems or systems with constraints.

DAE systems and differential index

A differential-algebraic equation is an equation involving an unknown function and its deriva-
tives, see CAMPBELL ET AL . (2008). The properties and solution methods for a DAE depend
on its mathematical structure. In case the system of equations can be solved with respect to
highest derivative, the DAE reduces to an ODE. This usually can not be done for constrained
mechanical systems discussed here, see equation (2.83). For these problems, the semi-explicit
class of DAE arises, which is possible to be solved with respect to the highest derivatives only
for a part of unknowns, and for the rest of unknowns algebraicequations are provided. These
types of equations are called HESSENBERG forms (ASCHER AND PETZOLD 1998). These
DASs can be interpreted as a system of ODEs coupled with algebraic constraint equations.
Thus, variables for these DAEs can be distinguished by the type of defining equations be-
tweenalgebraic and differential variables(ASCHER AND PETZOLD 1998). For example, the
following equation

Ü = M−1
(

Fext(t)−F int(t,U,U̇)−GZ
)

(2.116a)

0= GTU−g0 (2.116b)
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includes differential unknownsU and algebraic unknownsZ. The algebraic unknowns can be
eliminated from system (2.116) using three subsequent differentiation. Thus, this system is
classified as HESSENBERG index-3 DAE (ASCHER AND PETZOLD 1998).

The high-index of DAE implies that this DAE includeshidden constraints. In case of having
system (2.116), the solution[U,Z] must also satisfy two derivatives of (2.116b). The equation
(2.116b) is a constraint on the position level. In mechanics, the two derivatives of equations
(2.116b) are called constraint on velocity and acceleration level.

High index of DAE indicates higher complexity and higher numerical effort. For the me-
chanical system, energy conservation, noise in algebraic variables and bad conditioning are
usual issues connected with solution of index-3 DAE (ASCHER AND PETZOLD 1998). The
common approaches to resolve these issues are discussed in Subsection 2.3.4.

2.5.2 Spatial discretization

The standard analysis of the error for elliptical problems is done e.g. in BABUŠKA ET AL .
(2010). Static and dynamic unilateral contact problems areanalysed in KIKUCHI AND ODEN

(1988). The error analysis in hyperbolic problems is more complicated. Some approaches are
used for this, e.g. HUGHES ET AL. (1976); IDESMAN (2011); HUGHES (2000). Among these
approaches, spectral analysis provide valuable information about quality of the solution.

The basic results on spectral relation FE is given in BELYTSCHKO (1978). This paper con-
siders 2-node and 3-node truss elements with consistent andlumped mass matrices. For the
3-node truss the acoustic and optical branches of the dispersion relation are obtained. For
wave propagation in 2D meshes of linear triangular and bilinear quadrilateral elements see
MULLEN AND BELYTSCHKO (1982). In this paper is shown that mass lumping and under-
integration of a stiffness matrix increase the dispersive error. Dispersion relations in pFEM
and isogeometric FE are investigated in THOMPSON AND PINSKY (1995) and AURICCHIO

ET AL . (2012); KOLMAN ET AL . (2012).

2.5.3 Assessment of dynamic behavior of semi-discretized

equations using Fourier analysis

The overall accuracy of inertia and stiffness discretization can be evaluated using a FOURIER
analysis of an infinite mesh of equal-sized elements, see Figure 2.19. The results of such an
analysis provides an estimate of the error in the eigenfrequencies needed for free vibration
problems and it gives an exact dispersion relation relevantto wave propagation problems.
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2.5 Assessment of quality of space and time discretization

λ

le

direction of wave propagation

j−2 j−1 j j +2j+1 x

Figure 2.19:An infinite mesh of quadratic elements and a harmonic wave.

The wave propagation in the mesh is governed by semi-discrete equationsMÜ+KU = 0,
which has an infinite number of unknownsu =

[
· · · ,uj−2,uj−1,uj,uj+1,uj+2, · · ·

]
. This system

has an infinite number of solutions. These solutions are travelling harmonic waves (FELIPPA

2001, 2010) of wavenumberk= 2π/λ , wavelengthλ , phase velocityc and circular frequency
ω = 2πc/λ . The displacement vector as a function of time is

U(t) = Ũeiωt (2.117)

with Ũ standing for the complex-valued vector of nodal phases and amplitudes andi being√
−1. Substitution of the latter into the equation of motion results in a system of linear

algebraic equations

(
−ω2M +K

)
Ũ = 0. (2.118)

As the elements in the infinite mesh have equal size and the coefficients in Equations (2.118)
are periodically repeated, the general solution of it can beobtained for a representative sample
(patch) with a finite number of degrees of freedom. Consider atypical patch of three elements
as

(
−ω2M rep+K rep

)
Ũrep = 0. (2.119)

The determinant of this system provides a characteristic equation, from which the dispersion
relationk(ω) can be found. Note, that multiple solutions, or branches, ofthe characteristic
equation correspond to physically different waves and/or numerical artifacts. For the elements
discussed here we distinguish physical longitudinal, shear and bending waves. The meshes of
the finite elements can have optical and acoustic branches FELIPPA (2001); HUGHES ET AL.
(1976). For convenience, the dispersion relations are presented in dimensionless quantities
with wavenumberκ = k/le and frequencyΩ = ω le/c.
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2.5.4 Participation factor for classification of load cases

Consider an undamped system ofn-degrees under an arbitrary force

MÜ+KU = Fext(t),

U(t = 0) = U0,

U̇(t = 0) = V0.

(2.120)

The system (2.120) gives rise to a generalized eigenvalue problem

(
K −ω2M

)
φφφ = 0. (2.121)

The eigenvalues and eigenvectors for large sparse systems can be extracted with LANCZOS,
KRYLOV subspace or QR methods (SAAD 1992).

Let us denote eigenvalues for the system (2.121) sorted in ascending order asωi and corre-
sponding eigenvectorsφφφ i . Herein, we use only eigenvectors orthonormalized with respect to
mass matrix, i.e.φφφT

i Mφφφ j = δij with δij being Kronecker delta. The mode participation factors
Γi for the given loadFext are defined as

Γi = φφφ T
i Fext/φφφT

i Kφφφ i. (2.122)

2.5.5 Harmonic analysis

The driven harmonic oscillation for a linear system ofn-degrees with viscous damping is
described by

MÜ+CU̇+KU = Fext(t), (2.123)

with C being the damping matrix. The RAYLEIGH model of damping, also called propor-
tional damping, assumes matrixC in the form of

C = a0M +a1K , (2.124)

wherea0 and a1 are mass and stiffness proportional damping coefficients. For harmonic
excitation the external force can be presented as

Fext(t) = F̃eiωt (2.125)

whereω is the angular frequency of the excitation andF̃ is the global vector of forces that
includes information about phases and amplitudes. Substitution of the time-harmonic ansatz
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2.5 Assessment of quality of space and time discretization

U = Ũeiωt leads to an equation with respect to steady amplitudesŨ

(
−ω2M + iωC+K

)
Ũ = F̃. (2.126)

Solution of the latter equation for an identity matrix in right hand side at results in frequency
response function

H(ω) =
(
−ω2M + iωC+K

)−1
. (2.127)

This means, that the amplitude of response in the ith DOF caused by a harmonic force with
unit amplitude at the jth DOF is componentHij (ω). Generally, frequency response functionH
is a rational complex function ofω, for details see THOMSON (1993).

Frequency response assurance criterion

Any two frequency response functions that represent the same input-output relationship (ob-
tained experimentally or numerically) can be compared via atechnique known as Frequency
Response Assurance Criterion (FRAC), see HEYLEN AND AVITABILE (1998) and ALLE-
MANG (2003). FRAC is computed for two response functionsH1,ij (ω) andH2,ij (ω) for a
given set of sampling frequencies[ωs]

sampl
s=1 with

FRACij =
|∑sampl

k=1 H∗
1,ij (ωk)H2,ij (ωk)|2

∑Ns
k=1H∗

1,ij (ωk)H1,ij(ωk)∑Ns
k=1H∗

2,ij (ωk)H2,ij(ωk)
, (2.128)

with samplbeing number of sampling points and the super-script∗ being a complex conju-
gate. FRAC is one for two linearly dependent response functions. Closeness to one assures
similarity in response for a given sampling range, but it does not guaranties the amplitude of
response is equal.

Modal assurance criterion

According to ALLEMANG (2003), a Modal Assurance Criterion (MAC) can be defined as
degree of correlation between one modal vectorφφφ1

i and another reference modal vectorφφφ 2
j as

follows

MAC ij =
φφφ1

i ·φφφ2
j

|φφφ1
i ||φφφ2

j |
. (2.129)
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Values of MAC close to one indicate similarity of the modes. Here, as a measure of the
distortion due to selective mass scaling, an angle between the original modeφφφ i and the mode
of the scaled systemφφφ◦

i can be introduced as

ϕi = arccos

(
φφφ i ·φφφ◦

i

|φφφ i ||φφφ◦
i |

)
. (2.130)
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3
Variational principles of

elasto-dynamics

The benefits of singular and selectively scaled mass matrices are presented in Sections 2.3.4
and 2.3.5. Here, aunified variational approachfor both singular and selectively scaled mass
matrices is proposed. It is based on a new penalized HAMILTON’s principle that uses dis-
placement, velocity and momentum as variables. Relations between the variables are weakly
imposed via a penalty method. This results in a template variational principle1 of elasto-
dynamics depending on the free penalty parameters. The canonical one-, two- and three-field
principles are recovered as special instances of the template. In addition, the three-field canon-
ical principle is reformulated by introduction of an incompatible velocity field, which provides
another useful variational form.

An in-depth overview on non-parametric variational principles of rigid body dynamics and
elasto-dynamics can be found in LANZCOS (1970) and WASHIZU (1975, Appendix I), re-
spectively. An overview on the application of variational principles of elasto-dynamics in FE
discretization is given in GERADIN (1980). Among the presented principles, the most im-
portant principle for FE applications is HUGHES’s principle2 depending on two independent
fields of displacement and velocity (HUGHES ET AL. 1976). This overview also includes
dual/reciprocal variational principles of elasto-dynamics, e.g. REISSNER’s, TOUPIN’s and
PIAN’s principles. A distinguishing feature of TOUPIN’s principle is the introduction ofan
impulse field3, that is defined as integral of the stress tensor in time. Other versions of re-

1In this thesis ”parametric”, ”template” and ”penalized” HAMILTON’s principle are used as synonyms. The
name penalized is preferred because the penalty approach isused here in the derivation and the idea of the
derivation is the synthesis of inertial penalties given in ASKES ET AL. (2011) and the rigorous variational basis
of template variational principles given in FELIPPA (1994).

2It is also called here HELLINGER-REISSNER type II or two-field canonical principle.
3h := h0+

∫ t
0 σ dτ, impulse and momentum field are related withp = divh for a zero bodyload̂b.
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3 Variational principles of elasto-dynamics

ciprocal forms of HAMILTON’s principle are given in REISSNER(1948) and ELIAS (1973).
The GURTIN’s family of variational principles based on convolutions is thoroughly inves-
tigated in GURTIN (1964). For re-parametrization of the three-field functional of elasticity
(VEUBEKE-HU-WASHIZU) with incompatible strains, see SIMO AND RIFAI (1990).

Parametric variational principles originate from Beijingschool of mechanics. Two one-parame-
tric families of generalized variational principlesfor linear elasto-statics are proposed in
WEI-ZANG (1983). In this paper, a so-called method of high-order LAGRANGE multipliers
is used to impose the constitutive relation. Based on the same approach, parametric exten-
sions of GURTIN’s convolution principle and HAMILTON’s principle for elasto-dynamics
are proposed in SHIKUI (1992a) and SHIKUI (1992b), respectively. Generalized variational
principles withseveral arbitrary parametersare proposed in YU-QIU (1987) and developed
further in HUANDING AND DONGBU (1990). They are based on adding quadratic integrals of
constitutive, kinematic and equilibrium equations and displacement and force boundary con-
ditions4. Another method for establishinggeneralized variational principlesis proposed in
DAH-WEI (1985). It uses a so-called semi-inverse method, where the form of the functional
is not assumed beforehand, but recovered in the process of derivation using an IBVP5. This
method allows also the derivation of variational principles with free parameters (HE 2000). In
this case, the free parameters can be interpreted as integration constants.

Further development and applications of parametric variational principles are connected to
template variational principles. For the definition of template variational principles for POIS-
SON’s equation, classical, incompressible and micro-polar elasticity, see FELIPPA (1994).
High performance plate and shell elements based on these ideas are presented in FELIPPA

AND M ILITELLO (1989). For further references on the topic, see FELIPPA (2000).

The usage of parametric and generalized variational principles are not limited to elasto-dyna-
mics. Parametric variational principles for elasto-plasticity using complementary and poten-
tial energy are presented in ZHONG AND ZHANG (1988). Generalized variational principles
for micromorphic thermo-elasticity and micromorphic magneto-electro-elasto-dynamics are
given in HE (2005) and ZHENG ET AL. (2011), respectively.

The short overview given above, may be an illustration of thefact thatthe inverse problem of
variational calculus6 has neither a unique solution nor a general method of solution. An ex-
tensive study on the subject can be found in FINLAYSON (1972). The high-order LAGRANGE
multipliers, semi-inverse and template methods may be recommended as the most powerful
techniques.

4A similar approach is used here.
5See Appendix B for an example of derivation.
6Given a system of differential equation, find the Lagrangians that have that system as EULER-LAGRANGE
equations. These set of Lagrangians embody the variationalform of the problem. Usually the PVP results in
linear spaces of Lagrangians.
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3.1 Penalized Hamilton’s principle

3.1 Penalized Hamilton’s principle

Recall the strong form of the IBVP for linearized elasto-dynamics from Subsection 2.2.5 with






ρü = L∗σlin(u)+ b̂ in I ×B0

σlin = Dε in I ×B0

ε = Lu in I ×B0

u = 0 in I ×∂Bu

σlinn = t̂ in I ×∂Bt,0

u(0,.) = u0 in B0

u̇(0,.) = v0 in B0.

(3.1)

Now, a problem is posed to setup a variational framework which allows a parametric family of
consistent mass matrices and at the same time is equivalent to the non-parametric IBVP given
in equation (3.1). The following considerations are used for the derivation of the new prin-
ciple. In order to get maximum flexibility, a multi-field approach with independent variables
for displacement, velocity and momentum is used. The fields are linked in a weak sense using
the penalty method. The penalty factors then naturally define the free parameters. Finally,
only symmetric terms for inertia should enter the principle, which guarantees symmetric mass
matrices by design.

Let us introduce notations for a scalar product in the domain, the bilinear forms of potential
and kinetic energy and the linear from for external work, respectively, with

(w,z) =
∫

B0

w ·zdV, w, z∈ [L2(B0)]
dim, (3.2a)

Πint(u) =
1
2

a(u,u) =
1
2

∫

B0

ε(u) ·Dε(u) dV, u ∈ [H1(B0)]
dim, (3.2b)

T(u̇) =
1
2

m(u̇, u̇) =
1
2
(ρu̇, u̇) =

1
2

∫

B0

ρu̇ · u̇dV, u̇ ∈ [L2(B0)]
dim, (3.2c)

Πext(u) = f(u) =
∫

B0

b̂ ·udB+
∫

∂Bt,0

t̂ ·ud∂B. (3.2d)

Starting point for the derivation of the alternative formulation is HAMILTON’s principle stat-
ing that among all admissible displacements that satisfy the prescribed geometrical boundary
conditions and the prescribed conditions at the time limits, the actual solution makes the fol-
lowing functional stationary

H(u) =
∫

I

(
T−Πint+Πext

)
dt → stat, (3.3a)

H(u) =
∫

I

(
1
2
(ρu̇, u̇)− 1

2
a(u,u)+ f(u)

)
dt → stat. (3.3b)
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3 Variational principles of elasto-dynamics

HAMILTON’s principle imposes relations between velocity,momentum and displacements
in strong from with

v = u̇, p = ρv, p = ρu̇. (3.4)

These conditions enter equation (3.3b) using the penalty method. To construct the penalty
term for the kinematic equationv− u̇ = 0, the differencev− u̇ is squared and weighted with
the densityρ and a dimensionless penalty factor1

2C3. In this way, the physical dimension of
the term is energy. Finally, it is integrated over the domain, resulting in

∫

B0

1
2

C3ρ (v− u̇)2 dV =
1
2

C3(ρ(u̇−v), u̇−v) = 0. (3.5)

Analogous considerations for the other two relations of equation (3.4) lead to two terms with
penalty factorsC1 andC2. Summing up all terms provides a new expression for the kinetic
energy

T◦=
1
2
(ρu̇, u̇)+

C1

2

(
ρu̇−p, u̇− p

ρ

)
+

C2

2

(
ρv−p,v− p

ρ

)
+

C3

2
(ρ(u̇−v), u̇−v) . (3.6)

The penalized Hamilton’s principle usesT◦ as

H◦(u,v,p,C1,C2,C3) =
∫

I

(
T◦−Πint+Πext

)
dt → stat. (3.7)

Here, dependency of the penalized Hamiltonian on the free parametersC1,2,3 is explicitly
stated. For simplicity, it is dropped from the list of arguments below.

In the following, the weak form and EULER-LAGRANGE equations for functional (3.7) are
derived. The first variation of equation (3.7) gives

δH◦(u,v,p) =
∫

I

(
δp,(C1+C2)

p
ρ
−C1u̇−C2v

)
dt

+

∫

I

(δv,(C2+C3) ρv−C3 ρu̇−C2p) dt

+
∫

I

[(δ u̇,(1+C1+C3) ρu̇−C3 ρv−C1p)−δΠ] dt.

(3.8)

Integrating the term(δ u̇,(1+C1+C3) ρu̇−C3 ρv−C1p) by parts in time yields

−
∫

I

(
δu,

d
dt
{(1+C1+C3) ρu̇−C3 ρv−C1p}

)
dt. (3.9)
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3.1 Penalized Hamilton’s principle

Substitution of equation (3.9) into equation (3.8) gives a weak formulation, proposed herein.
The EULER-LAGRANGE equations of the weak form (3.8) composea system of equations





d
dt {(1+C1+C3) ρu̇−C3 ρv−C1p}= L∗σlin + b̂ in I ×B

σlinn = t̂ in I ×∂Bt

(C1+C2)p−C2ρv = C1ρu̇ in I ×B

−C2p+(C2+C3) ρv = C3 ρu̇ in I ×B.

(3.10)

Consider the two last equations in (3.10). They are a system of two linear equations with
respect top and v. If the determinant of the coefficient matrix is non-zero, i.e. C1C2 +

C2C3+C1C3 6= 0, then we can solve forp andv, leading to

v = u̇, p = ρu̇. (3.11)

Thus, the subsidiary conditions (3.4) are recovered as EULER-LAGRANGE equations. Sub-
stitution of the latter in the first equation of (3.10) gives the equation of motion in the form
(3.11). This proves the equivalence of the penalized HAMILTON’s principle to the IBVP
(3.1). Hence, the free parameters in the functional (3.7) doneither change the extreme value
of the functional nor the solution of the variational problem (FELIPPA 1994). At an extremal,
where the EULER-LAGRANGE equations (3.11) are satisfied, the fieldsu̇, v andp/ρ co-
alesce. Actually, the free parameters can be interpreted asweights on the field equation in
the weak form, see equation (3.10). Therefore, these parameters are also called high-order
LAGRANGE multipliers. Generally, these parameters can be second order tensors for vector
fields, like velocityv, or fourth order tensor for second order tensors, likeε, for details see
WEI-ZANG (1983) and LAMICHHANE ET AL . (2013). According to this point of view, the
penalty term can be interpreted as

1
2

C1ρ
(

u̇− p
ρ

)2

=
1
2

(
u̇− p

ρ

)
·ρC1I

(
u̇− p

ρ

)
=

1
2

(
u̇− p

ρ

)
·Q1

(
u̇− p

ρ

)
, (3.12a)

1
2

C2ρ
(

v− p
ρ

)2

=
1
2

(
v− p

ρ

)
·ρC2I

(
v− p

ρ

)
=

1
2

(
v− p

ρ

)
·Q2

(
v− p

ρ

)
, (3.12b)

1
2

C3ρ (v− u̇)2=
1
2
(v− u̇) ·ρC3I (v− u̇) =

1
2
(v− u̇) ·Q3(v− u̇) , (3.12c)

whereQ1,2,3 = C1,2,3I are second order tensors for high-order LAGRANGE multipliers. A
possible usage of anisotropic matrices for the multipliersQ1,2,3 is outlined in the outlook in
Section 8.2.
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3 Variational principles of elasto-dynamics

Note, that the formT◦ is quadratic and symmetric with respect to the triple[u̇,v,p]

T◦ =
1
2

∫

B




ρu̇
ρv
p




T


(1+C1+C3)I −C3I −C1I
−C3I (C2+C3)I −C2I
−C1I −C2I (C1+C2)I







u̇
v
p
ρ


 dB. (3.13)

The vector[u̇,v,p] is calledthe generalized field vectorin the literature and the matrix in the
quadratic form is called asfunctional generating matrix.

The positive definiteness of the form is verified by SYLVESTER’s criterion. If the leading
principal minors of the functional generating matrix of thequadratic form are all positive,
then the form is positive definite. These conditions read as follows





C1+C3 >−1
C2+C3 > 0
C1C2+C2C3+C1C3 > 0.

(3.14)

Thus, the form fulfills the requirement for the new variational formulation given in the prob-
lem statement.

The formulation (3.8) can be interpreted as a parametrized (template) variational principle
according to FELIPPA (1994). The formulation contains all canonical variational principles of
linear elasto-dynamics as particular cases. The standard HAMILTON’s principle is obtained
for C1 =C2 =C3= 0. The modified HAMILTON’s principle is recovered forC1=−C2 =−1
andC3 = 0. The HELLINGER-REISSNER principle with the variables[u,p] is recovered for
C1=−1 andC2=C3= 0. SettingC1=−1,C2 =1/2 andC3= 0 yields LIANG-FU principle
(GUO-PING AND ZI-CHI 1982). These examples imply completeness of the parametrization.
Moreover, the formT◦ satisfies the consistency conditions for a template stated in FELIPPA

(1994). The row sums of the functional generating matrix areone for the primary variableu
and zero for the dual variablesv andp.

Note, that a straightforward extension of the derived parametrized principle to a finite defor-
mation regime is possible, see TKACHUK AND BISCHOFF(2013a). In case of non-conservative
systems, the parametric version of the principle of virtualwork must be used.

3.2 Canonical two-field principles

The penalized HAMILTON’s principle (3.7) can be reduced to canonical HELLINGER-REISSNER
principles of two types. Type I and II use as variables[u,p] and[u,v], respectively. Type I is
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3.3 Canonical three-field principle

obtained forC1 =−1 andC2 = C3 = 0, leading to a weak form

δH(u,p) =
∫

I

((δp,p/ρ − u̇)+(ṗ,δu)−a(u,δu)+ f(δu))dt = 0. (3.15)

Type II is obtained forC1 = C2 = 0 andC3 =−1, leading to a weak form

δH(u,v) =
∫

I

(m(δv,v− u̇)+m(v̇,δu)−a(u,δu)+ f(δu))dt = 0. (3.16)

Both weak forms stated above can be used for discretization,see for examples HUGHES

ET AL . (1976) and GERADIN (1980). More detailed theory on these variational principles
is given in WASHIZU (1975, Appendix I).

3.3 Canonical three-field principle

The canonical three-field principle is referred to modified HAMILTON’s principle in the lit-
erature. It is obtained from the penalized principle (3.7) for C1 = −C2 = −1 andC3 = 0
resulting in the following variational principle

H(u,v,p) =
∫

I

(
1
2

m(v,v)− (p,v− u̇)− 1
2

a(u,u)+ f(u)
)

dt → stat. (3.17)

This principle will later be used for the derivation of singular mass matrices. Note, that the
quadratic template for the kinetic energyT∗ reduces to

T∗ =
1
2

∫

B




ρu̇
ρv
p




T


0 0 I
0 I −I
I −I 0







u̇
v
p
ρ


 dB. (3.18)

The template matrix has two zero blocks on its diagonal and itis not positive definite. Hence,
special considerations are necessary for stable discretization. These details are presented in
Section 4.3.

3.4 A principle using an incompatible velocity field

Starting point for this principle is the canonical three-field principle. Re-parametrization of the
velocity fieldv is done according to the original idea of EAS elements for elasticity (WILSON

ET AL . 1973; SIMO AND RIFAI 1990; ROMERO AND BISCHOFF2007). There, the kinematic
variableε is split into a partLu , which is compatible with the displacementu, and an incom-

59



3 Variational principles of elasto-dynamics

patible part ˜ε = ε−Lu . Here, the velocityv is split in a partu̇, which is compatible with the
displacementu and an incompatible partṽ, leading to the following expression

v = u̇+ ṽ. (3.19)

Substitution of the expression (3.19) in the equation (3.3b) yields the re-parametrized modified
HAMILTON’s principle

H̃(u,ṽ,p) =
∫

I

(
1
2

m(u̇+ ṽ, u̇+ ṽ)− (p, ṽ)− 1
2

a(u,u)+ f(u)
)

dt → stat. (3.20)

The re-parametrization procedure can be viewed as a linear transformation of the indepen-
dent variables from[u,v,p] to [u,ṽ,p]. The quadratic form for the kinetic energy modifies
accordingly with the transformation. Thus, the quadratic form T̃∗ reads

T̃∗ =
1
2

∫

B




ρu̇
ρ ṽ
p




T


I I 0
I I −I
0 −I 0








u̇
ṽ
p
ρ


 dB. (3.21)

If the orthogonality(p, ṽ) holds, then only two variables[u,ṽ] are present in the principle and
it reduces to

H̃(u,ṽ) =
∫

I

(
1
2

m(u̇+ ṽ, u̇+ ṽ)− 1
2

a(u,u)+ f(u)
)

dt → stat. (3.22)

Corresponding to this variational form, the template for kinetic energy further reduces to

T̃∗ =
1
2

∫

B

ρ
[

u̇
ṽ

]T [
I I
I I

][
u̇
ṽ

]
dB. (3.23)

This variational principle is very useful if the inertia of afew modes need to be removed. The
latter formulation can also be used for the derivation of a one-parametric variational principle
with incompatible velocity field. Blending the standard HAMILTON’s principle with the form
(3.22) with the coefficients(1+C1) and(−C1) yields

H̃◦(u,ṽ) =
∫

I

(
1+C1

2
m(u̇, u̇)− C1

2
m(u̇+ ṽ, u̇+ ṽ)− 1

2
a(u,u)+ f(u)

)
dt → stat, (3.24)

with the kinetic energy template

T̃∗ =
1
2

∫

B

ρ
[

u̇
ṽ

]T [
I −C1I

−C1I −C1I

][
u̇
ṽ

]
dB. (3.25)
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3.5 Variational principles with contact conditions

The latter formulation illustrates the flexibility of the methods of variational calculus. The
methods applied for linear and non-linear static problems are easily applied to elasto-dynamics.
From these variational forms families of mass matrices withdesired properties can be derived.

3.5 Variational principles with contact conditions

There are many ways to include contact conditions in a weak form, see e.g. equation (2.60).
Here, the contact conditions are included via adding an indicator function to any of the vari-
ational principles mentioned above. An example for such a derivation can be found in PAN-
DOLFI ET AL . (2002). Here, more rigorous solution spaces are introduced. Vector-valued
spaces are denoted by bold letters, e.g.,L2(B) = [L2(B)]dim. The test space for the displace-
ments is defined as

V :=
{

u ∈ H1 : u = 0 in ∂Bu
}
. (3.26)

The dual spaces are denoted with a prime sign, e.g.V
′. A convex subset ofV that satisfies

the kinematic contact constraints is denoted asK . The definition ofK depends on the
structural theory behind the contact problem. Usually, it is a set of inequalities that should be
satisfied on the contact boundary or inside the domain. For truss and beam models discussed
in Subsection 2.2.6, the admissible set reads

K := {u ∈ V : u ·n ≤ gB in B andu ·τ ≤ g∂B in ∂Bc} . (3.27)

The indicator functionIK(u) for the admissible space can be written as

IB(u,x) =

{
∞ if u ·n > gB, x ∈ B

0 otherwise,
I∂B(u,x) =

{
∞ if u ·τ > g∂B, x ∈ ∂Bc

0 otherwise,

IK(u) =
∫

B

IB(u,x)dB+ I∂B(u,x)|∂Bc
, (3.28)

with IB(u,x) andI∂B(u,x) being the indicator functions for the contact constraints inside the
domain and the boundary, respectively. Let us consider herean extension to the contact prob-
lem of the three-field canonical principle given in equation(3.17). The extended variational
formulation reads

H(u,v,p) =
∫

I

(
1
2

m(v,v)− (p,v− u̇)− 1
2

a(u,u)+ f(u)+ IK(u)
)

dt → stat, (3.29)
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3 Variational principles of elasto-dynamics

with u ∈ L2(I ,V ), v ∈ L2(I ,L2), p ∈ L2(I ,L2), u̇ ∈ L2(I ,L2). Variation of (3.29) gives

δH =
∫

I

(m(v,δv)− (δp,v− u̇)− (p,δv−δ u̇)−a(u,δu)+ f(δu)+δ IK(u))dt. (3.30)

If we additionally assumėp ∈ L2(I ,V ′) and integrate by parts(p,δ u̇), we get

δH =

∫

I

((δp, u̇−v)− (p−ρv,δv)− (ṗ,δu)−a(u,δu)+ f(δu)+δ IK(u))dt. (3.31)

This formulation is the starting point for an alternative formulation for the elasto-dynamic con-
tact method proposed herein. The EULER-LAGRANGE equationsof the weak form (3.31)
are a system of equations






−ṗ+L∗σlin(u)+ b̂ ∈ NB(u) in I ×B0

σlin − t̂ ∈ NΓ(u) in I ×∂Bc

u̇ = v in I ×B0

p = ρv in I ×B,

(3.32)

with NB(u) andNΓ(u) being subdifferentials of the indicator functionsIB(u,x) andI∂B(u,x),
respectively, and∈ denotes the inclusion. Thus, from the equation (3.324) the fieldp can be
identified as a momentum field. Also using the properties of differential inclusion, it can be
shown that equation (3.32) is equivalent to the IBVP given inequations (2.661−3). The initial
condition given in equations (2.664−5) can be introduced in equation (3.30) by the correct
boundary termsBT at the time limitst = 0 andt = tend, e.g. according to CANNAROZZI AND

MANCUSO (1995),

∫

I

δ
(

1
2

m(v,v)− (p,v− u̇)− 1
2

a(u,u)+ f(u)+ IK(u)
)

dt = BT,

BT= (δp|0,u|0−u0)+(δu|0,ρv0)− (δu,p) |tend.

The first term in the expression forBT weakly imposes the displacement initial condition,
while the second and third term are responsible for the velocity initial condition. However,
addition ofBT leads to a non-integrable differential in contrast to modified Hamilton’s princi-
ple (3.30). Such treatment of the initial conditions is necessary for space-time finite element
discretizations. Here, classical time integration rules are used and the initial conditions are
merely interpolated at the nodes.

The correct boundary terms can be found also for the parametric variational principle given in
equation (3.8). Such a formulation can be used as the starting point for a parametric family of
space-time finite elements. However, this question is out ofscope of this thesis.
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3.6 Summary of variational methods for elasto-dynamics

3.6 Summary of variational methods for elasto-dynamics

This chapter is the core part of this thesis and its main scientific advance. The unified vari-
ational approach presented in this thesis enables an elegant derivation of useful variational
formulations, which is the basis for the following descritization of different elasto-dynamic
problems.

The chapter includes quite technical derivations of parametric and mixed principles for elasto-
dynamics. The relations between the derived methods are presented in Figure 3.1. The vari-
ational principles with their independent variables and their free parameters are shown in
rectangular boxes with grey filling. The arrows depict the derivation steps. The text in ellipses
attached to the arrows denotes the methods used in the derivations7.

*

* **

indicator function
IK(u)

canonical Hamilton’s
3 variables[u,v,p]

parametersC1−3
specification of

canonical Hamilton’s
2 variables[u,v] or [u,p]

penalty

semi-inverse
high-order Lagr. mult.

3 variables[u,ṽ,p]
parameterC1

Incomp. vel. Hamilton’s Hamilton’s for contact
3 variables[u,v,p]

re-parametrization
v = u̇+ ṽ

Incomp. vel. Hamilton’s
3 variables[u,ṽ,p]

re-parametrization
param. spec.

penalized Hamilton’s, variables[u,v,p], parametersC1−3

Hamilton’s, variables[u]

Figure 3.1: Relations between variational formulations of elasto-dynamics. The novel principles
are marked with an asterisk *.

The basis for all derivations is one-field HAMILTON’s principle. The penalized HAMIL-
TON’s principle is derived using the penalty method for kinematic and material equations.
Three canonical principles are recovered upon specification of the free parameters. Then,
the contact constraints may be included in three-field HAMILTON’s principle by adding an
indicator functionIK(u). Introduction of incompatible velocity allows to derive two further
variational principles.

7For alternative derivation of the penalized HAMILTON’s principle using the semi-inverse method, see Ap-
pendix B.
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3 Variational principles of elasto-dynamics
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4
Spatial discretization of inertial terms

In this chapter, a semi-discretization for the inertial terms is given based on the weak forms
presented in Chapter 3. The most general expression for a three-parametric family of mass
matrices is derived and analyzed. Three specializations ofthe three-parametric family relevant
for selective mass scaling are given. Then, Hybrid-Singular Mass Matrices (HSMM) are
derived with focus on dynamic contact problems. It is shown that nodal mass vanishes, if only
a special orthogonality condition is fulfilled. Expressions for incompatible velocity mode
mass matrices (EAS-like) conclude the chapter.

4.1 Three-parameteric template for mass matrix

In the previous section, a weak formulation for elasto-dynamics (3.8) was derived. This for-
mulation has three independent variables[u,v,p] and contains three scalar penalty parameters
(C1,C2,C3). Spatial semi-discretization of the free variables can be written as

uh = NU, vh = ΨV, ph = χP, (4.1a)

δuh = NδU, δvh = ΨδV, δph = χδP. (4.1b)

Here,N contains shape functions for interpolation ofnd nodal displacements, given by the
vectorU. The default physical dimension of the vectorU is length, or m. MatricesΨ and
χ interpolate velocity and momentum from vectors of parameters V andP. The lengths of
V andP are denoted asnv andnp. The physical dimensions ofV andP are velocity, or m/s,
and linear momentum, or kg·m/s, respectively. Note, that variational indices of variablesv
andp for spatial derivatives are zero. This means that inter-element continuity ofvh andph is
not required for convergence. Therefore, parametersV andP are not necessarily nodal values
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4 Spatial discretization of inertial terms

in contrast to the displacement vectorU. Later, this property is used for local elimination
of these parameters. Herein, the shape functions for the variations are the same as for the
variables (BUBNOV-GALERKIN type of discretization). Thisguarantees symmetry of the
obtained mass matrices.

Substitution of the equation (4.1) in equation (3.8) with (3.9) yields a semi-discrete expression
of penalized Hamiltonian

δH◦,h(U,V,P) =
∫

I

δP
(
−C1C

TU̇−C2G
TV +(C1+C2)G P

)
dt

+

∫

I

δV
(
−C3A

TU̇+(C2+C3)Y V −C2G P
)

dt

+

∫

I

δU
(
(1+C1+C3)MÜ−C3A V̇ −C1C Ṗ+KU −Fext) dt.

(4.2)

Here,K andFext are the global stiffness matrix and the nodal vector of external forces. Fur-
thermore, the following matrices are defined:

M =

∫

B0

ρ0NTNdB, A =

∫

B0

ρ0NT
ΨdB, C =

∫

B

NTχdB, (4.3a)

Y =
∫

B0

ρ0Ψ
T
ΨdB, G =

∫

B

Ψ
TχdB, H =

∫

B0

ρ−1
0

χTχdB, (4.3b)

whereM is the consistent mass matrix. Note, that the matricesC andG are independent
of material properties and play the role of projection between discrete spaces. The physical
dimension of the matricesC andG is volume, or m3. MatricesY andH are mass matrices
on discrete spacesV and P. Matrix A is a weighted projection between discrete spaces.
The usage of projections is explained and illustrated in Figures 4.1 and 4.2. The physical
dimension of matricesV andA is mass, or kg. The physical dimension ofH is volume
squared divided over mass, or m6/kg.

Using independence of the variationsδU, δV andδP, the following system of DAE is ob-
tained





(1+C1+C3)MÜ−C3A V̇ −C1C Ṗ+KU = Fext

(C2+C3)Y V −C2G P = C3A
TU̇

−C2G
TV +(C1+C2)H P = C1C

TU̇.

(4.4)

The variablesV andP are collected in the left hand side of the second and the thirdequation
of (4.4). Elimination ofV andP yields the following equations of motion

M◦Ü+KU = Fext, (4.5)
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4.2 Variational selective mass scaling

with the new consistent mass matrixM◦. This mass matrix is important for the variational
mass scaling. Therefore, it is called herethe scaled mass matrix. The artificially added
mass is defined analogously to the expression of the algebraic mass scaling in equation (2.88)
λ◦ = M◦−M , which leads to the expression

λ◦ = (C1+C3)M −
[

C3A

C1C

][
(C2+C3)Y −C2G

−C2G
T (C1+C2)H

]−1[
C3A

T

C1C
T

]
. (4.6)

The latter expression can be further expanded using the formula for inversion of block matri-
ces, see e.g. (STRANG 1986, Exercise 1.3.12) to

λ◦ = (C1+C3)M − C2
3

C2+C3
A

T
Y

−1
A +

C2
2C2

3

(C2+C3)2A
T
Y

−1
G S G

T
Y

−1
A −

(4.7)

− C1C2C3

C2+C3

(
A Y

−1
GS C

T +C S G
T
Y

−1
A

T)+C2
1C S C

T, (4.8)

assuming thatY is invertible and withS defined as

S =

(
(C1+C2)H − C2

2

C2+C3
G

T
Y

−1
G

)−1

. (4.9)

Formula (4.6) provides the most general expression for a three-parametric family of mass
matrices. From an algebraic point of view, the artificially added massλ◦, entering equation
(4.5), is a rational function of the parameters(C1,C2,C3). It is not practical to use expression
(4.6) directly, as the influence of the individual parameters on the mass matrix is unclear.
Below, three important cases are discussed, where the expression (4.6) substantially simplifies.

4.2 Variational selective mass scaling

4.2.1 Case 1: one-parametric u-v-p-formulation

Let us set the free parametersC1 = −C2 andC3 = 0 and assume thatC1 is positive. In this
case, the general expression for the added mass matrixλ◦ reduces to

λ◦ = C1M −C1

[
0
C

][
−Y G

G
T 0

]−1[
0

C
T

]
. (4.10)
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4 Spatial discretization of inertial terms

This expression can be further simplified, if the matricesY and G
T
Y

−1
G are invertible.

Finally, this leads to the expression for a one-parametric family of scaled mass matrices in the
form

λ◦ = C1

(
M −C

(
G

T
Y

−1
G
)−1

C
T
)
. (4.11)

Note, that in this caseC2 is negative and the conditions for positivity of template principle
(3.14) are not fulfilled. This leads to a zero block matrix in expression (4.10), which is not
positive definite. Therefore, special stability conditions must be fulfilled, which is discussed
in detail in below, see equations (4.17) and (4.22).

4.2.2 Case 2: two-parametric u-v-p-formulation

Let us set the free parameterC2 = 0 and assume positivity of the parametersC1 andC3. The
added mass matrixλ◦ reduces then to

λ◦ = (C1+C3)M −
[

C3A

C1C

][
C3Y 0

0 C1H

]−1[
C3A

T

C1C
T

]
. (4.12)

The matricesY andH are positive definite by construction. Hence, the block matrix in
expression (4.12) is positive definite and invertible. Thisleads to a two-parametric added
mass matrix in the form

λ◦ = C1
(
M −C H

−1
C

T)+C3
(
M −A Y

−1
A

T) . (4.13)

Note, that physical dimension of the productC H
−1

C
T in equation (4.13) is kg, i.e. dimen-

sion ofH , m6/kg, complies with dimension of the projection matrixC , m3.

4.2.3 Case 3: one-parametric u-v-formulation

Let us set the free parametersC1 = C2 = 0 and assume positivity ofC3. This case is just a
further simplification of case 2 withC1 = 0. The added mass matrixλ◦ is reduced from (4.13)
to the expression

λ◦ = C3
(
M −A Y

−1
A

T) . (4.14)

In cases 1, 2 and 3, linear families of mass matrices are obtained, which clarifies the meaning
of the penalty parametersC1 andC3 as scaling factors for the artificially added mass, see
Figure 4.1. The penalty factorC2 that is responsible for the coupling of the dual variables
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4.3 Hybrid-mixed mass matrices

M

A Y
−1

A
T

C3

M◦

C1

λ◦

CH
−1

C
T

Figure 4.1: Linear two-parametric template of mass matrices obtained with equation (4.13)

v andp plays only an auxiliary role in the cases discussed above. The matricesA Y
−1

A
T,

C H
−1

C
T andC

(
G

T
Y

−1
G
)−1

C
T present in equations (4.11-4.14) are on the basis of a

consistent hybrid-mixed mass matricescomputed on mixed Hamilton’s principle with the
variables[u̇,v], [u̇,p] and[u̇,v,p], respectively. Such mass matrices were defined in HUGHES

ET AL . (1976) and used in GERADIN (1980). Thus, the proposed families (4.11-4.14) are
weighted sums of known consistent mass matrices and the proposed variational formulation
(3.8) justifies such a construction. In addition,λ◦ is semi-positive by construction. This prop-
erty follows for the cases 1 to 3 from a matrix generalizationof the CAUCHY-SCHWARZ
inequality. Thus, positive definiteness ofM◦ is guaranteed if the penalty parametersC1 and
C3 are positive.

The structure ofλ◦ given in (4.11-4.14) explains the way the proposed mass scaling works.
The consistent mass matrix and hybrid-mixed mass matrices are equal, if only the ansatz space
for v andp are taken equal to the ansatz space foru. This results inλ◦ being equal to zero. If
the ansatz spaces forv andp are chosen poorer than the ansazt space foru, the hybrid-mixed
mass matrix produces less inertia than a consistent mass matrix. Thus, the artificially added
mass increases inertia for modes orthogonal to the ansatz space ofv andp. The appropriate
ansatz spaces are discussed in the subsequent chapter.

4.3 Hybrid-mixed mass matrices

4.3.1 Discretization of two-field canonical principles

The Hellinger-Reissner principle of type I and II is obtained from the template (3.8) by spec-
ification of the penalty factors. In the same manner, the discrete mass matrices are obtained.
This question is not considered here in detail.
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4 Spatial discretization of inertial terms

4.3.2 Discretization of three-field canonical principle

The starting point for the discretization of the modified Hamitonian principle is the weak form
given in equation (3.17). Ansatz (4.1) is used for the discretization of independent fields. The
projection matrices between fields are denoted according toequation (4.3). Substitution of the
discretization yields the following algebraic system





G P= Y V
C

TU̇ = G
TV

C Ṗ+KU = Fext,

(4.15)

which can be identified as a discretized counterpart of the material, kinematic and kinetic
equation, respectively. If the matrixY is invertible, the velocity vectorV can be eliminated
from equations (4.151) and (4.152) resulting in

G
T
Y

−1
G P= C

TU̇. (4.16)

For linearly independentΨ and a positive densityρ , the matrixY is positive definite and
invertible. The matrix productG T

Y
−1

G is at least positive semi-definite, ifY is positive
definite. It is positive definite, ifG has full rank, and its number of rows is less or equal to the
size ofY , i.e.

np ≤ nv. (4.17)

Let us assume thatG satisfies these two conditions. The matrix̄H = (G T
Y

−1
G )−1 is then

well defined. Using this matrix, the relation between displacement and momentum can be
written as

H̄ C
TÜ = Ṗ. (4.18)

Substitution of the latter in equation (4.153) allows to eliminateP from the equation of motion
leading to

C H̄ C
TÜ+KU = Fext+Z. (4.19)

That delivers an expression for hybrid-mixed consistent mass matrix

M∗ = C H̄ C
T = C (G T

Y
−1

G )−1
C

T. (4.20)

The formula (4.20) can be illustrated with Figure 4.2. The kinetic energy in the modified
Hamilton’s principle (3.17) is computed on the discrete velocity vh producing the matrixY .

70



4.3 Hybrid-mixed mass matrices

u̇h

ph

vhT = CG
−1

C G

T = 1
2PTH̄ P

T = 1
2VTY VT = 1

2U̇TM∗U̇

Figure 4.2: Approximation spaces foṙu, v andp, quadratic forms for kinetic energy and discrete
projection between approximation spaces.

Then, it is projected via the Lagrange multiplierph on u̇h in terms of the matricesC andG

resulting in the matrixM∗. If the matrixG is square and non-singular, an auxiliary matrix
T = C G

−1 may be introduced to combine both projections. In this case,the expression for
the matrixM∗ simplifies to

M∗ = C G
−1

Y G
−T

C
T = T Y T

T. (4.21)

It is identical to the transformation of a quadratic formY under linear transformationT T :
V → U̇. The variational index in the spatial dimensions ofp andv in the weak form (3.17) is
equal to 0. Thus, the inter-element continuity of the shape functionsΨ andχ is not required
for convergence andV andP can be eliminated on the element level provided that the basis
functions are element-wise supported. Then, the global matrix M∗ can be assembled from the
local element mass matrices, andY has a block diagonal structure (HUGHES ET AL. 1976).

The second condition for stability of this three-field method is that the intersection of the null-
spaces of the mass and stiffness matrices must be empty (cf. (ZIENKIEWICZ AND TAYLOR

2006, p. 371) and (RENARD 2010, Theorem 1, condition (7)) for VEUBEKE-HU-WASHIZU
σ−ε−u elements),

kerK ∩kerM∗ =∅, (4.22)

with ker being kernel or null-space. This condition automatically provides thatK + rM∗ is
not singular for anyr > 0, and thus, most time integration schemes are well-defined.
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4 Spatial discretization of inertial terms

4.3.3 Orthogonality and stability conditions

M∗ is at least semi-definite by construction. In order to impose0 at theith diagonal component
of M∗, C andH̄ have to satisfy the condition

M∗
ii = eT

i C H̄ C
Tei = 0. (4.23)

with ei being the ith unit vector. AsH̄ is positive definite, this condition can hold only if
C

Tei = 0, i.e.,

C
Tei =

∫

B

χ(Nei) dB = 0. (4.24)

Automatically, with the condition (4.24) the entireith row and column of the mass matrixM∗
ij

vanish,

M∗
ij = eT

i C H̄ C
Tej =

(
eT

i C
)

︸ ︷︷ ︸
0

H̄ C
Tej = 0. (4.25)

The condition (4.23) automatically satisfies the inf-sup condition given in RENARD (2010)
that is sufficient for the index reduction of the DAE system (2.83). But it restricts the mass
matrix to fit into the form given in (2.84). Such an approach ismore complicated because it
requires specially constructed shape functions for the displacement field. The advantage of
the proposed approach is that massless nodes and nodes with mass are split by the structure
of the mass matrix, and they can be treated separately.

The mass matrixM∗ is computed from the product of̄H andC . The rank ofH̄ is np,
therefore the rank ofM∗ is less or equal tonp. At the same time from condition (4.22) it
follows that the rank ofM∗ must be greater than or equal to the number of zero eigenvalues
of K , which is equal to the number of rigid body modes of the element nrbm. If we want to
make the number of massless nodes to bend0, then the rank ofM∗ is less or equal tond−nd0.
It is pointless to take more thannd−nd0 momentum shape functions, becauseC in this case
does not have a full rank. Its columns are linearly dependent, which means we can use only
those shape functions ofχ that provide linearly independent columns. This delivers the same
mass matrix with less computational effort. Thus, the number of momentum shape functions
np should satisfy the following conditions

nrbm ≤ np ≤ nd−nd0. (4.26)

72



4.4 Incompatible velocity method for mass matrices

4.4 Incompatible velocity method for mass matrices

The discretization of the variational principle (3.22) requires shape functions for the incompat-
ible velocityṽ. Let us denote these shape functions asÑ and incompatible velocity parameters
asṼ. This leads to the following discrete equation of motion with subsidiary conditions

{
L̃ U̇ = D̃Ṽ
MÜ+ L̃T ˙̃V +KU = Fext,

(4.27)

where matrices̃L andD̃ are defined as

L̃ =
∫

B0

ρ0ÑTNdB, D̃ =
∫

B0

ρ0ÑTÑdB. (4.28)

As in the previous cases, the matricesL̃ andD̃ do not explicitly depend on time. If the rows
of the shape function matrix̃N are linearly independent, then the matrixD̃ is invertible. Static
elimination of incompatible velocity parametersṼ leads to the equation of motion

M̃Ü+KU = Fext, (4.29)

with an EAS-like mass matrix̃M defined as

M̃ = M − L̃TD̃−1L̃ . (4.30)

Conditions for its consistency are described in Subsection5.4.

The one-parametric family of mass matrices can also be obtained from the discretization of
formulation (3.24). The discretization procedure in this case is identical to the one given in
equations (4.27-4.30) above. The resulting scaled mass matrix and the artificially added mass
matrix read

M◦ = M +C1L̃TD̃−1L̃ , λ◦ = C1L̃TD̃−1L̃ . (4.31)

This structure provides symmetry and positive definitenessof the added mass.
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4 Spatial discretization of inertial terms
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5
Good ansatz spaces

This chapter focuses on ansatz spaces for the proposed formulations. Choosing the right
ansatz spaces is crucial for accuracy and consistency of these formulations. First, the patch
test for inertia terms is discussed. Passing patch the test is necessary for consistency. Sec-
ondly, shape functions for singular mass matrices for formulation (4.20) are derived. The key
requirement for the shape functions is completeness of the basis and satisfaction of the orthog-
onality condition (4.24), which is required for an efficientdiscretization of dynamic contact
problems. Thirdly, appropriate ansatz spaces for selective mass scaling formulation according
to equation (4.14) are built. Finally, an example of ansatz spaces for an incompatible velocity
formulation according to equation (4.30) is given.

5.1 Patch test for inertia terms

The patch test is a useful tool in FE technology for the assessment of crucial discretization
properties like consistency, stability, robustness and the asymptotic convergence rate. It was
initially proposed to test the performance of FEs with incompatible modes and numerical
integration (BAZELEY ET AL . 1966; IRONS AND RAZZAQUE 1972), i.e. the patch test is a
simple test for verification of consistency. Later, it was used as an equivalent of BABUŠKA-
BREZZI criteria for mixed and hybrid-mixed elements (ZIENKIEWICZ AND TAYLOR 1997),
which involved stability (solvability) requirements. Thehigher order patch test was introduced
in TAYLOR ET AL . (1986) and it provides information about the asymptotic convergence rate.
Another important application of patch tests is finding implementation errors in FE programs.
For a comprehensive overview on the topic, see ZIENKIEWICZ AND TAYLOR (2006).

Here, patch tests for inertia terms (mass matrix) are described. They are described by corre-
sponding numerical experiments and limited to hybrid-mixed and displacement formulations.
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5 Good ansatz spaces

Consider a discretized body in a stress-free configuration.The following patch tests are des-
ignated by roman capital letters from ’A’ to ’E’

• A: prescribed nodal accelerationb̂ results in an inertia force vectorMA that is equal to
the consistent nodal force

∫
Be

NTρ0b̂dV for the uniform external body loadρ0b̂

• B: an abrupt uniform external body loadρ0b̂ in the domain and a nodal accelerationb̂
applied at all boundary nodes result in a uniform acceleration at inner nodes

• C: an abrupt uniform external body loadρ0b̂ to an unconstrained body results in uniform
acceleration at inner nodes

• D: prescribed nodal accelerationb̂ results in a translational acceleration of the center of
gravity b̂ and zero rotational acceleration w.r.t the center of gravity

• E: an abrupt uniform body loadρ0b̂ results in a translational acceleration of the center
of gravity b̂ and zero rotational acceleration w.r.t the center of gravity.

Note, that patch tests ’C’ and ’E’ require non-singular massmatrices. Patch test ’B’ requires
an appropriate rank of the mass matrix. Patch tests ’A’ and ’E’ imply no conditions on the
singularity of the mass matrix. Singularity of the mass matrix does not imply instability
of dynamic solutions (for details see condition (4.17) and COOK ET AL. (2007); HAURET

(2010)). Actually, the patch tests ’A’ and ’C’ correspond totwo physical experiments. In the
test ’A’, the reference frame gets an abrupt accelerationρ0b̂. In the test ’C’, the gravity force
is abruptly ”turned on”. In both cases, an arbitrary body without constraints is expected to
move as a rigid body, and the nodal inertial forces must be consistent withρ0b̂. Test ’B’ can
be regarded as the mixture of ’A’ and ’C’. Tests ’D’ and ’E’ areweaker. These tests check
only in an average sense.

For higher order patch tests, the uniform vectorb̂ should be substituted by

b̂ = b̂0+ b̂0xx+ b̂0yy+ b̂0xxx
2+ b̂0xyxy+ b̂0yyy

2+ . . . . (5.1)

The exact acceleration vectorA should interpolate the corresponding values ofb̂. A special
case of a higher order patch test is referred here as a rigid body rotation. It can be obtained
for the 2D case as

b̂ROTZ =

[
0
0

]
+

[
0
1

]
x+

[
−1
0

]
y. (5.2)

An alternative approach for consistency of hybrid-singular mass matrices is given in HUGHES

ET AL . (1976). It is based on the completeness of the bases and provides a theoretical estimate
of the convergence rate for the lowest eigenfrequencies andeigenmodes.
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5.2 Shape functions for singular mass matrices

Note, that the patch tests discussed above do not affect rotary degrees of freedom. Patch tests
for elements with rotary DOFs are not discussed here.

One important consequence of all patch tests is that the ansatz spaces for all discretized fields
must contain at least a constant mode. This argument is oftenused for construction of ansatz
spaces herein.

5.2 Shape functions for singular mass matrices

This section is organized as follows. First, the shape functions for a one-dimensional three-
node element are derived. This derivation mainly follows the ideas of RENARD (2010). Sec-
ondly, the derivation is extended to arbitrary number of nodes for 1D elements and some
quadratic TIMOSHENKO beams. These three bases are given in TKACHUK ET AL . (2013).
Thirdly, the ansatz spaces on the basis of tensor-products are derived for 2D and 3D cases,
which were presented in TKACHUK ET AL . (2012) and ECK ET AL . (2013).

5.2.1 Derivation of shape functions in 1D

Here, the shape functions for 1D elements are constructed that satisfy the orthogonality con-
dition (4.24) at the corner nodes1, where later contact conditions are collocated. It is natural
to takend − 2 = nv = np, which automatically satisfies the stability conditions (4.17) and
(4.26). This choice is also optimal with respect to computational costs for the element-wise
computation of the singular mass matrix.

Three-node element

Consider a three-node 1D element (dim= 1, nd = 3). The goal is to obtain massless left and
right nodes. First, for a consistent approximation of the momentum and the kinetic energy
at least constant shape functions are required for the velocity (see Figure 5.2). This also
guarantees that the element passes the inertia patch tests.The momentum shape functionsχ

enter into the zero mass condition (4.24). In order to avoid complications in the case of a
non-uniform Jacobian, the momentum shape functionsχ are modified by multiplication with
the factor|J0|/|J|.

Ψ1 = 1 χ1 = |J0|/|J| nv = np = 1, (5.3)

1This construction prohibits use of linear elements for HSMM.
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5 Good ansatz spaces

where|J| is the determinant of the Jacobian, and|J0| is evaluated at the center of the element
ξ = 0.

Secondly, it is assumed that the new displacement shape functions have the same linear span
as the standard quadratic shape functions and that each shape function is a linear combination
with so far the unknown coefficientsαi

Span[N1,N2,N3] = Span[1,ξ ,ξ 2], (5.4)

with Span denoting the linear span.

Thirdly, it is assumed that the interpolation condition is satisfied only at corner nodes with

N1(−1) = 1, N2(−1) = 0, N3(−1) = 0,
N1(1) = 0, N2(1) = 0, N3(1) = 1.

(5.5)

Finally, satisfying the condition (4.24) withN1 = α0+α1ξ +α2ξ 2 leads to a system of equa-
tions





N1(−1) = 1
N1(1) = 0∫ 1
−1N1χ1|J|dξ =

∫ 1
−1N1|J0|dξ = 0.

(5.6)

The solution isN1 =−1
4 − 1

2ξ + 3
4ξ 2. Due to symmetry, the other corner shape function reads

N3 = −1
4 +

1
2ξ + 3

4ξ 2. There are only two conditions for the three coefficients to defineN2.
To obtain a uniqueN2, it is additionally required thatN1, N2, N3 form a partition of unity with

N2 = 1−N1−N3 =
3
2

(
1−ξ 2) . (5.7)

Summarizing the results (see Figures 5.1 and 5.2 for an illustration), we get





nd = 3 : N1 =−1
4 − 1

2ξ + 3
4ξ 2

N2 =
3
2

(
1−ξ 2

)

N3 =−1
4 +

1
2ξ + 3

4ξ 2

nv = 1 : ψ1 = 1
np = 1 : χ1 = |J0|/|J|

. (5.8)
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5.2 Shape functions for singular mass matrices

N̂1

N̂3

N̂2

u

−1 0 1 x,ξ

u
N2

N1

−1 1 x,ξ

N3

0

1

(a) (b)

[t]

Figure 5.1: Hierarchical (left) and modified (right) shape functions for a quadratic truss element.

m

χ1,Ψ1 v

x,ξ0−1 1

Figure 5.2: Velocity shape function for quadratic truss element.

General case (nd-node element)

Consider a 1D element with arbitrary number of nodesnd > 2. There is more than one possi-
bility to construct shape functions that satisfy the interpolation condition at the corner nodes
and the orthogonality condition (4.24). Here, an option with closed form expressions for the
shape functions is presented. It uses GAUSS-LOBATTO quadrature points as node locations
and partially follows the idea of construction of biorthogonal bases proposed in LAMICH -
HANE AND WOHLMUTH (2007).

Let us denote{ξi}nd
i=1 and{wi}nd

i=1 as locations and weights for the GAUSS-LOBATTO quadra-
ture of ordernd for the interval[−1;1], see (ABRAMOWITZ ET AL . 1964, p. 887). The
special feature of the GAUSS-LOBATTO quadrature is that theintegration points include
the end points of the interval (ξ1 = −1 andξnd = 1). The inner points are the roots of the
derivative of the Legendre polynomialP ′

nd−1(ξ ) = 0, and the weights are equal towi =
2

nd(nd−1)(Pnd−1(ξi)2)
.

Then, two LAGRANGE bases are defined using the quadrature points as interpolation points

N̄j =
nd

∏
i=1
j 6=i

ξ −ξi

ξj −ξi
, j = 1,nd χ̄j =

nd−1

∏
i=2
j 6=i

ξ −ξi

ξj −ξi
, j = 2,(nd−1). (5.9)
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5 Good ansatz spaces

χ̄ andN̄ are complete polynomials of ordernd−2 andnd, respectively. Moreover,̄χ andN̄
satisfy the interpolation condition at{ξi}(nd−1)

i=2 and{ξi}nd
i=1, respectively.

The shape functions for momentaξi are defined as complete polynomials of ordernd − 2
multiplied with |J0|/|J|

χi = |J0|/|J|χ̄i+1 j = 2,(nd−1). (5.10)

The left corner shape function can be constructed as a linearcombination ofN̄i with

N1 = N̄1−
nd−1

∑
i=2

aiN̄i . (5.11)

The orthogonality condition forN1 andχk reads as

∫ 1

−1
N1χk|J|dξ = |J0|

∫ 1

−1

(
N̄1−

nd−1

∑
i=2

aiN̄i

)
χ̄k dξ , k= 2,(nd−1). (5.12)

The integrand is a polynomial of order(2nd−4) and thus, the integral can be evaluated exactly
in terms of the GAUSS-LOBATTO quadrature formula withnd nodes. Next, the interpolation
property ofχ̄ andN̄ is used to simplify the expression

|J0|
∫ 1

−1

(
N̄1−

nd−1

∑
i=2

aiN̄i

)
χ̄kdξ = |J0|

nd

∑
j=1

[(
N̄1(ξj)−

nd−1

∑
i=2

aiN̄i(ξj)

)
χ̄k(ξj)

]
wj =

= |J0|(χ̄k(−1)w1−akwk) , k= 2,(nd−1). (5.13)

Then, the orthogonality relation (5.12) gives

ak =
w1 χ̄k(−1)

wk
=

χ̄k(−1)

(Pnd−1(ξk))
2 . (5.14)

Due to symmetry, the right corner shape function can be constructed as

Nnd = N̄nd −
nd−1

∑
i=2

biN̄i , bi =
wnd χ̄i(1)

wi
=

χ̄i(1)

(Pnd−1(ξi))
2 . (5.15)

Note, that the corner shape functions do not satisfy the interpolation condition at inner nodes.
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5.2 Shape functions for singular mass matrices

The inner shape functions are not uniquely defined. They may be constructed such that
{Ni}nd

i=1 form a partition of unity

Ni = (1+ai +bi) N̄i =

(
1+

χ̄i(−1)+ χ̄i(1)

(Pnd−1(ξi))
2

)
N̄i , i = 2,(nd−1). (5.16)

The functions{N̄i}nd
i=1 form a complete polynomial basis, and it is easy to check thatit is

the same case for the basis{Ni}nd
i=1. The basis{N̄i}nd

i=1 is built from {Ni}nd
i=1 via a linear

transformationTN, which has a nice block structure

Ni =
nd

∑
j=1

TN,ij N̄j or N = TNN̄, (5.17)

with

TN =




1 −a2 · · · −and−1 0
0 (1+a2+b2) · · · 0 0
...

...
...

...
...

0 0 · · · (1+and−1+bnd−1) 0
0 −b2 · · · −bnd−1 1



. (5.18)

Note, that the determinant of the transformation matrixTN can be computed as follows

det(TN) =
nd−1

∏
i=2

(1+ai +bi). (5.19)

The absolute values ofai andbi are less than 0.5, which implies that(1+ai +bi)> 0. Thus,
the determinant of the matrixTN is non-zero and the transformation matrix is regular.

In the casend = 3, the functions are identical to the ones in equation (5.8).In the casend = 4,
the basis reduces to





ξ1,4 =±1; ξ2,3 =± 1√
5

nd = 4 : N1 =−1
4 +

3
4 ξ + 3

4 ξ 2− 5
4 ξ 3

N2 =
3
4 +

3
√

5
4 ξ − 3

4 ξ 2− 3
√

5
4 ξ 3

N3 =
3
4 − 3

√
5

4 ξ − 3
4 ξ 2+ 3

√
5

4 ξ 3

N4 =−1
4 − 3

4 ξ + 3
4 ξ 2+ 5

4 ξ 3

nv = 2 : ψ1 = 1; ψ2 = ξ
np = 2 : χ1 =

|J0|
2|J|

(√
5ξ +1

)
; χ2 =

|J0|
2|J|

(
−
√

5ξ +1
)
.

(5.20)

The shape functions (5.20) are illustrated in Figure 5.3.
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N4N3N2N1

ξ

u

10.50-0.5-1

1.2
1

0.8
0.6
0.4
0.2

0
-0.2
-0.4

Figure 5.3: Modified shape functions for the cubic 1D element.

This method can be easily extended for multiple dimensions in case of tensor product struc-
ture, see Subsections 5.2.3 and 5.2.4.

The formulation and shape functions developed above enableus to construct finite elements
for thin-walled structures that significantly reduce artificial oscillations of contact forces in
dynamic problems and show sufficient accuracy for modal and wave propagation analysis.
Herein, the discussion is restricted to 1D truss and 2D TIMOSHENKO beam elements, quad-
ratic nine-node quadrilaterals and 27-node hexahedrals. In addition, only formulations with
equal number of velocity and momentum parametersnv = np are considered.

Now, a notation for the two discussed truss elements is introduced:

• Tr2-0: a three-node truss with quadratic shape functions for displacements and constant
ansatz for velocity, according to (5.8)

• Tr3-1: a four-node truss with cubic shape functions for displacements and linear ansatz
for velocity, according to (5.20).

In the denomination (TrX-Y) for the elements, X and Y are the order of the displacement and
velocity interpolation, respectively. For these elements, contact may occur at the end of the
domain∂Bc, i.e., at the left or right node. The shape functions for someTIMOSHENKO
beam elements are given below.
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5.2 Shape functions for singular mass matrices

5.2.2 Special shape functions for three-node Timoshenko beam

element

For a beam element, a lateral contact inside the domainB may occur. It is collocated at the
corner nodes of the elements herein. Only three-node TIMOSHENKO beam elements are
presented

• Ti2-2-2-2: standard Lagrange formulation with CMM (used for reference computa-
tions)

• Ti2-2-0-0: quadratic shape functions (5.8) for displacement and rotation

• Ti2-2-0-1: quadratic shape functions (5.8) for displacement and rotation, but angular
velocity is linear

• Ti2-2-0-2: quadratic shape functions (5.8) for displacement and rotation, but angular
velocity is quadratic

• Ti2*-2-1-2: cubic linked interpolation (5.21), see discussion below.

In the element notation (TiX-Y-Z-W), the four numbers standfor the order of displacement,
rotation, translational and angular velocity, respectively. The latter four elements have singular
mass matrices with zero masses at the corner nodes. They differ in the computation of the
rotational inertia. Ti2-2-0-1 and Ti2-2-0-2 use a higher order ansatz for angular velocity. The
linked interpolation Ti2*-2-1-2 allows the element to yield an exact stiffness matrix for static
problems. The shape functions reads

N =




−1/4+3/4ξ +3/4ξ 2−5/4ξ 3 0

−5/8ξ
(
1−ξ 2

)
le 1/2−1/2ξ

3/2−3/2ξ 2 0

0 1−ξ 2

−1/4−3/4ξ +3/4ξ 2+5/4ξ 3 0

−5/8ξ
(
1−ξ 2

)
le 1/2+1/2ξ




T

, Ψ =




1 0
ξ 0
0 1
0 ξ
0 ξ 2




T

. (5.21)

Moreover, the corner displacement shape functions are orthogonal to linear velocities. The
linear translational velocityψ22 allows exact computation of the polar inertia, which is bene-
ficial for flexural dominated problems.
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N1(ξ ) N1(η)

Figure 5.4: Shape functionN1(ξ ,η) of a nine-node quadrilateral element (Q2).

5.2.3 Shape functions for 2D

The shape functions for the 2D case may be obtained by means oftensor product rule, see
Figure 5.4. The shape functions for a nine-node quadrilateral element are constructed with
the help of the shape functions for three-node element according to equation(5.8).

The orthogonality condition for displacement and momentumshape functions given in equa-
tion (4.24) requires the multiplier|J0|

|J| for χ. Moreover, mixed products of monomialsξ and
η must be avoided forχ, which limits the maximal number of momentum shape functionsnp

to 10. The number of velocity parameters is assigned tonv =10. This leads to shape functions
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5.2 Shape functions for singular mass matrices

− node with mass − massless node

⇒

Figure 5.5: Nine-node quadrilateral element (Q2).

in the form

N =

[
N1(ξ )N1(η) 0 N3(ξ )N1(η) 0 · · ·

0 N1(ξ )N1(η) 0 N3(ξ )N1(η) · · ·

]
, (5.22)

Ψ =

[
1 0 Xh 0 Yh 0 ξ 2 η2 0 0
0 1 0 Xh 0 Yh 0 0 ξ 2 η2

]
, (5.23)

χ =
|J0|
|J|

[
1 0 ξ 0 η 0 ξ 2 η2 0 0
0 1 0 ξ 0 η 0 0 ξ 2 η2

]
. (5.24)

This element is denoted as Q2V10P10, i.e. it is a quadratic Lagrange element with ten velocity
and momentum modes (parameters). This element has masslesscorner nodes, see Figure 5.5.
The inertia is consistently redistributed between the center node and the mid-edge nodes.

5.2.4 Shape functions for 3D

The derivation of the shape functions for a 27-node Lagrangeelement follows the procedure
for the element Q2V10P10. The shape functions are constructed with the help of the shape
functions for three-node element (5.8). In this case, the maximum number of the momentum
shape functions is 57 including 19 monomials for each direction

Θ = [1,ξ ,η,ζ ,ξ 2,η2,ζ 2,ξ η,ξ ζ ,η ζ ,ξ 2η,ξ 2ζ ,ξ η2,η2ζ ,ξ ζ 2,η ζ 2,ξ 2η2,η2ζ 2,ξ 2ζ 2].

(5.25)

The orthogonality condition for displacement and momentumshape functions given in equa-
tion (4.24) requires the multiplier|J0|

|J| for momentum shape functionsχ. This leads to shape
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5 Good ansatz spaces

functions in the form

N =
[
N1(ξ )N1(η)N1(ζ )I N1(ξ )N3(η)N1(ζ )I N3(ξ )N3(η)N1(ζ )I · · ·

]
, (5.26)

Ψ = IΘ, (5.27)

χ =
|J0|
|J| IΘ, (5.28)

whereI is the identity matrix of size three by three andΘ is defined above defined above
vector of monomials. The element is denoted as Hexa27V57P57.

5.3 Variational selective mass scaling

Justification of the existing methods for SMS is not the primary goal of the derivation. Flex-
ibility of the mass matrices (4.11-4.14) facilitates the construction of SMS that does not have
some of the disadvantages of existing techniques. For example, some mass scaling technique
do not preserve rotational inertia of a single element. Thisleads to large errors for problems
where substantial rotations of a structure occur. If the ansatz space for velocities contains all
rigid body modes (RBM), then the mass matrix (4.14) gives theexact values for translational
and rotational inertia. For 1D, 2D and 3D cases the followingΨ is required:

Ψ1D =
[

1
]
, Ψ2D =

[
1 0 −Yh

0 1 Xh

]
, (5.29)

Ψ3D =




1 0 0 −Yh Zh 0
0 1 0 Xh 0 −Yh

0 0 1 0 −Xh Zh


 . (5.30)

Here,Xh(ξ ,η,ζ ), Yh(ξ ,η,ζ ) andZh(ξ ,η,ζ ) are approximations of the reference geometry of
an element obtained from the isoparametric approach. However, such velocity shape functions
Ψ lead to a mass matrixM◦ with coupled terms betweenx-, y- andz- direction. This is a rather
undesired property. In order to decouple inertia, each column of Ψ should contain only one
non-zero entry. This leads to a different ansatzΨ with

Ψ2D =

[
1 0 Yh 0
0 1 0 Xh

]
, (5.31)

Ψ3D =




1 0 0 Yh Zh 0 0 0 0
0 1 0 0 0 0 Xh 0 Yh

0 0 1 0 0 Xh 0 Zh 0


 . (5.32)
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5.3 Variational selective mass scaling

For high-order elements a complete linear ansatz may be usedwith

Ψ1D =
[

1 Xh
]
, Ψ2D =

[
1 0 Xh 0 Yh 0
0 1 0 Xh 0 Yh

]
, (5.33)

Ψ3D =




1 0 0 Xh Yh Zh 0 0 0 0 0 0
0 1 0 0 0 0 Xh Yh Zh 0 0 0
0 0 1 0 0 0 0 0 0 Xh Yh Zh


 . (5.34)

For some low order elements, such as T1 or Tetra4, constant ansatz space forΨ may be used
with

Ψ2D =

[
1 0
0 1

]
, Ψ3D =




1 0 0
0 1 0
0 0 1


 . (5.35)

Note, usage of current geometry for velocity ansatz is possible. Some aspects of such treat-
ment are discussed in TKACHUK AND BISCHOFF (2013a).

The elements using variational mass scaling are denoted with the suffix ’MS’ andnv, the
number of columns in the matrixΨ, e.g. 8-node hexahedral element using ansatz (5.35)
with three velocity shape functions is denoted Hexa8MS3. The value of scaling factorC1 is
specified separately.

In the following section, some examples demonstrate the efficiency of the proposed tech-
niques.

5.3.1 Three-node triangle

A simple example is discussed to clarify this approach. Consider a three-node membrane
element with two DOFs per node with constant densityρ0, described also in Figure 2.12. Let
us stick to the case withC2 = C3 = 0, leading toM◦ = M +λ◦

e with the mass augmentation
matrix in the formλ◦

e = C1
(
M −C H

−1
C

T). Standard shape functions for displacements
and constant functions for momenta are used with

N =

[
1−ξ −η 0 ξ 0 η 0

0 1−ξ −η 0 ξ 0 η

]
, χ =

[
1 0
0 1

]
. (5.36)
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5 Good ansatz spaces

This corresponds to an element T1MS2 in the notation of the thesis. Substitution of shape
functions lead to

M =
ρ0A0

12




2 0 1 0 1 0
0 2 0 1 0 1
1 0 2 0 1 0
0 1 0 2 0 1
1 0 1 0 2 0
0 1 0 1 0 2




,C T =
A0

3




1 0
0 1
1 0
0 1
1 0
0 1




,H =
A0

ρ0

[
1 0
0 1

]
, (5.37)

λ◦
e = C1

ρ0A0

18




2 0 −1 0 −1 0
0 2 0 −1 0 −1
−1 0 2 0 −1 0
0 −1 0 2 0 −1
−1 0 −1 0 2 0
0 −1 0 −1 0 2




. (5.38)

The latter expression is identical to the mass scaling matrix λ◦
e given by equation (2.90) up to

a factor three, see also OLOVSSON ET AL. (2005).

Ansatz (5.30) can be used for more accurate computations, where exact value for the element’s
rotational moment is needed. The basisχ reads

χ =

[
1 0 −Yh

0 1 Xh

]
. (5.39)

This results in the following projection matricesC andH for the element T1MS3 with

H =
A0

ρ0




1 0 −yG

0 1 xG

−yG xG Ixx+ Iyy+x2
G+y2

G


 , (5.40)

C
T =

A0

12




4 0 −2Y1−Y2−Y3

0 4 2X1+X2+X3

4 0 −Y1−2Y2−Y3

0 4 X1+2X2+X3

4 0 −Y1−Y2−2Y3

0 4 X1+X2+2X3




. (5.41)

The obtained mass scaling matrixλ◦
e for an element T1MS3 is identical to the one obtained

in Subsection 2.3.5.
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5.3 Variational selective mass scaling

5.3.2 Bilinear quadrilateral element

In Chapters 6 and 7, the elements Q1MS2, Q1MS3 and Q1MS4 are tested. For comparison of
these formulations, see also TKACHUK AND BISCHOFF (2013c). The most efficient element
among the proposed ones is Q1MS3 leading to accurate resultsin bending dominated tran-
sient and eigenvalue problems. The conditioning of the massmatrix obtained with Q1MS3 is
comparable with ASMS. This element is also found to be less sensitive to element distortion
w.r.t. ASMS (TKACHUK AND BISCHOFF2013b). For wave propagation example the disper-
sion produced by Q1MS3 is substantially larger than for ASMS(TKACHUK AND BISCHOFF

2013b).

5.3.3 Quadratic Serendipity and Lagrange elements

Q2MS6 and S2MS6 elements are proposed in TKACHUK AND BISCHOFF(2013a). They may
be considered as very good alternatives to LMM. They produceaccurate results and enable
calculation with large time-step sizes. However, conditioning of mass matrices obtained with
S2MS6 prohibits large values for the selective mass scalingfactorC1. Conditioning of mass
matrices obtained with Q2MS6 is by factors smaller. Thus, VSMS with six velocity modes
can be used for broad ranges of the selective mass scaling factor C1.

5.3.4 Linear tetrahedral element

Tetra4MS3 and Tetra4MS6 elements were proposed in ECK ET AL . (2014). These elements
yield accurate results. They can be recommended for bulk structures free-meshed with tetra-
hedral meshes. Thus, it may be used in various areas like biomechanics and forging. More
examples can be found in Sections 7.2 and 6.3. Ten-node quadratic tetrahedral elements (like
LS-DynaELFORM=16 orANSYSSOLID92) and composite ten-node tetrahedral elements
(like LS-DynaELFORM=17) are not considered here. Extension of variational selective mass
scaling for these elements is outlined in the outlook in Section 8.2.

5.3.5 Trilinear hexahedral element

The element formulation Hexa8MS3, Hexa8MS6, Hexa8MS9 and Hexa8MS12 are proposed
and tested in TKACHUK AND BISCHOFF (2013b) and ECK ET AL . (2014). Hexa8MS6 is
chosen for efficiency and accuracy, see for examples Section7.2. The influence of number
of velocity modes on accuracy and efficiency is given in ECK ET AL . (2014) and Subsec-
tions 6.3.3, 7.2.2, 7.2.3, 7.2.5. Further extensions of variational selective mass scaling for
20- and 27-node hexahedral element are outlined in the outlook in Section 8.2.
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5 Good ansatz spaces

5.4 Mass matrices using incompatible velocity

formulations

The shape functions for a nine-node quadrilateral element are constructed with the help of the
shape functions for a three-node element according to equation (5.8). In this case, consistency
of the mass matrix requires that the shape functions for incompatible velocityÑ is orthogonal
to at least constant velocity. A possible ansatz reads

Ñ =
|J0|
|J|

[
N1(ξ )N1(η) 0 N3(ξ )N1(η) 0 · · ·

0 N1(ξ )N1(η) 0 N3(ξ )N1(η) · · ·

]
, (5.42)

where each function is product of corner shape functions forthe three-node truss element
Tr2-0. This element has eight incompatible velocity modes (parameters) and it is denoted as
Q2IVM8. The consistency of the element Q2IVM8 is checked in Appendix A and eigenfre-
quency benchmark in Section 6.3. The same ansatz may be used for the discretization of the
one-parametric family (4.31). This element is not considered here.
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6
Spectral analysis

In this section, the most important results for spectral anddispersion analysis are given. The
details of the dispersion analysis are presented in Subsection 2.5.3. Here, examples from
TKACHUK ET AL . (2013); TKACHUK AND BISCHOFF (2013b, c) are collected. New results
for dispersion relations of VSMS are given in Section 6.2.

6.1 Dispersion relations for selected hybrid-mixed

singular mass matrices

6.1.1 Three-node truss element: Tr2-0

The dispersion analysis is performed on the basis of the patch equation and the local stiffness
and mass matrices. In case of the truss element Tr2-0, these matrices read

ke=
EA
le




4 −6 2
−6 12 −6
2 −6 4


 , m∗,e= ρAle




0 0 0
0 1 0
0 0 0


 , (6.1)

with le being the element length. The solution of the equation of motion is a harmonic wave,
and the corresponding ansatz for it at thejth node reads

Uj(t) = Ucexp(i(κ j/2−Ωct/le)) for j odd, (6.2)

Uj(t) = Umexp(i(κ j/2−Ωct/le)) for j even, (6.3)

with Uc andUm being the complex-valued amplitudes at the corner and middle nodes, respec-
tively, andc=

√
E/ρ being the speed of sound. The amplitudesUc andUm form an unknown
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6 Spectral analysis

patch amplitude vector̃Urep = [Um, Uc]. Substitution of the ansatz in the equation of motion
leads to a homogeneous system with the two unknownsUc andUm

(
−Ω2

[
0 1 0 0 0
0 0 0 0 0

]
+

[
−6 12 −6 0 0
2 −6 8 −6 2

])




Uce−iκ

Um

Uc

Umeiκ

Uceiκ



= 0, (6.4)

[
−6e−iκ −6 −Ω2+12
4cos(κ)+8 −6−6eiκ

][
Uc

Um

]
= 0. (6.5)

A non-trivial solution of (6.5) only exists, if the determinant of the system is zero. This
condition yields the characteristic equation, from which the dispersion relation is obtained
with

Ω2 =
6(1−cos(κ))

cos(κ)+2
. (6.6)

In the case of a 1D problem, the analytical solution predictsnon-dispersive wave propagation
Ω0 = κ , i.e., the wave speed is constant for all wave numbers (see Figure 6.1). The semi-
discrete solutions are dispersive. The TAYLOR expansion ofthe dispersion relation (6.6) at
κ = 0 is

Ω2 = κ2+
1
12

κ4+
1

360
κ6+O(κ8), (6.7)

and coincides with the expression for the continuum problemΩ2
0 = κ2 up to the fourth order

term.

continuum trussTr2-0, acoustic

κ

Ω

6543210

6

4

2

0

Figure 6.1: Dispersion for a quadratic truss element with constant velocities, Tr2-0.
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6.1 Dispersion relations for selected hybrid-mixed singular mass matrices

Thus, the phase velocity for long waves (κ → 0) and the values of the lowest eigenfrequen-
cies converge uniformly to the exact solution. Surprisingly, the dispersion relation of the
element Tr2-0 coincides with the dispersion relation of a two-node truss element with CMM,
see BELYTSCHKO (1978). Moreover, the dispersion relation of the element Tr3-1 (see below
(6.16)) coincides with the dispersion relation of a three-node truss element with CMM, refer
to BELYTSCHKO (1978).

6.1.2 Four-node truss element: Tr3-1

The spectral analysis for the element Tr3-1 is performed analogously to the element Tr2-0.
The stiffness matrix and HSMM read

ke =
3EA
le




3 −
√

5−1
√

5−1 −1
−
√

5−1 4 −2
√

5−1√
5−1 −2 4 −

√
5−1

−1
√

5−1 −
√

5−1 3


, me=

ρAle
10




0 0 0 0
0 4 1 0
0 1 4 0
0 0 0 0


. (6.8)

The solution is assumed in the form of harmonic waves with

Uj(t) = Ucexp(i(κ j/3−Ωct/le)) for j mod 3= 0, (6.9)

Uj(t) = Um1exp(i(κ j/3−Ωct/le)) for j mod 3= 1, (6.10)

Uj(t) = Um2exp(i(κ j/3−Ωct/le)) for j mod 3= 2, (6.11)

with Uc, Um1 andUm2 being the corner and the two midnode amplitudes.

The reduced matrices for the patch equation given in (2.119)read

M red =−Ω2

10




0 1 4 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 4 1 0



 , (6.12)

K red = 3




√
5−1 −2 4 −

√
5−1 0 0 0

−1
√

5−1 −
√

5−1 6 −
√

5−1
√

5−1 −1
0 0 0 −

√
5−1 4 −2

√
5−1


 , (6.13)

Ũred =
[
Uce−iκ Um1 Um2 Uc Um1eiκ Um2eiκ Uceiκ]T . (6.14)

The characteristic equation finally results in




−18e−iκ +12 1/2Ω2−42 −Ω2+48
−6 cos(κ)+18 −18+12eiκ 12−18eiκ

12−18eiκ −eiκ (Ω2−48
)

1/2eiκ (Ω2−84
)






Um2

Uc

Um1


= 0. (6.15)
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6 Spectral analysis

The spectral analysis offers two branches for the dispersion relation. These branches may be
classified as acoustic and optical branches according to FELIPPA (2001) with the following
expressions for dispersion

Ω2
aco= 4

13+2 cos(κ)−R1

3−cos(κ)
, Ω2

opt = 4
13+2 cos(κ)+R1

3−cos(κ)
, (6.16)

with R1 =
√

124+112 cos(κ)−11cos2(κ). The TAYLOR expansion of the acoustic branch
Ω2

aco is exact up toO(κ6), i.e. the first eigenvalue converges with sixth order, see Figure 6.2.

continuum trussopticalacoustic

κ

Ω

6543210

8

7

6

5

4

3

2

1

0

Figure 6.2: Dispersion for a cubic truss element with linear velocities, Tr3-1.

6.1.3 Quadratic Timoshenko element

The exact dispersion relation for a TIMOSHENKO beam is givenin FELIPPA (2010) and
FELIPPA (2001). It can be found from the characteristic equation

κ4−Ω2−
(

EI
GAsl2e

+
r2
g

l2e

)
κ2Ω2+

EIr2
g

GAsl4e
Ω4 = 0. (6.17)

This characteristic equation yields solution with two branches, i.e. flexural (bending) and
shear. The TAYLOR expansions of these solutions for rectangular cross-section andν = 0.0,
no shear correction (i.e.GAs= GA) are given here as a reference

Ω2
bend= κ4−1/4Λ2κ6+

11
144

Λ4κ8− 5
192

Λ6κ10+O
(
κ12) , (6.18a)

Ω2
shear=

72
Λ4 +18

κ2

Λ2 −κ4+1/4Λ2κ6− 11
144

Λ4κ8+
5

192
Λ6κ10+O

(
κ12) , (6.18b)
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6.1 Dispersion relations for selected hybrid-mixed singular mass matrices

Instance Description Dispersion behavior

Ti2-2-2-2 Standard shape functions
for displacements and ro-
tations

Four branches. Flexural and shear branches match the
analytical expressions for continuum beam up toO(κ8)
and O(κ6). Third branch is the continuation of flexu-
ral branch without gap. Fourth branch is optical optical
with a gap above the shear branch.

Ti2-2-0-0 Constant ansatz for trans-
lational and angular ve-
locities

Two branches. Flexural and shear branches match
the analytical expressions for a continuum beam up to
O(κ6) andO(κ2), respectively.

Ti2-2-0-1 Constant ansatz for trans-
lational velocity and lin-
ear angular velocities

Three branches. Flexural and shear branches match the
analytical expressions for continuum beam up toO(κ6)
andO(κ2), respectively. Third branch is optical with a
gap above the shear branch.

Ti2-2-0-2 Constant ansatz for
translational velocity
and quadratic angular
velocities

Three branches. Flexural and shear branches match
the analytical expressions for a continuum beam up to
O(κ6) andO(κ4), respectively. Third branch is optical
lying between flexural and shear branches.

Ti2*-2-1-2 Linked interpolation
formulation according to
(5.21)

Three branches. Flexural and shear branches match the
analytical expressions for a continuum beam up up to
O(κ8) andO(κ0), respectively. Third branch is the con-
tinuation of the flexural branch without a gap.

Table 6.1:Comparison of dispersion properties of TIMOSHENKO beam element formulations
(TKACHUK ET AL . 2013).

whereΛ = h
le

is the length-to-thickness ratio of an individual element.

The spectral analysis for quadratic TIMOSHENKO beam is quite technical. The length of
representative amplitude vectorŨred is four, i.e. the corner and midnode displacements and
rotations. The resulting characteristic equation is cubicor quartic for singular and consis-
tent mass matrix, respectively. Expressions for dispersion relations are found and analyzed
with the help of the computer algebra systemMaple. The number of branches for dispersion
relations and their properties are summarized in Table 6.1.

The dispersion curves for a Ti2-2-0-2 element in the case of shear-to-bending ratiol2eGA=

100EI are given in Figure 6.3. Note, that the shear acoustic branchfor short waves (k → 0)
gives correct values for the phase velocity 96

√
2. The errors for short shear and flexural waves

with k → π are 1.3 % and 23.8 %, respectively. The smaller accuracy of the flexural branch
is caused by the poorer ansatz space chosen for the translational velocity (only constant). The
larger relative error in the flexural branch leads to higher dispersive ripples in the flexural part
of the solution in the wave propagation benchmark, see Figure 7.6.
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exact shear
exact flex.

shear acoustic
optical

flex. acoustic

long flex. waves

short shear waveslong shear waves

κ
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6543210
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Figure 6.3: Dispersion of a TIMOSHENKO Tr2-2-0-2 element vs. dispersion of continuum TIM-
OSHENKO beam model,Λ = 1/4.

6.2 Dispersion relations for selected SMS templates

6.2.1 Truss elements

Two-node truss element

Consider a two-node truss element with constant velocity shape functions and one parametric
mass matrix template. The dispersion relation is computed following the standard procedure.
The element matrices read

N =
[

1
2(1−ξ ) 1

2(1+ξ )
]
, Ψ =

[
1
]
, (6.19)

ke =
EA
le

[
1 −1
−1 1

]
, me=

ρAle
6

[
2 1
1 2

]
, Y = ρAle

[
1
]
, (6.20)

A =
ρAle

2

[
1 1

]
, A Y

−1
A

T =
ρAle

4

[
1 1
1 1

]
, λ◦

e =
ρAle
12

[
1 −1
−1 1

]
. (6.21)
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exact
C1 = 30

C1 = 5
C1 = 2

κ

Ω

6543210
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Figure 6.4: Dispersion of Tr2MS1 element vs. continuum truss model.

Note, the hybrid mixed mass matrixm◦
e satisfies the velocity patch tests A,B,C,D and E. The

solution for the dynamic equation is assumed in the from of a harmonic wave

Uj(t) = Ucexp(i(κ j −Ωct/le)) for all j. (6.22)

Substitution of latter ansatz in the equation of motion leads to a patch equation with two
elements and one unknown

(−Ω2

12

[[
2 4 2

]
+C1

[
−1 2 −1

]]
+
[
−1 2 −1

])



exp(−iκ)

1
exp(iκ)



Uc = 0. (6.23)

The latter equation may be solved forΩ2, yielding the dispersion relation for the acoustic
branch

Ω2
aco=

12(1−cosκ)
4+2cosκ +C1(1−cosκ)

. (6.24)

The spectral relations forC1 = [2,5,30] are shown in Figure 6.4.

The TAYLOR expansion of the acoustic branchΩ2
aco at κ = 0 reads

Ω2 = κ2+
1−C1

12
κ4+

1+4C1+5C2
1

720
κ6+O(κ8). (6.25)
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6 Spectral analysis

If the mass scaling factor is chosen to beC1 = 1, then the TAYLOR expansion is exact up
to the sixth order and up to the fourth order, otherwise. The maximum frequency may be
obtained from the acoustic branch. The extreme values of thedimensionless frequency may
be obtained for very short (κ = π) waves with

Ω2
max=

12
C1+1

. (6.26)

Thus, the critical time-step for the element in dependence of C1 can be computed as

dtcrit =
2

ωmax
=

2
Ωmax

le
c
=

√
C1+1

3
le
c
. (6.27)

For reference, CMM and RSL result indtcrit =
le√
3c

anddtcrit =
le
c , respectively (BELYTSCHKO

ET AL . 2001). The growth of the time-step size is conform with other SMS methods with
√

1+C1.

Three-node truss element

Consider a three-node truss element with standard LAGRANGEshape functions and velocity
shape functions according to equation (5.33). Here, constant Jacobian|J| = le

2 and constant
section properties are assumed. The dispersion relation can be derived as follows. Shape
functions and element matrices read

N =
[

1
2(ξ

2−ξ ) 1−ξ 2 1
2(ξ

2+ξ )
]
, Ψ =

[
1 xh

]
≡
[
1 le

2 ξ
]
, (6.28)

ke =
EA
3le




7 −8 1
−8 16 −8
1 −8 7



 , me =
ρAle
30




4 2 −1
2 16 2
−1 2 4



 , (6.29)

Y =
ρAle
12

[
12 0
0 l2e

]
, A =

ρAle
12

[
2 8 2
−le 0 le

]
, (6.30)

A Y
−1

A
T =

ρAle
18




2 2 −1
2 8 2
−1 2 2


 , λ◦

e =
ρAle
45




1 −2 1
−2 4 2
1 −2 1


 . (6.31)

Note, that the hybrid mixed mass matrixm◦
e satisfies the velocity patch tests A,B,C,D and

E. The solution for the dynamic equation is assumed in the same form as for the element
Tr2-0 in equation (6.3). The representative patch containstwo elements and the length of the
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6.2 Dispersion relations for selected SMS templates

representative amplitude vectorŨ is two. The dynamic equation of motion reads

(−Ω2

30

[[
6 48 6 0 0
−3 6 24 6 −3

]
+C1

[
−4 8 4 0 0
2 −4 4 −4 2

]]
+

[
−8 16 −8 0 0
1 −8 14 −8 1

])
Ũ = 0.

(6.32)

The latter equation leads to the biquadratic characteristic equation

ã4Ω4+ ã2Ω2+ ã0 = 0, (6.33)

where the coefficients of the equation are defined as

ã4 = 3cosκ −9−2C1(2+cosκ), ã2 = 48cosκ +312+12C1(1−cosκ) (6.34)

ã0 = 720(cosκ −1). (6.35)

Solving equation (6.33) forΩ2 results in two branches for the spectral relation with

Ω2
aco=

−ã2+
√

ã2
2−4ã0ã4

2ã4
, Ω2

opt =
−ã2−

√
ã2

2−4ã0ã4

2ã4
, . (6.36a)

The spectral relations forC1 = [2,10] are shown in Figure 6.5.
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Figure 6.5: Dispersion of Tr3MS2 element vs. continuum truss model.
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The TAYLOR expansion of the acoustic branchΩ2
aco at κ = 0 reads

Ω2 = κ2+
1−C1

720
κ6+

−22+21C1−7C2
1

302400
κ8+O(κ10). (6.37)

If the mass scaling factor is chosen to beC1 = 1, then the TAYLOR expansion is exact up
to the eighth order and up to the sixth order, otherwise. The maximum frequency may be
obtained from the optical branch. The extreme values of the dimensionless frequency may be
obtained for very short (κ = π) or long waves (κ = 0) with

Ω2
max= max

(
12,

60
C1+1

)
. (6.38)

Thus, the critical time-step size for the element in dependence ofC1 can be computed as

dtcrit =
2

ωmax
=

2
Ωmax

le
c
= min

(√
1
3
,

√
C1+1

15

)
le
c
. (6.39)

For reference, CMM and RSL result indtcrit =
le√
15c

anddtcrit =
le√
6c

, respectively, see BE-
LYTSCHKO ET AL. (2001). This means that forC1 > 4 the critical time-step size is limited by
the first argument in the min function and does not decrease any further for greater values of
C1. The critical time-step size can be maximally increased by afactor

√
2 w.r.t. RSL.

A stronger reduction of the maximum frequency requires a poorer ansatz space for velocity
Ψ, e.g. Ψ = [1]. Derivation of element matrices and dispersion relations for this mass scal-

ing is omitted. The resulting critical time-step size is
√

C1+1
15

le
c . Thus, the time-step size is

proportional to
√

1+C1 like at other SMS techniques. However, the acoustic branch for this
ansatz is exact up to the fourth order.

6.2.2 Two-node Timoshenko element

Consider a two-node TIMOSHENKO beam with rectangular cross-sectionGAs=GA, ν = 0.0
and exact stiffness, see ZIENKIEWICZ AND TAYLOR (2006). Now, the dispersion analysis is
performed for a one parametric family of matrices, corresponding to case 1. The velocity
shape functions read

Ψ =
[
1 0

]T
, (6.40)

i.e. a constant translational velocity and no rotary velocity functions are assumed.

The main results are reported here, omitting the intermediate steps. Only two branches are
obtained, an acoustic flexural and an acoustic shear. TAYLORexpansion of the flexural branch
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6.2 Dispersion relations for selected SMS templates
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Figure 6.6: Dispersion of Timoshenko Ti1-1-1-1MS2 element vs. continuum beam model,Λ =
1/4. VSMS with constant ansatz for velocity.

reads

ω2
bend= κ4−

(
1/4Λ2+1/12C1−1/12Λ2C1−1/6

)
κ6+O

(
κ8) . (6.41)

This means only fourth order accuracy is attained. The extreme values of the dimensionless
frequency are obtained for very short (κ = π) shear waves. The maximum dimensionless
frequency is

Ω2
max=

144
Λ2(C1+1)

. (6.42)

Thus, the critical time-step size for the element dependantof C1 can be computed as

dtcrit =
2

ωmax
=

2
Ωmax

le
c
=

√
h(C1+1)

12le

le
c
=

h
6c

√
C1+1. (6.43)

Note, that ifΨ contains linear translational velocity, then the shear branch for long waves is
unaffected by mass scaling. In this case, the critical time-step is defined as

Ω2
max= max

(
144

Λ2(C1+1)
,

144
Λ2(2Λ2+1)

)
. (6.44)
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The second term of the latter expression does not depend on the mass scaling parameterC1.
Hence, for such an ansatzΨ, VSMS is not efficient. This is illustrated in Figure 6.6, where two
shear acoustic branches forC1 = 2 and 5 intersect the axis withκ = 0 at values independent
of C1. This value depends only on the slendernessΛ and can be evaluated as

Ωmax(Λ = 1/4) =
12

Λ
√

2Λ2+1
|Λ=1/4 = 32

√
2≈ 45.25. (6.45)

6.2.3 Three-node Timoshenko element

Consider a three-node TIMOSHENKO beam. The stiffness matrix of the element is com-
puted using two-point reduced integration and the mass matrix is computed with VSMS for a
complete linear ansatz ofΨ.

The main results are reported here, omitting the intermediate steps. In this case, four branches
are observed: acoustic flexural, optical flexural, acousticshear and optical shear. TAYLOR
expansion of the acoustic flexural branch reads

ω2
bend= κ4−

(
1
4

Λ2+
1
12

C1

)
κ6

+

(
1

180
C1+

1
144

C2
1+

1
48

Λ2C1+
1

240
+

11
144

Λ4
)

κ8+O
(
κ10) . (6.46)

This means that only the fourth order accuracy is attained ifC1 6= 0. The extreme values of
the dimensionless frequency are obtained for very long waves (κ = 0), for the optical shear
branch, or very short waves (κ = π), for the acoustic bending branch

Ω2
max= max

(
720

Λ2(C1+1)
,
72
Λ4

)
. (6.47)

The mass scaling is efficient only if shear the branch is not consistently approximated (spoiled).
Otherwise, the maximum frequency depends on the slenderness Λ. This also implies that
VSMS in the form used here is not efficient for rotational DOF’s. So, further research is
needed in this direction.
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Figure 6.7: Dispersion of a Timoshenko Tr2-2-2-2MS2 element vs. continuum model,Λ = 1/4.
VSMS with a linear ansatz for translational velocity.

6.3 Eigenvalue benchmarks

6.3.1 NAFEMS FV32

As an example of a two-dimensional problem, the eigenfrequency benchmark FV32 of NAFEMS
(NAFEMS 1990) is considered. Geometry, mesh and material properties of the model are
presented in Figure 6.8. Boundary conditionsux = uy = 0 are imposed along they-axis. Here,
Q1, Q2 and S2 types of elements are tested. For the bilinear 4-node element Q1, enhanced
assumed strains formulation with four EAS modes is used for stiffness calculation and 3×3
quadrature rule is used for mass computation. For S2 and Q2 elements, pure displacement
formulation with 3×3 quadrature is used for stiffness computation, and 4×4 quadrature rule
is used for mass matrix computation. The six lowest modes areshown in Figure 6.9. The
reference values to the frequencies are given in Table 6.2. Note, that modes 1, 2, 4 and 6 are
bending dominated modes, while modes 3 and 5 are longitudinal modes.

Hybrid-Singular Mass Matrices

Consistency of hybrid singular mass matrix formulations ofQ2P10V10 and Q2E8 is tested
here. Results for the six lowest eigenfrequencies are presented in Table 6.2. Computed fre-
quencies agree with the reference values.
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Figure 6.8: Setup of FV32 NAFEMS benchmark.
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3: 4:

5: 6:

Figure 6.9: The six lowes modes for FV32 NAFEMS benchmark computed with Q1 element and
CMM.

f1, Hz f2, Hz f3, Hz f4, Hz f5, Hz f6, Hz

Reference 44.623 130.03 162.70 246.05 379.90 391.44
Q2P10V10 44.630 130.14 162.71 246.76 382.01 391.54
Q2E8: 44.630 130.12 162.71 246.81 382.03 391.54

Table 6.2:Six lowest frequencies for FV32 benchmark computed with hybrid singular mass ma-
trices.
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6.3 Eigenvalue benchmarks

Ψ from Q1MS2 Q1MS3 Q1MS4 Q1ASMS,β = 2

fmax, Hz 4036 4045 7198 4459
fmax/f LMM

max 0,35 0.35 0.63 0.39
cond(PJM ◦) 14.1 26.9 39.3 11.0
error in lowest 10% freq., % 56 38 31 49

Table 6.3:Comparison of different mass scaling formulations for FV32, C1 = 30.

Selective Mass Scaling

The proposed family of mass matrices is obtained from the novel variational formulations.
The influence of the proposed mass scaling techniques on eigenvalues of structures is studied.
These problems are small enough so that the full spectra can be obtained and analyzed. Ef-
ficiency of mass scaling is estimated by the reduction of the maximum frequencyfmax. The
spectrum computed for a LMM is taken as a reference. Additionally, the comparison is done
by the condition number of mass matrices and the maximum error in the lowest 10% range of
the spectra, which is important for the structural response.

The reduction of eigenfrequencies for Q1MS3 with differentvalues of the scaling parameter
C1 are shown in Figure 6.10. Increase ofC1 decreases the maximum frequency. ForC1<5 the
maximum frequency of the scaled mass matrix is higher than for the LMM. ForC1 = 20 the
maximum frequency is halved and forC1 = 30 decreased by a factor of three. Comparable
reduction of maximum frequency can be obtained with Q1ASMS with β = 2, however the
error in lowest eigenfrequencies for the proposed method issmaller. Performance of the
proposed method for a set of ansatz function for velocityΨ with fixed penalty valueC1 = 30
is examined and results are presented in Table 6.3. As a reference, performance of the element
Q1ASMS is also given.

A similar study is done for S2MS6 and Q2MS6 elements. Resultsfor the six lowest eigen-
frequencies computed with S2MS6 are presented in Table 6.4.Variational mass scaling is
capable of accurate approximation of these six lowest frequencies. The error for S2ASMS
with scaling factorβ = 2 is much larger. Dependency of the critical time-step on scaling
parameterC1 andβ is given in Table 6.5. The following observations can be madefrom the
table. The values of conditioning of mass matrix for variational selective mass scaling are
larger than for ASMS. Conditioning for S2MS6 is by a factor two larger than for Q2MS6.
Similar observation are made for larger model of an arch bridge, see Table 7.1.
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Figure 6.10:Ratio of eigenfrequencies for different values of selective mass scaling parameters.
C1 - proposed in paper withΨ from (5.30),β - method II OLOVSSON ET AL. (2005).

f1, Hz f2, Hz f3, Hz f4, Hz f5, Hz f6, Hz

reference 44.623 130.03 162.70 246.05 379.90 391.44
CMM 44.626 130.06 162.70 246.15 380.23 391.46

C1 = 10 44.625 130.01 162.70 245.72 378.04 391.30
C1 = 30 44.622 129.93 162.69 244.83 373.05 390.95
C1 = 60 44.618 129.79 162.68 243.36 363.58 390.31

S2ASMS,β = 2 43.943 122.99 161.50 220.18 317.47 375.50

Table 6.4:Six lowest eigenfrequenciesf1−6 computed with S2MS6 elements for FV32 bench-
mark.

6.3.2 2D square membrane with distorted mesh

Consider a modal problem for a square unconstrained membrane. Dimensions, material prop-
erties and mesh are shown in Figure 6.11. The stiffness matrix is computed with 2×2 quadra-
ture rule and four enhanced assumed strain modes. The CMM andVSMS are computed with
4×4 quadrature rule. Row sum lumping is used for LMM. A moderatedistortion is introduced
to the mesh in order to find which mass scaling techniques are sensitive to mesh distortion.

106



6.3 Eigenvalue benchmarks

S2MS6 Q2MS6

Mass type dtcrit, µs condM dtcrit, µs condM

LMM 14.8 49 13.4 79
CMM 8.7 219 8.4 128

β = 10 34.5 184 38.5 72
β = 30 50.1 236 64.8 153
β = 60 61.0 348 91.0 247

C1 = 30 31.4 299 31.7 149
C1 = 60 36.7 537 37.1 275
C1 = 100 41.9 857 42.4 444

Table 6.5:Critical time-step and conditioning of mass matrix for FV32benchmark. S2 and Q2
element families.

3
3

a=0.5

15

Figure 6.11:The model of a square membrane (left) and sub-model (right) with mesh distortion
a = 0.5 m (right). Material properties:E= 207 GPa,ν = 0.3, ρ = 7800 kg/m3.
Mesh: 15×15 elements.

The results of the eigenvalue analysis are summarized in Table 6.6. The values obtained for
consistent and lumped mass matrix are given in the first and second row, respectively. These
values can be used as reference. Algebraic mass scaling based on OLOVSSON ET AL. (2005)
is performed withβ=2, VSMS withC1=30. The following data is presented in the columns:
the three lowest non-zero eigenfrequencies, the maximum eigenfrequency, conditioning and
average fill-in of the mass matrices and the distortion angleϕ4 for mode four computed with
equation (2.130). The condition number is computed for the productPJM . The following
observation may be made from Table 6.6. The maximum frequency for LMM is about half
of the one for CMM and the lowest frequencies are slightly smaller. All given mass scaling
methods reduce the maximum frequency by a factor two to threecompared to LMM.

Only algebraic mass scaling changes the order of the presented lowest eigenmodes, see Fig-
ures 6.12 and 6.13. Modes four and six are interchanged. Moreover, the structure has four
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f4, Hz f5, Hz f6, Hz fmax, Hz cond(PJM)
Average
bandwidth

mode 4 dis-
tortion ϕ4

LMM 133.105 140.466 140.731 1928.99 1 1 -
CMM 133.807 142.709 142.752 3707.33 12.39 8.3 -
ASMS,

β=2
124.824 126.598 127.716 873.97 12.35 8.3 1.32◦

VSMS,
C1=30

128.123 136.495 136.958 762.06 21.91 16.5 0.59◦

Table 6.6:Comparison of different mass matrices for 2D square membrane example

Figure 6.12:Eigenmode four for a square plate computed with algebraic selective mass scaling
with β = 2, f = 127.716 Hz.

symmetry planes and its eigenmodes four and five are mirrored. Thus, the corresponding fre-
quencies must be equal. The difference between the frequencies of the two symmetric modes
is the largest for the algebraic mass scaling among discussed methods (1.774 Hz). Algebraic
mass scaling leads also to the largest distortion angleϕ4. Thus, the algebraic mass scaling
after OLOVSSON ET AL. (2005) should be carefully used for distorted meshes.

Further observations can be made from the modes for the highest frequency, see Figure 6.14.
In case of the lumped mass matrix the mode is localized. Application of SMS with off-
diagonal terms yields the highest mode that propagate over the model.

6.3.3 NAFEMS FV52

As an example of a three-dimensional problem, the eigenfrequency benchmark FV52 of
NAFEMS (1990) is considered. Geometry and mesh of the model are shown in Figure 6.15.
Material properties of the benchmark FV52 are identical to FV32, see Figure 6.8. Boundary
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6.3 Eigenvalue benchmarks

Figure 6.13:Eigenmodes five (left) and six (right) for a square plate computed with algebraic
selective mass scaling withβ = 2, f5 = 124.824 Hz andf6 = 126.598 Hz.

Figure 6.14:Eigenmodes 256 for lumped mass matrix (left) and for algebraic selective mass scal-
ing (right) with β = 2, f LMM

max = 1928.99 Hz andf ASMS
max = 873.97 Hz.

1.0 m

z
10.0 m

10.0 m

y

x

Figure 6.15:Setup of FV52 NAFEMS benchmark.

conditionsuz= 0 are imposed along all four lower edges (z=−0.5). For stiffness calculation,
eight-node solid elements with nine enhanced strains are used.

The reductions of the eigenfrequencies obtained for Hexa8MS6 element with different values
of scaling parameters are shown in Figure 6.16. A reduction of 40%, 55% and 65% is ob-
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Figure 6.16:Ratio of eigenfrequencies for different values of selective mass scaling parameters.
C1 for element Hexa8MS6,β for algebraic selective mass scaling.

tained forC1 = 10, 20 and 30, respectively. The accuracy of the lowest eigenfrequencies is
compared with ASMS. Forβ = 2, the error in the lowest 10% range of eigenfrequencies is
40% compared to an error of 13% forC1 = 10.

6.4 Summary of spectral analysis

In this chapter dispersion and modal analyses for HSMM and VSMS are carried out. Dis-
persion analysis provided important results about the number of branches of the dispersion
relation and their quality (optical vs. acoustic, longitudinal, shear or flexural). Information
about these branches allowed to find the convergence rate fordifferent modes. For the dis-
cussed examples of truss and beam elements, HSMM reduces theorder of accuracy with
respect to CMM at least by two. VSMS may preserve the order of accuracy, but then it is not
efficient in the reduction of the highest frequencies. This means that the two alternative mass
formulations lead to higher dispersion error than LMM or CMM. In addition, the proposed
version of VSMS for elements with rotary DOF is not efficient.
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6.4 Summary of spectral analysis

Influence of HSMM and VSMS on the lowest eigenmodes is studiedfor three modal bench-
marks (NAFEMS FV32 and FV53, 2D square membrane). From results of these bench-
marks the following conclusions can be made. The proposed formulations for HSMM, i.e.
Q2V10P10 and Q2IVM8, give good results for NAFEMS FV32 benchmark. The accu-
racy of the lowest modes computed with Q1MS2, Q1MS3, Q1MS4, Q2MS6, S2MS6 and
S2ASMS are satisfactory for NAFEMS FV32 benchmark. The lowest modes computed with
Hexa8ASMS and Hexa8MS6 give satisfactory results in benchmark NAFEMS FV52. Com-
paring the two competing mass scaling techniques (ASMS and VSMS), it is observed, that
ASMS is more sensitive to mesh distortions than VSMS (2D square membrane benchmark).
The conditioning of mass matrix for VSMS is higher than for ASMS. However, VSMS shows
better accuracy of the frequencies.

The spectral analysis for linearized equations cannot givecomplete properties of VSMS and
HSMM. In the next chapter transient examples are studied, that include contact and finite
deformations.
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7
Transient examples

In the previous chapters, the theory of hybrid-singular mass matrices and variational selective
mass scaling is developed and an error analysis for harmonicwaves is carried out. In this
chapter, the proposed methods are tested for several dynamic problems of three types (wave
propagation, impact and structural dynamics). In wave propagation problems, the dispersion
error can be separately studied. The reduction of the spurious contact pressure oscillation is
studied in unilateral dynamic contact problems. In structural dynamics problems, the behavior
of the system is studied for simple load cases. Time integration is done with trapezoidal rule
(examples 7.1.1-7.1.4 and 7.2.1), NEWMARKβ method (examples 7.1.5 and 7.1.6) and the
central difference method (examples 7.2.2-7.2.5). Numerical tests are conducted using the
implementation of the elements in the computer algebra packageMaple or the in-house FE
codeNumPro. For the examples 7.2.5 and 7.2.6, a comparison with the solutions obtained
in the commercial codeLS-Dynais done. Advantages, disadvantages and limitations of the
proposed methods are summarized at the end of the chapter.

7.1 Examples with hybrid singular mass matrices

7.1.1 Wave propagation in truss

To illustrate the capabilities of the element for the wave propagation problem, a problem with a
sharp shock front is considered. The initial conditions correspond to a rectangular wave packet
moving from the left side of a finite truss to the right, see Figure 7.1. The length of the packet is
20 % of the total truss length. The length of the truss is largeenough to avoid reflections within
the simulation time. The analytical solution predicts thatthe particle velocityv0 in the packet
is preserved during the wave propagation. Snapshots of the velocity profile are presented in
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v0

l

EA= 104

ρ = 1
v0 = 0.1
l = 1
dt= 2·10−5

Tend= 0.005

Figure 7.1: Wave propagation benchmark for trusses.
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Figure 7.2: Velocity profiles at different time points for a quadratic truss element with constant
velocities, Tr2-0.

Figures 7.2 and 7.3 for Tr2-0 and Tr3-1 elements1, respectively. It shows reasonably small
dispersion, however dispersive ripples are present. The velocity profiles obtained with Tr3-1
are less dispersive than the ones obtained with Tr2-0. This is due to the higher accuracy of the
dispersion curve (6.16), see Figures 6.2 and 7.3.

7.1.2 Projectile in rigid wall

The proposed finite element formulations for truss elementsTr2-0 and Tr3-1 are tested in a
rigid wall impact problem. The setup for this test is analogous to the wave propagation test
apart from the fact that the initial velocity is uniform in the truss. The contact condition is
applied on the node at the right end. The exact analytical solution predicts a constant contact

forceFexact
c = v0A

√
ρE and a total impact duration ofTc = 2l

√
ρ
E. For the specified data, the

numeric values areFexact
c = 10 andTc = 0.02. The time history of the computed contact force

for different time step sizes is presented in Figures 7.4 and7.5 for the element Tr2-0 and Tr3-
1, respectively. The contact persists during the entire impact for both element formulations,

1Three-node truss element with constant velocity and four-node truss element with linear velocity, respectively.
Shape functions are given in equations (5.8) and (5.20). Forfurther details of element naming convention, see
page xviii.
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Figure 7.3: Velocity profiles for a cubic truss element with linear velocities, Tr3-1, at different
time points.
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Figure 7.4: Contact force at a rigid wall impact problem for a quadratic truss element, Tr2-0
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Figure 7.5: Contact force at a rigid wall impact problem for a cubic trusselement with linear
velocities, Tr3-1.

and the computed durations of the impact are close to the theoretical one, which is not the
case for the standard mass matrix approach.
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l

ρ = 1
v0 = 0.1
l = 1

E= 104 ν = 0
h= 0.1

dt= 1·10−5

v0

tend= 1.4·10−3

Figure 7.6: Timoshenko beam wave propagation benchmark for 40 elementsmesh. Constant ve-
locity v0 is prescribed at left end of the beam.

The maximum overshoot of the contact forcetc/Fc for an element Tr2-0 is by a factor of
around 1.8 in the range of the studied time-steps, and the overshoot reduces with the increasing
size of the time step sizes. The reason for that is as follows:time integration with larger time-
stepsdt > 3le/c cuts off the highest modes in the solution. The phase velocity for the higher
modes possesses a larger error (see Figure 6.1). This shows up also in the history of the
contact force, where spurious irregular oscillations in the second half of the impact are caused
by reflected higher modes. It also means, that the resolutionof space and time discretization
should match. The choice of the time stepdt in the range from 2le/c to 5le/c provides the
most accurate results in the contact force for this benchmark. The maximum overshoottc/Fc

produced with Tr3-1 element is around 1.7, see Figure 7.5.

The maximum overshoot of the contact force computed with CMMor LMM grows asdt−1

with dt → 0. Values for the overshoot of 1.7, 5.0 and 8.0 are obtained for the problem with
quadratic elements and CMM forle/(cdt) values of 0.25, 0.5 and 1.0, respectively. A similar
behavior is also reported for MOREAU-JEAN’s scheme in ACARY (2013). The overshoots of
the contact force forle/(cdt) values of 0.963, 9.63 and 96.3 are 1.07, 2.75 and 27.5, respec-
tively.

7.1.3 Wave propagation in a Timoshenko beam

The dispersion properties of the element may also be evaluated from the following test prob-
lem. Consider a semi-infinite beam with a free left end. A constant velocityv0 is prescribed
at the free end. We model this problem with a beam of finite length taking it long enough to
avoid spurious reflections from the right end (see Figure 7.6). A regular mesh with slenderness
Λ = 7.0 is used.

The numerical solutions are compared with an analytical solution obtained in BOLEY AND

CHAO (1955). Figure 7.7 compares the profiles of at a given time forthe four different ele-
ment formulations. We plot the velocity the velocity in transverse direction normalized with
v0 by connecting values at the midpoints of the elements, however the distribution for the for-
mulation Ti2*-2-1-2 is actually piecewise linear and discontinuous. The analytical solution
is dispersive, i.e., shear and flexural wave propagate through the beam with a velocity de-
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Figure 7.7: Profiles of normalized transverse velocityu2/v0 for a wave propagation test for a
Timoshenko beam attend= 1.4·10−3.

pending on the wave numberk. The maximum velocity of flexural waves is smaller than the
maximum velocity of shear waves by a factor of

√
EA/GAs≈ 1.4, for details see BOLEY AND

CHAO (1955). Therefore, a sharp front is predicted between shearand flexural wave pack-
ages (see Figure 7.7 at the locationx1/rg ≈ 3.5 with rg =

√
I/A being the radius of gyration).

The formulations Ti2-2-0-0 and Ti2-2-0-1 can follow the front much better than Ti2-2-0-2
and Ti2*-2-1-2. The results for Ti2-2-0-2 and Ti2*-2-1-2 are almost identical, because the
difference in their mass matrices reduces with large slenderness. Furthermore, the height of
the spurious oscillations of the velocity profile around thefront is comparable with the ones
obtained in an identical wave propagation test for two-nodeTimoshenko beam elements in
BELYTSCHKO AND M INDLE (1980).

7.1.4 Lateral impact of a Timoshenko beam

The performance in the case of elasto-dynamic contact is tested using a bounce problem (Fig-
ure 7.8). A beam hinged on both ends with a sine profile for the initial velocity is considered.
There is a rigid obstacle with initial gapgB. We use a coarse mesh with four elements, such
that contact occurs only in the middle node, which is a massless node. The time interval is big
enough for one impact.
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Figure 7.8: Setup of TIMOSHENKO bounce benchmark.
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Figure 7.9: Contact force at the center of the beam and evolution of the total energy. TIMO-
SHENKO bounce benchmark.

The numerical results for the contact force at the middle node are given in Figure 7.9. The
results for the standard mass matrix consist of several impacts with duration of one time step
each. In the case of HSMM, spurious oscillations of the contact force are eliminated. All the
formulations proposed herein provide almost similar results, since rotational inertia – which
makes the difference between the formulations – are not verysignificant in this test problem.
A similar behavior for the impact of a beam with an obstacle isreported in POZZOLINI AND

SALAUN (2011) and POZZOLINI ET AL . (2013), where small differences have been obtained
for linear and constant velocity field approximations in thecase of the Euler-Bernoulli beam
model.

7.1.5 Lateral impact of beam modeled with solid elements

The previous problem described in Figure 7.8 can be solved using 2D solid elements. The
model setup is shown in Figure 7.10. No friction between the rigid obstacle and the beam is
assumed. Two meshes are used for computation. Both meshes have one element in thickness
direction. Eight or 16 elements are used in axial direction.For the transient simulation,
NEWMARK β method with time-step sizedt= 1.25·10−4 is used.
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l

gB

Figure 7.10:Setup of bounce benchmark modeled with solid elements Q2P10V10.
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Figure 7.11:Contact force at the center of a beam (left) and total energy evolution (right) for
impact problem of beam modeled with solid elements (Q2 vs. Q2P10V10). Results
for 1×8 (above) and 1×16 (below) meshes.

The results of the simulation are presented in Figure 7.11. Here, standard nine-node quadri-
lateral elements Q2 and the element formulation Q2P10V10 are compared. The history of the
contact force at the center of the beam computed with HSMM exhibits less spurious oscilla-
tions and allows persistent contact. Energy losses and gains due to activation or release from
contact in case of standard mass matrix are much higher.

Although all numerical results of the newly proposed approach are at least as good and quite
often superior to results in the standard case, there is one drawback. The condition number of

the time integration matrix of the mid-point rule
(

4
dt2M∗+K

)
starts growing for very small

time-steps (dt < le
100c), see Figure 7.12. The reason to this is that the singular term 4

dt2
M∗ for
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Figure 7.12:Dependency of conditioning of algorithmic tangent on relative time-step for a beam
modeled with solid elements Q2P10V10.

E = 207 GPa

ρ = 7800 kg/m3
ν = 0.3

R= 10 mm

v0 = 30 m/s
dt= 187.5 ns

tend= 16 µs

v0

Figure 7.13: Impact of a circular disk onto a rigid obstacle modeled with 125 solid elements
Q2P10V10.

such small time-step sizes, dominates the termK . However, a simple JACOBI preconditioner
solves this problem for all examples considered here.

7.1.6 Impact of a disk onto rigid wall

Another example computed with Q2V10P10 elements is presented below. Consider a fric-
tionless impact of a thin circular disc onto a rigid obstacle. The setup of the problem is shown
in Figure 7.13. It is expected that the disk bounces within a short period of time. The disk
has a smooth surface. Hence, the contact force – in contrast to the projectile problem 7.1.2 –
should be smooth in time. In addition, the total energy must be preserved in the absence of
internal or external friction and external forces.

Solutions with NEWMARKβ method for three time-steps sizes 0.5 µs, 0.25µs and 0.1825µs
are carried out. The histories of the contact force and totalenergy are presented in Figure 7.14.
Standard Q2 elements with CMM show stable results for a time-step size 0.5 µs (dt> 2Le/c).
No clear advantage in the history of the contact force at the middle node or in the evolution of
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Figure 7.14:Contact force and energy evolution for impact of a circular disk on a rigid obstacle
(Q2 vs. Q2P10V10).dt= 0.5 µs (above),dt= 0.25 µs (middle) anddt= 0.1825µs
(below).

the total energy can be seen for HSMM. For time-steps 0.25 µs and 0.1825µs (dt < 2Le/c),
HSMM shows superior results. The contact force is smooth, and the contact is persistent
during the whole impact. The change of the total energy is significantly less than for CMM.

The method of hybrid-singular mass matrices can be viewed asa regularization of dynamic
contact problems. Like in a penalty method a certain stiffness is assigned between nodes
with mass and locations where contact is collocated. In contrast to a penalty method, contact
constraints are fulfilled exactly (no penetration allowed). As only the massless nodes are
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7 Transient examples

subject to contact constraints, the distance between "contact nodes" and "mass nodes" plays
the role of springs in a penalty method (typically one half orone third of an element’s length).
For example, in the case of the impact of a one-dimensional three-node element, contact
occurs at the corner node, but inertia is condensed in the middle node. An attractive feature
of this sort of regularization is that the equivalent penalty stiffness is automatically adjusted,
in case of lateral and edge contact, to bending/shear and membrane stiffness of the element,
respectively.

7.2 Examples with selective mass scaling

7.2.1 Wave propagation in a Timoshenko beam

The artificial dispersion brought by selective mass scalingcan be demonstrated by a wave
propagation example for a long TIMOSHENKO beam. The problemsetup is identical to
the setup from Subsection 7.1.3. The results are presented in Figure 7.15 for Ti2-2-2-2MS1
and Ti2-2-2-2MS2 elements. The velocity profile obtained for CMM (C1 = 0) contains less
dispersion. The flexural part of the wave forx1/rg < 3.5 is presented accurately and the
shear part of the wave forx1/rg > 3.5 shows moderate oscillations. Application of VSMS
with constant velocity ansatz (Ti2-2-2-2MS1) leads to substantial dispersion, especially in the
shear part of the solution. The velocity jump between the twoparts of the waves is not clear.
Moreover, forC1 = 20, the maximum value of velocity is attained inside the domain, which
is unphysical. Results with linear ansatz space are more accurate. However, the potential for
increasing the critical time-step size with this ansatz is limited, see Subsection 6.2.3.

7.2.2 Tip loaded cantilever beam

The model for a transient problem is shown in Figure 7.16. Initial zero displacements and
velocities are assumed. The beam is loaded at the tip by an abrupt forceF. The structural
response is compared using the history of the tip displacement w, see Figure 7.17. The deflec-
tions obtained with a LMM and the proposed SMS are almost identical even for high scaling
values. For the same reduction of time step size, the method OLOVSSON ET AL. (2005) yields
a greater error.

Computation with a regular LMM requires 12900 time steps. For the number of time steps
for different mass matrices, the following results are obtained. The consistent mass matrix
requires 21106 time steps, which is almost twice as much as for LMM. The method proposed
herein adds inertia to the consistent mass matrix (4.14). Therefore, after mass scaling, the
required number of time steps is always less. The application of the ansatzΨ from (5.32)
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Figure 7.15:Profiles of normalized transverse velocityu2/v0 for wave propagation test for TIM-
OSHENKO beam attend= 1.4·10−3. VSMS with constant velocity ansatz space
(above) and linear ansatz space (below).
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Figure 7.16:The model of tip loaded beam (OLOVSSON ET AL. 2005).
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Figure 7.17:Tip deflectionw of a cantilever beam.

does not decrease the time step substantially; it is even more than for LMM, therein ansatz
(5.32) is not pursued further. Ansatz (5.35) and (5.30) leadto a comparable reduction of the
number of the steps, e.g. 2248 and 2392 forC1=100, 717 and 719 forC1 = 1000, respectively.
For comparison, mass scaling withβ = 100 from OLOVSSON ET AL. (2005) cuts down the
number of steps to 1186.

The accuracy of SMS can be monitored by the kinetic energy stored in the artificially added
massT◦−T = 1

2u̇λ◦u̇. The small ratio of the artificially added kinetic energy to the total
energy indicates a small change in the structural response,for more elaborate error estima-
tors using parametrized variational principles see KEATING ET AL . (1993), FELIPPA ET AL.
(1995) and CASTRO (2011). For the problem at hand, the ratio of the artificial energy to the
total energy is presented in Figure 7.18. It is clear from thefigure that the proposed method
accumulates much less artificially added energy than the method proposed in OLOVSSON

ET AL . (2005).
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Figure 7.18:Ratio of kinetic energy stored in artificially added mass to total energy.
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Figure 7.19:Axial tip displacement for the compression wave benchmark.

7.2.3 Cantilever beam under a longitudinal load

Consider the beam from the previous subsection under abruptly applied longitudinal load
F = 2 N. The axial displacement during 0.5 ms is given in Figure 7.19. The analytical solu-
tion predicts a standing wave in the beam and the axial tip displacement is a staggered line
with the amplitude∆u = 2Fl/EA≈ 645 nm and the periodTlong = 2l/

√
E/ρ ≈ 77 µs. The

LMM catches the behavior of the problem very good. The algebraic mass scaling produces
reasonable error. The result obtained with VSMS is acceptable.

The difference in the performance for a transverse and longitudinal load can be explained
by different distribution of mode participation factors, see Figure 7.20. Structurally signif-
icant modes must have relative participation factors greater than 10−3. The transverse and
longitudinal loads actuate the modes from a cluster in the beginning and the middle of the
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Figure 7.20:Normalized mode participation factors.

spectrum, respectively. Thus, the choice of optimal SMS requires the knowledge of the mode
participation distribution.

7.2.4 Arch bridge under point load

Consider an example for a 2D model of an arch bridge discussedin TKACHUK AND BISCHOFF

(2013a). The model for a transient problem is shown in Figure7.21. Initial zero displacements
and velocities are assumed. The model is loaded in the middleof the left arch by an abrupt
point loadF. The structural response is compared using the history of the vertical displace-
mentw under the applied load, see Figure 7.22.

Computation with lumped mass matrices required 3691 and 2634 time-steps for S2 and Q2
elements, respectively. For S2 element, the following observations can be made. The applica-
tion of a small variational mass scaling factorC1 = 10 with 1693 steps leads to very accurate
results. Larger values of mass scaling factor result in larger conditioning of the mass matrix
without substantial reduction of the time-step size and they are not recommended. Usage of
algebraic mass scaling withβ = 10 with 832 steps increases inertia and results in phase shift of
the displacement. For Q2 elements, a similar behavior is observed. However, the conditioning
of the mass matrix for variational mass scaling is better.

The conditioning of the mass matrix reflects on the number of necessary iterations for compu-
tation of the acceleration vector. The preconditioned conjugate gradient method with Jacobi
preconditioner is used for the numerical experiments. The relative error of residual norm is
taken as 10−6. For the Q2 element with values of algebraic mass scaling factor β = 10, 30
and 100, the average number of iterations is 25, 41 and 60, respectively. For values of varia-
tional mass scaling factorsC1 = 30, 100 and 300, the average number of iterations is 37, 65
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7.2 Examples with selective mass scaling

and 111. These numbers perfectly correlate with the expected number of iterations, which is
proportional to the square root of the condition number.

R10

55

13,5
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F = 100 kN

Figure 7.21:A model of an arch bridge. Material properties:E = 30 GPa,ν = 0.2, ρ = 2400
kg/m3, plane stress, thickness= 1 m. Mesh: 512 elements (eight- or nine-node
quadrilaterals). Load: point forceF = 100 kN applied in the middle of left arch.
Duration: tend= 0.1 s.
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Figure 7.22:Displacement under external load. Results for S2 (above) and Q2 (below) element
families.
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S2 Q2

Mass type dtcrit, µs condM ◦ dtcrit, µs condM ◦

LMM 26.8 19 42.0 29
CMM 42.4 93 26.5 62

β = 10 134.9 43 115.5 51
β = 30 227.1 98 194.5 115

β = 100 410.3 190 351.7 303

C1 = 30 71.8 159 71.5 77
C1 = 100 85.2 372 84.7 191
C1 = 300 103.6 903 103.0 470

Table 7.1:Critical time-step and conditioning of mass matrix for the arch bridge model.
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Figure 7.23:Dependence of the critical time-step size on mass scaling factor C1 for S2 (left) and
Q2 (right) element families. Computed values vs. fitted curve.

It was found that the critical time-step and conditioning ofmass matrix grows withC1, see
Table 7.1. Least square fit of the data yields the following approximated relations

S2MS6:
dt◦crit

dtcrit
≈ 1+

2
3

4
√

C1 condM◦ ≈ condMCMM +3C1, (7.1)

Q2MS6:
dt◦crit

dtcrit
≈ 1+

2
3

4
√

C1 condM◦ ≈ condMCMM +
4
3

C1. (7.2)

The quality of this fit is illustrated in Figure 7.23. One can see that the rise of the critical
time-step is the same for eight- and nine-node elements. At the same time, conditioning of
scaled mass matrixM◦ for an eight-node element is much larger. Thus, it can prohibit its
usage for large mass scaling valuesC1.

Another approach to evaluate the mass scaling methods is comparing response curves for a
harmonic analysis or computing the frequency response assuarance criterion (ALLEMANG
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Figure 7.24:Spectral response of the arch bridge evaluated at the excitation point computed with
S2 (left) and Q2 (right) element families.

2003). The boundary conditions and loading is identical to the transient analysis. The fre-
quency range is chosen from 10 to 20 Hz. In this range, the reference system computed with
CMM has the five lowest eigenfrequencies, see Figure 7.24. Uniform sampling for frequency
response is used with 121 sampling points. A RAYLEIGH model for damping is used. The
stiffness proportional damping coefficient is assumed to bezero. The coefficient of mass
proportional damping is set to 0.05 s−1.

Frequency response curves for consistent, algebraically and variationally scaled mass matrices
for S2 and Q2 element families are shown in Figure 7.24. Values for mass scaling factorsβ
andC1 are chosen to produce approximately equal critical time-steps of 110 ms. Algebraic
mass scaling leads to larger errors in spectral response curves, which confirms with results of
the transient computations, see Figure 7.22. The error in the frequency response function is
evaluated using the frequency response assurance criterion (FRAC) given in equation (2.128).
As a reference response, the values obtained with CMM are used. FRACs computed for
Q2ASMS withβ = 10 and Q2MS6 withC1 = 300 are 0.50 and 0.90, respectively. FRACs
computed for S2ASMS withβ = 10 and S2MS6 withC1 = 10 is 0.46 and 0.91, respectively.

7.2.5 Six-throw crankshaft

Previous examples use simple geometric domains, regular meshes and comparably small num-
bers of well-shaped elements. Here, the proposed methods for SMS are tested for an example
with real-life geometry. The tetrahedral meshes are produced with free mesh generators and
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F = 1.0 kN

Figure 7.25:Mesh of six-throw crankshaft.

the model has more than 105 DOFs. However, boundary conditions and the load case are still
rather academic.

A one-piece, six-throw crankshaft shown in Figure 7.252 is considered. The material of the
crankshaft is assumed to be steel with YOUNG’s modulusE = 210 GPa, POISSON coeffi-
cient ν = 0.3 and densityρ = 7850 kg/m3. The part’s length is 750 mm and the weight is
approximately 17.9 kg. The diameter of the flywheel is 160 mm.

The geometric model of the crankshaft is prepared inSolidWorksR©2012and exported as a
surface model via IGES format to the pre- and postprocessorGiD 10.0.9. In GiD, a single
volume is created, which includes 504 points, 798 lines and 289 surfaces. Small features like
oil drilled holes with diameter 1-3 mm are kept in the geometric model.

For simulation purposes, several linear tetrahedral meshes with target element sizes of 7 mm
and 8.5 mm are built. These models include 120450 and 110238 DOF’s, 193218 and 181720
finite elements, respectively. The distribution of the smallest edges of finite elements and
the mesh quality factor are shown in Figure 7.26. The mesh quality factor for tetrahedra is
measured inGiD as

q=
6
√

2V

∑6
i=1 l3i

, (7.3)

whereV is the volume of the element,l i are the lengths of tetrahedron’s edges, see CIMNE
(2013).

An harmonic analysis is performed with 8.5 mm mesh. Additionally, the rim of the flywheel is
fixed in all the three directions. A point load is applied at the free end of the crankshaft along
the x-direction as shown in Figure 7.25. The frequency ranges are chosen from 15 to 45 Hz
and from 150 to 180 Hz, respectively. These ranges correspond to the four lowest bending

2The model is kindly provided by SUDHIR GILL and can be downloaded from http://grabcad.com/library/crank-
shaft- -37.
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Figure 7.26:Crankshaft mesh built in GiD with target mesh size 7 mm.

modes in x- and y-directions, see Figure 7.28. Uniform sampling for the frequency response
is used with 61 sampling points. A RAYLEIGH model for dampingis used. The stiffness
proportional damping coefficient is set to zero. The coefficient of mass proportional damping
is assumed to be 0.01 s−1.

Frequency response curves for consistent, algebraically and variationally scaled mass matrices
are shown in Figure 7.27. The values for the mass scaling factors β andC1 are chosen to
produce equal critical time-step of 187 ns. Note, that the response curves for variational
mass scaling lies behind the curves for CMM. This illustrates the accuracy of the approach.
Algebraic mass scaling produces substantial error for the frequencies 162 and 168 Hz already
for β = 30, which confirms earlier observations about deficiency of algebraic mass scaling
for bending dominated problems. The error in the frequency response function is evaluated
using the frequency response assurance criterion given in equation (2.128). As a reference
response, the values obtained with CMM are used. FRAC computed for range [15-45] Hz
for Tetra4ASMS withβ = 30 and TetraMS6 withC1 = 300 are 0.87 and 1.00 (exact up to
the sixth digit), respectively. FRAC computed for range [150-180] Hz for Tetra4ASMS with
β = 30 and TetraMS6 withC1 = 300 are 0.18 and 0.9998, respectively.

The 7 mm model is used for an explicit transient analysis. In this case, no displacement
boundary conditions are applied. Duration of the analysis is 1 ms. Estimation of the critical
time-steps for LMM inLS-Dyna3 andNumProare 14.3 and 33.5 ns. LS-Dynauses a local
estimation of the critical time-step size, whereasNumProuses the global estimate. A local
estimate is conservative, which explains the difference.

Dependency of the added mass diagonal terms and the speed-upvia conventional mass scaling
is presented in Table 7.2. As the model contains small numberof short elements, the CMS is
very efficient for increasing the time-step by a factor of ten. Then, less than 1 % of mass is

3Herein smp version 971 release 5.1.1 for win64 is used.
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Figure 7.27:Spectral response of crankshaft evaluated at excitation point for different mass ma-
trices (for range [15-45] Hz left and [150-180] Hz right).

Figure 7.28:Absolute displacement amplitudes of crankshaft at excitation frequency 26 Hz (left)
and 162 Hz (right).

added to the model which in most engineering applications isacceptable. However, increase
of the critical time-step to 360 ns leads to 16 % of added mass,which is unacceptable.

In NumProimplementation, uniform values of mass scaling parameter for the whole model are
used. Dependency of the critical time-step on the scaling parameters is presented in Table 7.3.
Efficient increasing of the time-step is obtained for both mass scaling techniques. However,
VSMS requires twice as much PCG iterations and produces twice as much non-zero entries in
the mass matrix. Thus, the overhead for linear system solution in case of VSMS is by a factor
of four greater than for ASMS, see the estimate of speed-up given in equation (2.110).

Resulting displacements are given in Figure 7.29. Comparison of displacements is given in
Figure 7.30. VSMS gives result which are in good correspondence with LMM.

132



7.2 Examples with selective mass scaling

Mass type dtcrit, ns △m/m, % speed-up

LMM 14.3 0 1 (ref)

CMS 50.0 0.006 3.5
CMS 100.0 0.035 7.0
CMS 187.0 0.2 11.8
CMS 360.0 16.21 22.5

SMS 187.0 0.2 9.8

Table 7.2:Added mass and speed-up for conventional mass scaling applied the 7 mm crankshaft
model. Value of added mass△m for SMS is given in sense of equation (2.88).

Mass type dtcrit, ns # iter

LMM 33.5 1
CMM 21.0 10

β = 5 82.0 12
β = 10 111 18
β = 30 187 27
β = 50 240 33

C1 = 30 62.3 10
C1 = 100 109 28
C1 = 300 187 54
C1 = 1000 339 64

Table 7.3:Critical time-step size and average number of PCG iterations with JACOBI precondi-
tioner for the mass matrix for the 7 mm crankshaft model.

Figure 7.29:Absolute displacement of crankshaft at time 1 ms. Tetra4MS6, C1 = 300.
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Figure 7.30:Evolution of displacements at the tip of crankshaft (node 1)computed with
Tetra4MS6,C1 = 300 and LMM.

Figure 7.31:Model of a femur bone.

7.2.6 Femur bone

So far, SMS is not tested on real-life examples with hexahedral meshes. A free model of
human femur bone is used for this purpose4.

The length of the femur bone model is approximately 395 mm. The mesh contains 6714 nodes
and 5702 trilinear hexahedral elements, see Figure 7.31. The mesh quality is evaluated with
internal tools ofGiD, see Figure 7.32. The mesh quality for the femur model is better than
the mesh quality for the six-throw crankshaft, as it was produced withHEXARmesher (Cray
Research, USA). However, the shortest edge is 1.47 mm (2.5 times smaller than the average)
and the smallest angle is 9.4◦.

LS-DynaandNumProare employed for simulation. The defaultLS-Dynaformulation with
one point quadrature (ELFORM=1) and the implementation inNumProwith 2× 2× 2 are
used for internal force computation. The mass matrix inNumProis computed with 3×3×3
quadrature.

4VAKHUM project, FP5 project 1998–2001, six mesh refinementsare available in JAN (2001)
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7.2 Examples with selective mass scaling

Figure 7.32:Mesh properties for the femur bone model.

The original model is available in six mesh refinement gradesfrom coarse to fine. Here, model
refinement one (the most coarse) is used. This model has non-uniform materials with 151
grades. It uses for every point an elastic isotropic material law with ν = 0.3. The YOUNG’s
modulus and the density are mapped onto the elements using CTdata. Here, the material is
assumed to be uniform isotropic withE= 5 GPa,ν = 0.3, ρ = 1.042 kg/m3 as average values
for the provided model. The total mass of the bone is 0.466 kg.

An estimation of the critical time-step sizes for LMM inLS-DynaandNumProare 405 and
15.7 ns. The difference in the critical time-step sizes betweenthe two codes can be explained
by different quadrature rules used. The difference is especially pronounced for highly dis-
torted elements. e.g. with the smallest angle between edges9.41◦.

The dependency of the added mass diagonal terms and the speed-up via Conventional mass
scaling is presented in Table 7.4. The CMS is quite efficient for increasing the time-step by a
factor of 1.5. Further scaling of mass leads to a large added translational mass. This is usual
for such high-quality meshes.

The dependency of the critical time-step size and conditioning of the mass matrix for a set
valuesβ andC1 are given in Table 7.5.

For such a mesh, CMS can speed-up up to the factor of 1.5 whereas VSMS can speed-up up
to the factor of 10 without loss of accuracy.

The harmonic analysis is performed in a range from 100 to 250 Hz with the sampling fre-
quency of 3 Hz. In this range, the second bending mode is situated, see the mode in Fig-
ure 7.33 and corresponding a peak of response function in Figure 7.34. A RAYLEIGH model
for damping is used. The stiffness proportional damping coefficient is set to zero. The coeffi-
cient of mass proportional damping is assumed to be 0.01 s−1.
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Mass type dtcrit, µs △m/m, % speed-up

LMM 0.405 0 1 (ref)

CMS 0.500 0.0047 1.24
CMS 0.600 0.142 1.48
CMS 0.700 1.43 1.73
CMS 0.800 6.74 1.97
CMS 1.600 201.59 3.92

SMS 1.600 201.59 3.52

Table 7.4:Added mass and speed-up for conventional mass scaling applied to the femur bone
model, refinement 1. Value of added mass△mfor SMS is given in the sense of equation
(2.88).

Mass type dtcrit, ns condM

LMM 15.7 24.2
CMM 1.2 173

β = 10 47.63 46.2
β = 30 1848 116.1
β = 50 6627 350.7

C1 = 30 117 66.7
C1 = 100 609 122.4
C1 = 235 1853 265.8
C1 = 300 2505 333.5

Table 7.5:Critical time-step and conditioning of mass matrix for the femur bone model.

Frequency response curves for consistent, algebraically and variationally scaled mass matri-
ces are shown in Figure 7.34. The values for the mass scaling factorsβ andC1 are chosen to
produce an equal critical time-step of 1853 ns. Note, that the response curve for variational
mass scaling lies behind the curves for CMM. This illustrates the accuracy of the approach.
Algebraic selective mass scaling withβ = 30 produces substantial error for the frequency of
223 Hz, which is the second bending frequency. The peak of theresponse function corre-
sponding to the second bending mode is shifted to 202 Hz. FRACcomputed for the range
[100-250] Hz for Hexa8ASMS withβ = 30 and Hexa6MS6 withC1 = 235 are 0.245 and
0.99956, respectively.
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Figure 7.33:Absolute displacement amplitudes of femur at excitation frequency 223 Hz.
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Figure 7.34:Spectral response of crankshaft evaluated at excitation point for different mass ma-
trices for range [100-150] Hz.

7.3 Summary for transient examples

In this chapter numerical examples for elasto-dynamic contact with HSMM and dynamic
problems for VSMS are considered. From the results of the benchmarks carried out, the
following conclusions can be made. The proposed formulations for HSMM, i.e. Tr2-0, Tr3-
1, Timo2-2-0-2 and Q2V10P10, significantly reduce spuriousoscillation of contact forces.
Besides, the evolution of the total energy shows much smaller artificial gain/loss for these
elements. The advantages of HSMM are specially pronounced for time-step values ofdt <
2le/c. Based on this observations, the newly developed elements can be recommended for use
in impact modeling.

Proposed formulations for VSMS for solid elements, i.e. Q1MS3, Q2MS6 and S2MS6,
Tetra4MS6 and Hexa8MS6, are competitive with ASMS. VSMS yields more accurate re-
sults especially for bending dominated problems modelled with solid elements or on distorted
meshes. However, ASMS is more accurate for wave propagationproblems and ASMS re-
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7 Transient examples

quires from 30 to 50% less iterations for computation of acceleration with PCG. Besides, an
example for TIMOSHENKO beam elements Ti2-2-2-2MS1 and Ti2-2-2-2MS2 shows that the
current formulation of VSMS is not efficient.
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8
Conclusions and outlook

8.1 Conclusions

In this thesis, a unified approach for singular and selectively-scaled mass matrices is proposed.
This is a powerful theoretical framework that provides families of consistent mass matrices.
They can be used in elasto-dynamical contact problems and explicit dynamics. Moreover,
novel techniques are used for the evaluation of the accuracyof these mass matrices, like
inertial patch tests and the frequency response assurance criterion. Together with a set of
benchmarks, these techniques prove the efficiency and accuracy of the proposed approach.
Detailed conclusions for singular and selectively scaled matrices are given below.

Hybrid singular mass matrices

An alternative spatial discretization of elasto-dynamic contact problems that uses hybrid sin-
gular mass matrices is proposed. It is based on the three-field modified HAMILTON’s prin-
ciple with independent fields of velocity, momentum and displacement. This approach allows
to reduce the differential index of the semi-discretized system from three to one. As result,
it efficiently reduces spurious temporal oscillations of the contact pressure and allows pre-
cise energy preservation during impact. The formulation does not increase the total number of
unknowns, as the discretization parameters for velocity and momentum are eliminated locally.

The first major result of the thesis is the proposed discretization of the three-field modified
HAMILTON’s principle for contact problems. It combines a novel expression for a hybrid
singular mass matrix, a condition for vanishing of mass at certain nodes and a new class of
polynomial shape functions. It was shown that a diagonal entry of the element mass matrix
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vanishes if the shape function belonging to the corresponding node is orthogonal to all mo-
mentum shape functions. New shape functions that fulfill theorthogonality condition have
been proposed. The elements use GAUSS-LOBATTO quadrature points as node location (see
also LAMICHHANE AND WOHLMUTH (2007)) and fulfill the interpolation condition only at
the corner (vertex) nodes. It has been verified that the discretization satisfies the conditions
for computability and stability needed within the framework of a hybrid-mixed approach.

The main advantage of the approach w.r.t. standard mass matrices is significant reduction of
spurious temporal oscillations of the contact pressure. Persistent contact was obtained for all
considered benchmarks. There is still some overshoot of contact pressure; most importantly,
it stays finite for very small time steps(dt → 0), in contrast to formulations with a standard
consistent mass matrix. The maximum contact pressure converges quickly to the analytical
value for time stepsdt≈ le/c and stays close to it for larger time steps.

One limitation of the concept of hybrid singular mass matrices is the need of implicit time in-
tegration. Further studies are necessary to check competitiveness and efficiency of the method
for various contact-impact applications (crash, deep-drawing, robot dynamics, etc.). Another
approach for time integration is an explicit/implicit scheme where allinner nodes can be still
handled explicitly. Another issue is that the proposed method requires at least quadratic shape
functions and a re-parametrization of the shape functions is needed. Elements with quadratic
shape functions are not very popular for strongly non-linear problems, because of their lack
of stability. However, some very stable high-order elements are coming to the market (see
Impetus AFEAcode with quadratic and cubic elements for blast and impact). The interest for
element technology for high-order elements will grow and this type of elements may find its
niche.

The conducted spectral analysis proves that the order of convergence of the proposed method
for the lowest eigenfrequencies is lower than when using standard consistent and lumped mass
matrices. This it due to the poorer function spaces used for velocity and momentum. More-
over, the number and physics of the spectral branches obtained with HSMM is different from
the ones obtained with LMM or CMM. Usually, the application of HSMM allows to elimi-
nate one or two optical branches. The behavior of elements inwave propagation problems
is acceptable. Dispersive ripples are observed for sharp shock waves, but the size of these
ripples is comparable with LMM. They can be almost eliminated after using special filtering
techniques, but this question lies too far outside the scopeof this thesis. A separate study is
conducted on the satisfaction of the inertial patch test. The results of this study are summa-
rized in Appendix A. The element Q2V10P10 passes the weak patch test ’D’ and ’E’ for any
shapes, but, unfortunately, the element Q2V10P10 passes the patch test of type ’A’, ’B’ and
’C’ only for trapezoidal shapes. The element Hexa27V57P57 shows similar properties. This
question should be studied further.
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The method can be easily extended to shells and membranes as well as 2D and 3D bulk
structures. The derived shape functions may be extended by means of a tensor product struc-
ture. Well tuned ansatz spaces are given for the 2D nine-nodeelement Q2V10P10 and the
3D 27-node solid element Hexa27V57P57. The element Q2V10P10 is tested with eigenvalue
benchmark FV32 and two impact benchmarks. The results of these benchmarks show that all
theoretical results from 1D elements are transferred to higher dimensions. Namely, the spuri-
ous temporal oscillations of contact forces are substantially reduced for an arbitrary relation
between time-step and element size and preservation of the total energy during the multiple
impacts is better satisfied for HSMM, especially forle/(cdt) > 2. However, conditioning of
the algorithmic tangent may cause problems forle/(cdt) > 108, but such time-step sizes are
outside of practical interest.

Variational selective mass scaling

Variational methods for selective mass scaling are the second major result of this thesis. It
is proposed to use a new penalized HAMILTON’s principle as the starting point of spatial
discretization. Together with appropriate ansatz spaces for velocity and momentum, the pro-
posed approach results in parametric families ofconsistentmass matrices. The usage of these
mass matrices decreases the maximum eigenfrequency of the system and increases the critical
time step. At the same time the lowest eigenfrequencies in the range of interest and structural
response are not significantly changed.

The theoretical basis of this part of the thesis is the new parametric principle for elasto-
dynamics. It is a modification of HAMILTON’s principle wherekinematic and kinetic equa-
tions are satisfied via a penalty method. Its discretizationyields a general expression for mass
matrices depending on three free parameters. Three sub-families that are efficient for numeri-
cal implementation are chosen and evaluated. It is also shown that the mass scaling technique
presented in OLOVSSON ET AL. (2005) can be obtained as a special case of the present for-
mulation and thus, it is variationally justified. The main practical result is a study of several
instances of proposed mass scaling. Ansatz spaces for velocity are constructed that preserve
rotational inertia. The numerical examples show that the best results are obtained with a for-
mulation with the velocity field just containing the rigid body modes. This formulation also
outperforms the method presented in OLOVSSON ET AL. (2005) in the investigated examples.

For the first time, the spectral analysis for elements with SMS is performed and the dispersion
relations are obtained. A dispersion analysis provides important result about the number of
branches of dispersion and their quality (optical vs. acoustic, longitudinal, shear or flexural).
Information about these branches allowes to find the convergence rate for different modes.
For the discussed examples, VSMS may preserve the order of accuracy, but then it is not
efficient in reduction of the highest frequencies. This means that the variational selective
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mass scaling formulation increases artificial dispersion.Influence of VSMS on the lowest
eigenmodes is studied for several modal benchmarks. Comparing the two competing mass
scaling techniques (ASMS and VSMS), it is observed, that ASMS is more sensitive to mesh
distortions than VSMS. The conditioning of the mass matrix for VSMS is higher than for
ASMS. However, VSMS shows better accuracy of the frequencies.

All proposed mass matrices for VSMS pass the patch test, which is a solid basis for the usage
of this method. Unfortunately, ASMS passes the patch test only for the translation modes.

An efficient SMS requires good conditioning of the mass matrix. Such studies are performed
for different variants of VSMS. Generally, conditioning with VSMS is worse than for ASMS
for an equal time-step size. But for the same reduction of thecomputational time, the VSMS
provides more accurate results.

Variational selective mass scaling can also be applied for high-order elements. Here it is pro-
posed to use the new formulation in 2D: eight- and nine-node quadrilateral elements. Choice
of ansatz spaces for velocity with complete linear ansatz allows an efficient implementation
for selective mass scaling. This selective mass scaling works efficiently even after finite ro-
tations. The accuracy is higher than for ASMS. High values ofspeed-up are obtained for the
nine-node element. However, conditioning mass matrix for eight-node prohibits high values
of the mass scaling factor.

8.2 Outlook

This thesis is dedicated to a variational framework of singular and selectively scaled matrices
and initial testing of the proposed approach. Further developments and tests are needed.

New developments regarding theelement typesmay be carried out. For hybrid singular
mass matrices more testing of nine-node quadrilateral and 27-node hexahedral element is re-
quired. Further, ten-node quadratic tetrahedral elements, cubic quadrilateral Q3 and quadratic
shells can be studied. For selectively scaled mass matrices, high-order elements for 3D, like
Tetra10MS12 and Hexa27MS12, should be evaluated. Variational selective mass scaling may
also be developed for thick shells, where anisotropy of element’s geometry requires non-
isotropic penalty factors for in-plane and out-of-plane directions. Besides, VSMS can be
applied to NURBS based elements. Static elimination of the dual variables is not easy for
patches with large number of degrees of freedom. Hence, alternative ansatz spaces must be
developed in this case.

New developments regarding theformulationsmay be suggested. The orthogonality condi-
tion (4.23) for shape functions in HSMM approach may be relaxed. This would allow singular
mass matrices for standard LAGRANGE shape functions. VSMS can be developed for po-
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lar/micromorphic continua. This may provide large savingsfor explicit simulations of granu-
lar/polymeric materials, biomechanics or MEMSs. The same approach may be also used for
shell theories with rotational degrees of freedom.

New developments regardingtime integrationmay be proposed. The domains with SMS and
HSMM can be united in an explicit-implicit time integrationscheme in order to get a stable,
accurate and efficient method for crash simulation. Morover, the penalized HAMILTON’s
principle can be directly discretized with space-time elements.

New developments regardingalternative field problemsandmulti-physicsare also possible.
Singular mass and heat capacity matrices have potential application for coupled thermo-
elasto-dynamic contact problems, where numerical instabilities and oscillation of contact
pressures are common. Selective scaling of heat capacitiescan be applied for hyperbolic
(non-FOURIER’s) heat conductance equations in order to increase the critical time-step sizes
for the explicit integration schemes.

Finally, I am looking forward for industrial applications,which expose more issues connected
to the variational methods for consistent singular and scaled mass matrices. Remarks, sugges-
tions and ideas are welcomed attkachuk-anton@rambler.ru.
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Appendix

A Patch test for selected elements

The definition and notation for an inertial patch test are given in Section 5.1. Here, the patch
test is conducted for Q1, S2, Q2 and Hexa8 element families. Hexagonal shaped patches
of elements are used for 2D elements. An assembly of six distorted elements is used for
3D element, see Figure A.3. The nodes in a patch are placed such that the Jacobian of the
individual elements is a polynom of the highest possible order. Exact locations of nodes are
given in Figures A.1 and A.2 for Q1 and S2 elements, respectively. The mesh of Q2 elements
is completed with mid-element nodes for S2 elements.

The patch test is conducted automatically in a specially programmedMapleworksheet. Re-
sults of these tests are given in Tables A.1, A.2, A.3 and A.4.

Constant velocity Rigid rotation Linear velocity

Mass type A B C D E A B C D E A B C D E

CMM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LMM (RSL) ✓ ✓ ✓ ✓ ✓ - - - - - - - - - -
Q1ASMS ✓ ✓ ✓ ✓ ✓ - - - - - - - - - -
Q1MS2 ✓ ✓ ✓ ✓ ✓ - - - - - - - - - -
Q1MS3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - - - -

Table A.1: Patch test for the inertia term with the Q1 family.
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O 2 : [1,0]

5 : [1,2]

e1

4 : [2,2]

3 : [2,1]7 : [1.1,1]

1 : [0,0]

6 : [0,1]

e2

[xG,yG] = [1,1]

Figure A.1: Setup for an inertia patch test. Q1 element. Densityρ = 1.0.

O 2 : [1,0] e1

4 : [2,2]

3 : [2,1]

[xG,yG] = [1,1]

7 : [1.1,1]

1 : [0,0]

6 : [0,1]

e2

9 : [1.5,0.5]

10 : [2,1.5]

11 : [1.5,2]

13 : [0,0.5]

16 : [0.55,1]

8 : [0.5,0]

14 : [1.05,0.5]

15 : [1.45,1.5]
12 : [0.5,1.5]

5 : [1,2]

Figure A.2: Setup for an inertia patch test. S2 element. Densityρ = 1.0.

Constant velocity Rigid rotation Linear velocity

Mass type A B C D E A B C D E A B C D E

CMM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LMM (HRZ) - - - ✓ ✓ - - - - - - - - - -
S2ASMS ✓ ✓ ✓ ✓ ✓ - - - - - - - - - -
S2MS6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table A.2: Patch test for the inertia term with the S2 family.
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Constant velocity Rigid rotation Linear velocity

Mass type A B C D E A B C D E A B C D E

CMM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LMM (RSL) ✓ ✓ ✓ ✓ ✓ - - - - - - - - - -
ASMS ✓ ✓ ✓ ✓ ✓ - - - - - - - - - -
Q2MS6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Q2V10P10 - - - ✓ ✓ - - - ✓ ✓ - - - ✓ ✓

Q2V10P10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(trapezoidal shape)
Q2IVM8 ✓ ✓ ✓ ✓ ✓ - - - ✓ ✓ - - - ✓ ✓

Table A.3: Patch test for the inertia term with the Q2 family.

Figure A.3: Setup for the inertia patch test in 3D with Hexa8 element. Density ρ = 1.0.

Constant velocity Rigid rotation Linear velocity

Mass type A B C D E A B C D E A B C D E

CMM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LMM (HRZ) - - - ✓ ✓ - - - - - - - - - -
Hexa8ASMS ✓ ✓ ✓ ✓ ✓ - - - - - - - - - -
Hexa8MS6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - - - -

Table A.4: Patch test for the inertia term with the Hexa8 element family.
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B Derivation of the penalized Hamilton’s principle of

elasto-dynamics using a semi-inverse method

The semi-inverse method is one of the most powerful methods for the derivation of weak
forms. For details of the semi-inverse method, see DAH-WEI (1985) and HE (2000). Here,
the penalized HAMILTON’s principle given in equation (3.8)is derived using this method
as an alternative to penalty method. The motivation for thisderivation is to show that the
high-order LAGRANGE multipliers, semi-inverse and template methods have comparable
capabilities for problems, where at least one non-parametric variational principle is known.
The advantage of the semi-inverse method w.r.t. the high-order LAGRANGE multipliers or
penalty methods is that the semi-inverse method enables derivation of parametric variational
principles even for problems without known variational principles. This issue is important for
coupled problems (more concrete goals are set in Outlook, Chapter 8.2).

The starting point for the derivation is the equation (2.66). Here, the displacement, the velocity
and the linear momentum are assumed to be independent. This leads to a following IBVP





ṗ = L∗σlin(u)+ b̂ in I ×B0

p = ρv in I ×B0

v = u̇ in I ×B0

u = 0 in I ×∂Bu

σlinn = t̂ in I ×∂Bt,0

u(0,.) = u0 in B0

u̇(0,.) = v0 in B0.

(B.1)

Now comes a crucial step of the semi-inverse approach. The Hamiltonian functionalHGEN

is assumed in the most general form using afree function, the generalized LagrangianLGEN

and the generalized boundary termsBTGEN. Then, using the system (B.1) and equivalent
transformations, the shape of the functional is recovered.Thus, step one reads

HGEN(u,v,p) =
∫

I

LGEN(u, u̇,v,p) dt+BTGEN(u, u̇,v,p)→ stat. (B.2)

In contrast to SHIKUI (1992b), here the boundary term is allowed to depend on the velocity
v. This makes the difference in the derivation, increasing the number of free parameters in the
final expression of generalized LagrangianLGEN from one to three. The second step of the
derivation is to take first variation of equation (B.2)

δHGEN=

∫

I

(
∂LGEN

∂u
δu+

∂LGEN

∂ u̇
δ u̇+

∂LGEN

∂v
δv+

∂LGEN

∂p
δp
)

dt+δBTGEN=0. (B.3)
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In the third step, the weak form (B.3) is simplified using equation (B.1). In order to do this,
the term∂LGEN/∂v is assumed to be null-Lagrangian, i.e. to be functionally dependent on a
system of equations (B.1). Here, it is assumed in the form

∂LGEN

∂v
= C̃1(p−ρu̇)+(p−ρv)+ C̃3ρ(u̇−v), (B.4)

whereC̃1,3 are free parameters.

In the fourth step, a partial integration of the term∂LGEN/∂v is performed, leading to

LGEN = C̃1(p−ρu̇) ·v+
(

p ·v− ρv2

2

)
+ C̃3ρ

(
u̇ ·v− v2

2

)
+ g̃1(u, u̇,p) , (B.5)

with g̃1 being an integration constant function independent onv. The functiong̃1 depends
only on three parameters(u, u̇,p).

In the fifth step, the generalized LagrangianLGEN is further specified by exploitation of
∂LGEN/∂p The term∂LGEN/∂p reads

∂LGEN

∂p
= C̃1v+v+

∂ g̃1

∂p
. (B.6)

The latter equation must be zero up to null-Lagrangian. However, the term∂ g̃1/∂p is in-
dependent ofv. It reduces to zero only in case of a special form of boundary terms. Here,
following combination of null-Lagrangian is used

C̃1v+v+
∂ g̃1

∂p
=(1+ C̃1)

(
v− C̃2p

ρ
− (1− C̃2)u̇

)
+

[
∂ g̃1

∂p
+(1+ C̃1)

(
C̃2p

ρ
+(1− C̃2)u̇

)]
= 0.

(B.7)

From equation (B.7), the integration function ˜g1 can be expressed. Partial integration of
∂ g̃1/∂p yields the expression

g̃1 =−(1+ C̃1)

(
C̃2p2

2ρ
+(1− C̃2)u̇ ·p

)
+ g̃2(u, u̇) , (B.8)

where g̃2 is an integration constant function. Thus, the expression of the generalized La-
grangian further reduces to

LGEN = C̃1(p−ρu̇) ·v+
(

p ·v− ρv2

2

)
+ C̃3ρ

(
u̇ ·v− v2

2

)

−(1+ C̃1)

(
C̃2p2

2ρ
+(1− C̃2)u̇ ·p

)
+ g̃2(u, u̇) .

(B.9)
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In the sixth step, the terms∂LGEN

∂u and ∂LGEN

∂ u̇ are computed and exploited in the equilibrium
equation as follows

∂LGEN

∂u
=

∂ g̃2

∂u
,

∂LGEN

∂ u̇
= ρv(C̃3− C̃1)− (1+ C̃1)(1− C̃2)p+

∂ g̃2

∂ u̇
. (B.10)

As the next step, integration by parts of the term∂LGEN

∂ u̇ is performed and the latter expression
is substituted in equation (B.3). This yield an equation of motion in the form

−ρ v̇(C̃3− C̃1)+(1+ C̃1)(1− C̃2)ṗ−
∂ 2g̃2

∂ u̇2 ü− ∂ 2g̃2

∂ u̇∂u
u̇+

∂ g̃2

∂u
= 0. (B.11)

Assuming independence of∂ g̃2
∂u on u̇, the following expression for ˜g2 is obtained

g̃2 = Π(u)− (C̃3−2C̃1+ C̃2− C̃1C̃2)
ρu̇2

2
, (B.12)

with Π(u) being the full potential energy of the system. Thus, from thecomplete expression
of LGEN and kinetic energy in the form

LGEN = Π(u)−T◦, (B.13)

T◦=
1
2

∫

B




ρu̇
ρv
p





(C̃3−2C̃1+ C̃2− C̃1C̃2)I (C̃3− C̃1)I −(1+ C̃1)(1− C̃2)I

(C̃3− C̃1)I (−1− C̃3)I −(1− C̃1)I
−(1+ C̃1)(1− C̃2)I −(1− C̃1)I (C̃1+1)C̃2I







u̇
v
p
ρ


dB.

(B.14)

is obtained. This template for kinetic energyT◦ has three free parametersC̃1−3. It can be
shown, that it is equivalent to the equation (3.8) with free parametersC1−3.
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This thesis presents a unified variational approach for the derivation of alternative mass
matrices. Singular mass matrices within implicit dynamics allow substantial reduction of
spurious temporal oscillations of contact pressures as well as more accurate preservation
of the total energy. Application of selective mass scaling in explicit dynamics increases the
critical time step size and results in a substantial speed-up for many practical problems,
like deep drawing and drop test simulations. The unified approach is based on a novel
mixed parametric HAMILTON’s principle with independent variables for displacements,
velocities and momenta and free parameters. The independent fields are linked in sense of
penalty method with penalty factors free parameters. This provides the necessary flexibility
during spatial discretization in choosing ansatz spaces and free parameters. Their skillful
tuning results in consistent mass matrices with desired properties.

The presented approach is validated for several eigenvalue problems and transient
benchmarks. The proposed alternative mass matrices yield accurate values for the lowest
eigenfrequencies. The proposed singular mass matrices significantly reduce the spurious
oscillations of contact forces. Variational selective mass scaling yields accurate results
especially for bending dominated problems.
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