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VORWORT

Der vorliegende Institutsbericht wurde von Herrn Bruce Forde,
M.Sc., widhrend seines einjdhrigen Studienaufenthaltes am Institut
flir Baustatik an der Universitdt Stuttgart angefertigt. Im Vor-
dergrund seiner Tatigkeit stand neben der Entwicklung eines nicht-
linearen Fachwerkelements die Untersuchung von Iterationsverfahren
zur Berechnung von Tragstrukturen mit Hilfe der finiten Element-
methode. Insbesondere sind mit dem Computerprogramm NISA die
von Ramm vorgeschlagenen und von Schweizerhof weiterentwickelten
Kurvenverfolgungsalgorithmen zusammen mit den Quasi - Newton -
Verfahren auf Tragsysteme mit extrem veranderlichem Strukturver-

halten angewendet worden.

Besonderer Dank gilt dem Deutschen Akademischen Austauschdienst

fir seine bereitwillige finanzielle Férderung von Herrn Forde.
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Abstract

This report is divided into three parts:

1. Path following methods in nonlinear finite element analysis.
2. Explicit derivation of stiffness expressions for space truss elements.
3. Numerical analysis of extremely nonlinear problems.

A family of arc length methods is derived using orthogonality principles.
These methods are theoretically compared in terms of computational
efficiency and convergence characteristics. Descriptions are given for the
common quasi Newton updates along with comments on the satisfaction of
the quasi Newton equations for use in conjunction with arc length
procedures.

Derivations of the stiffness expressions for space truss elements in elastic,
plastic and post buckled configurations are given in explicit forms. The
implementation of this element in NISA80 is documented with desmpuons
of the modules used for arc length and qua31 Newton updates.

Solutions for test problems are given to establish the validity of results from
the space truss elements. Some small extremely nonlinear problems are used
to identify the limitations of the path following methods. Additional large
nonlinear problems are used to rank the various path following procedures
in terms of computational efficiency.
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Notation

M, = Length

Cross sectional area

= Moment of Inertia

= Radius of gyration

Distance to the outer fiber from the neutral axis
= Effective slenderness ratio factor

3
>
]

s TP -
2

mg = Cauchy axial stress
O = Stiress increment
Eg = Euler buckling axial stress
f = Post-buckling axial stress amplification factor

m¢ = Engineering axial strain
€ = Axial strain increment
m¢ = Post-buckling effective axial strain

mx = Total displacement vector
u¥ = Incremental displacement vector
Au = Total change in u
Au! = Change in u for A\ =1
Au''= Change in u due to the unbalanced load vector
m§ - Post-buckling effective axial displacement
mA = Post-buckling transverse displacement at midspan

= Reference external load vector

F) = Internal force vector

R = External load vector = ™\P
-6 = Unbalanced load vector = R{)- fli)
m) = Total load factor

AW . Incremental load factor

- Change in AW
= Scale factor for arc length procedures
Axial force

= EBuler buckling axial load

RAw >
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Tangent stiffness vector

= Tangent vector

= Normal vector

= Residual vector

= Length of tangent vector
= Residual scalar

Arc length

= Unbalanced load vector

Change in unbalanced load vector
Quasi Newton update vector

= Quasi Newton update factor (rank 1)
= Quasi Newton update factor (rank 2)
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1. Introduction

Iterative solution of the nonlinear equations found in finite element analysis
is a classical theme found in academia. The practical implementation of path
following procedures into computationally effective schemes is of more
interest to the professional community. This report investigates the
theoretical performance of some experimental iteration procedures to
provide a useful classification of the applicability of such procedures in the
solution of the problems found in engineering practice.

1.1 Application of Literature

The arc length methods suggested by Riks[18], Wempner [26], Ramm [17],
Schweizerhof/Wriggers [20], and Crisfield [S] are theoretically and
numerically compared. Quasi Newton updates of Broyden [2], Davidon [6],
Fletcher/Powell [7], Goldfarb [10], and Shanno [22] with various matrix and
vector formulations of these updates from Geradin/Idelsohn/Hogge [9],
Matthies/Strang [13], and Schweizerhof/Ramm [21] are utilized to improve
the computational behaviour of the path following procedures.

1.2 Objectives and Scope

A simple space truss element is developed for use in nonlinear analysis. The
elastic, plastic, and buckling phenomena representable with this element
provide extremely variable local stiffness response. Typical behaviour of
reticulated shell structures modelled with this element involves potential
sudden local alteration of global stiffness. This presents difficulty for most
solution procedures and is used to rank the methods in terms of
computational efficiency.

A series of extremely nonlinear problems are chosen to test both the ability
of the element to correctly model' complex structural behaviour and the
ability of the solution procedures to follow the load/displacement path. A
comprehensive numerical study of the implemented arc length and quasi
Newton procedures completes the project by providing results which
identify the efficiency of the various schemes in practical applications.

10
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2. Nonlinear Path Following Methods

A variety of strategies are available for tracing the load/displacement
response of structures subjected to ultimate loads. Analyses which utilize
load or displacement conirol may fail to converge in the area of limit points
for problems with snap-through or snap-back phenomena (Figure 2.1). Since
the posicritical behaviour is often related to the imperfection sensitivity of a
structure, the prediction of response in this area may be of great value [17].
Consequently, nonlinear finite element programs should have the ability to
follow the structural response into the postcritical range.

Displacement
"limit points”

Load , Snapunder §"Snap" under
\ ......Joad control i displacement

1 control

{ Load "limit points”

Displacement X

Figure 2.1 Load/Displacement Path [S5].

In this report, variations of the arc length procedure of Riks [18] and
Wempner [26] are combined with quasi Newton methods for path following
in the vicinity of limit points. Quasi Newton methods are used with arc
length procedures to accelerate convergence without incurring the expensive
computations associated with the pure Newton method.

11
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2.1 fArc Length Methods

The general goal of all arc length procedures is the control of iteration in the
load/displacement space so that a complex path can be followed well into the
postcritical range. The ideal procedure is one that has a strong domain of
attraction which provides consistent convergence in the vicinity of limit
points. A compromise must be made between this ideal and a numerically
efficient scheme. Both simple and complex formulations have been
developed in the literature each with their own merits. Some of these
methods are derived here and then theoretically compared.

The fundamental theorem of variational analysis leads to the standard finite
element equibrium equations.

AP - F(x) = 0 (2.1)
A classical Newton scheme provides an incremental iterative solution.

KDAu = AP - F(xV) (2.2)

w1 = x4 Ay | (2.3)

The proportional loading factor A must be written in incremental form for
application with arc length procedures. This yields a general formulation.

KAy - PAN = (M« )P - Fxl) = -gl0) (2.4)
wlivD) omy g, Ag (2.5)

The incremental displacement can be written in two components. The first
is the displacement Au! due to a unit load factor multiplied by the
incremental variation in the load level AX\. The second is the displabement
update for a conventional “load controlled” Newton procedure due to the
unbalanced loads 6.

Au = AuAA + Aul (2.6)
Au! = Klp (2.7)
Aull = k16 (2.8)

12
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The relationship between these components in the load/displacement space
is displayed in figure 2.2.

Figure 2.2 Generalized Incremental Formulation.

This procedure can be interpreted as either a modified Newton, quasi
Newton, or pure Newton iteration scheme. Using this notation, a family of
arc length methods with a variety of update directions can be derived.

13
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2.1.1 Orthogonal Plane Methods

A general formulation for arc length procedures can be derived from
orthogonality principles. An arbitrary update direction can be defined in
terms of an assumed vector nll). The requirements for this update vector
can be satisfied through the reference to the tangent t@W of the current
incremental load-displacement configuration. The scalar product of these
two vectors yields a residual RW, Specification of the desired residual
defines the direction of the update. Arc length procedures previously
obtained through application of specific prerequisite constraint equations can
be incorporated into a family of orthogonal plane methods. Normal and
updated normal plane [17], consistently linearized spherical hyperplane [20],
and explicit spherical [S] iteration procedures can all be derived from this
general method.

The tangential and normal vectors exist in a multi-dimensional space. This
consists of m dimensions from the displacement vector and 1 dimension
from the load parameter. These components are combined using a scaling
factor B (with units of displacement) to form vectors with m +1 dimensions.

t(i') = g, g (2.9)
al) = Au + 8 AN (2.10)

Figure 2.3 Orthogonality Relationship.

14


ibbaf
Textfeld

ibbaf
Textfeld


The scalar product of these vectors yields a residual R). This can be
visualized as the projection of vector a'!) onto vector 1% ( the length of
vector r')) multiplied by the length of vector t ).
2@ 20 ) @) 20 cos o
= | ¢ | eliy
= RW ﬂ (2.11)

Forming the scalar product of 1 and at®) using equations 2.6, 2.9, and 2.10,
a general expression can be derived for AA.

) - plide oAy + g*AMAN
- aDT (AulAN + Aull) + 85A0AN

- u@Taul + AACuTAul+ B7A6)

General Expression (2.12)

. "l
AN= R(n) - uap!
g2l + i}y

This expression can be simplified for particular cases of orthogonality. For
the case of Rl= 0, the update direction is normal to the tangent vector. If

the tangent vector is used from the original configuration then the
expression for normal planes is obtained [17].

Normal Planes (2.13)
- ghg!

g2l + u(”’zr_\.n'

A=

15
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If the tangent vector is updated for each equilibrium iteration then the
expression for updated normal planes is obtained [17].

ed Normal Planes. (2.14)

T
- uilagh

AN = -
%A + yay!

The update direction provided by the normal plane method is always
orthogonal to the original tangent. In contrast, the updated normal plane
method provides a diverging spiral path tending towards the desired arc.

Figure 2.4 Updated Normal Plane Method.

The divergent behaviour of the previous two methods is usually not too
important except under extreme conditions encountered near limit points. If
further restriction is required for the path then additional orthogonality
relations must be investigated.

16
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A simple correction can be applied to the residual once divergence from the
arc has taken place. The difference between the length of the current
tangent vector and the desired length can be projected onto the current
tangent vector to provide the residual for the orthogonality expression.

gli). ) o t(i)| | l.(i)|

- ‘t“)(t“)"’ s )
= R (2.15)

Substitution of this residual into the general expression yields an update for
linearized iteration on spherical hyperplanes as obtained by (20].

Congistently Linearized (2.16)
gl il ). @y
A\ = T
g1 + ulilpy!
The update direction provided by this method also tends initially away from

the arc, however, the application of the residual draws the path back to the
circle once convergence is achieved.

4 ~N

A

Figure 2.5 Consistently Linearized Method.
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Explicit iteration in a circular path requires the formulation of a residual
based on the error that would be obtained using an orthogonal iteration
path. This error can be corrected in advance to provide the desired arc. The
residual vector r'i*!) is in line with the tangent t/i*!) and acts in the opposite
direction. The error obtained in iteration i+1 is the difference between the
length of the tangent in this configuration and the desired length.

“.(i*l)l - |t(iol)| ._“(i)'
= (tli*)). g) (2.17)

y
A

Figure 2.6 Tangent Vectors for Orthogonal Iteration.
The orthogonality condition used to derive the general expression can be
applied to the residual vector 10 provide the scalar residual R4,

glid. plivt) o _p glidy ) glis 1) cog o

- - s (t(i‘l)- 8)—&_'
t(i*l)
.. 8% ylieng)
t(i#l)

= R (2.18)

18
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The length of t(*1) can be calculated in terms of the old length and the
incremental update vector.

o) o ( 12, Au'au+ B°AN2 )0'5 (2.19)

Substitution of this expression into the general formula for AA leads directly
to the quadratic equation obtained by Crisfield [Sl. The problems
encountered in the application of Crisfield's method can be avoided by
solving for t{i*!) using the updated normal plane expression for A), and then
calculating a residual which returns the iteration direction to a point directly
on the sphere (An algorithm is given for this procedure on page 20). This
provides the same result as in [S], but does pot require the solution ot‘ a
quadratic equation and the selection of one root.

Figure 2.7 Explicit Iteration on Spheres.
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Algorithm for licit Iterati

1. Use the update for orthogonal iteration.

- g Ayl
g2\l + ulilpy!
2. Calculate the associated displacement vector.

Au = AulAd + Aul!

3. Find the length of the tangent in the potential configuration.

. . 0.5
gD = (102, AutAu+ 82ANY)

4. Calculate the required residual for explicit iteration on a sphere.

R(i) = - __Q_?_ (t(i*l)- 3)

5. Return to the general formula for iteration path direction.

al
B0 + ulipy!

6. Calculate the desired displacement vector.

Au = Au'AX + Aull

This prdcedure involves only a small amount of extra work in comparison to
that of the consistently linearized procedure. Steps 1, 2, 3, 4, and 5 require
the identical amount of computation. Step 6 introduces one additional vector
mutiplication and addition. The larger domain of attraction offered by this
algorithm, in comparison to the other methods based on orthogonality, may

be important in the vicinity of limit points with sharp gradients.

20
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2.1.2 Consistently Linearized Method

The results previously derived using orthogonality principles can also be
derived by the consistent linearization of a general path following scheme.
This involves the introduction of an arbitrary constraint equation to the
system of equilibrium equations and the subsequent reduction to a set of
equations of original size. This reduction is done via elimination of AX as
given by Schweizerhof and Wriggers [20].

2.1.3 Crisfield's Method

Iteration on spheres can be performed by the introduction of a constraint
equation which is explicitly satisfied at every equilibrium iteration. The
approach of Crisfield [S] can be derived starting from the definition of the
current and following load/displacement configurations.

(02 g2, Tyl (2.20)
1% . g% AN « ileaulaneau) (idAuiaN AUl (221)

The solution employed by Crisfield in [5] utilizes a further simplification of
B=0 at this stage; however, this is included here for consistency of the
derivation. The two configurations 1% and 1(i*!) are identically equal to the
prescribed value of the arc length. Combination of the two expressions
yields a quadratic equation.

aAN> + bAX + ¢ =0 (2.22)
where:

a = B+Aul Ayl
b = 2 8°A0: W AUl s AulTAu! )
c =200 Aull s AR ARl

The solution yields two roots for AA:

A - bt [b?- 4ac

2a

The selection of the appropriate root depends on the current tendency of the
load/displacement curve. Precautions must aiso be taken in the case of
complex roots. The solutions of these problems are explained by Crisfield [S].

21
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2.1.4 Theoretical Comparison of the Methods

The performance of arc length procedures depends on the nature of the
load/displacement response curve. A typical problem found in shell anatysis
is geometric snap-through. A sine wave is characteristic of problems
involving repetitious loading/unloading. Using a common arc length and
convergence criteria, a theoretical comparison can be made between the
various methods. The stability, convergence rate, and numerical efficiency
of the methods are compared here for a variety of iteration conditions.

Given a load/displacement curve following the relation 2.23, it is possible to
explicitly calculate the stiffness expression for a one dimensional problem.

A=2sinx (2.23)

All previously mentioned methods were tested using a simple spreadsheet
program. Initially the arc length was fixed at a unit length and the
convergence was determined when the unbalanced forces numerically
approached zero (6' < 10™4). This analysis provided the iteration paths
given in figures 2.8 10 2.12.

Normal Plane Iteration
The potential divergent behaviour of this method is shown in figure 2.8.

Figure 2.8 Normal Plane Iteration.
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Updated Normal Plane Iteration

The updated nomal plane formula intially demonstrated the same divergent
characteristic, however convergence was obtained once more via a divergent
spiral path. This effect was magnified in the vicinity of the limit points.

Figure 2.9 Updated Normal Plane Iteration.

icit Iteration on Spheres
This method leads to a consistent incremental progression along the path
given by a prescribed arc length. Iteration appears to be more stable than
the preceeding methods.

.
xo
- ( N
/ \ X
0 ' ‘ 8 ' : - A—
0 1 2 3\ 4 5 & 7

TN

Figure 2.10 Iteration on Spheres using Orthogonality.

T

23


ibbaf
Textfeld

ibbaf
Textfeld


nsistent!
Iteration on spherical hyperplanes, provided by the consistently linearized
method [20], had substantially the same behaviour as explicit iteration on
spheres for this problem. The domain of attraction is only slightly smaller
for this method so differences would only be expected in extreme cases.

37
o A
14 / \\;o
/ s Y \\ \ Iy Y 2
o¢ 4 ¢ + + 7 4
0 1 2 3 4 5 & 7
of

N

Figure 2.11 Consistently Linearized Iteration.

licit Iteration on eres
Crisfield's method provided the same results as found for explicil iteration
on spheres using orthogonality.

3y

VA
\

A
0 0/ + + 19\ y $ + /Xi

Figure 2.12 Crisfieldfs Method.
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To investigate the performance of the various methods in the vicinity of a
limit point, the second arc length step (m=2) was chosen. Up to this point,
convergence was essentially identical for all methods.

A plot of the unbalanced forces 6\ throughout the equilibrium iteration
process reveals the differences in the convergence behaviour of the
individual schemes. Normal pfane iteration diverges from the sine wave (as
seen in figure 2.8) and only converges by chance again at another point
further down the curve. The other methods all converge with relatively no
problem. As predicted, explicit iteration on spheres provides the identical
resuit as found using Crisfield's method (with some small numerical
discrepancy). The updated normal plane and the consistently linearized
methods start in the same direction, however once deviation occurs from the
explicit iteration path a residual appears in the update for the linearized
method. This residual draws the following iteration towards the spherical
path and stabilizes the iteration. A pattern of continuously linearized
updates is followed until convergence is ultimately obtained at the same
point as that defined by explicit iteration on spheres.

017

: i
0.0 ; " D-*—“—-"’%&B—-Q—-——ﬁ-——-n

12 3 473 6 7 8 9
-0'1--

6w 8 / ®- Normal
=02+ / % Updated

13

X~ Explicit
—03 ES
‘O- Linearized
g
04 O~ Crisfield
-04 4
o)
05 1 ¢

Figure 2.13 Convergence of the Unbalanced Forces.
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The general tendencies of the methods can be demonstirated easily by
looking at the convergence velocity. The normal plane method again has
divergency demonstrated by the initial behaviour in comparison to the other
procedures. The initial velocities of the normal, updated normal, and
finearized methods are identical. The linearized procedure follows the
example of explicit iteration on spheres with some lag factor.

020 ¢

o
O \\D @ N
0.15% g ormal
k , ¢~ Updated
0.10 o 3 X- Explicit
A G(i} ‘O~ Linearized
005+ " 0= Crisfield
'd\ :
1
1 2 4. 5 6 7 8
-0.0% ¢
-0.10 +

Figure 2.14 Convergence Velocity.

No realistic distinction in the rate of convergence can be singly based on one
iteration group. A general tendency was found from the average of nine
tests which indicates that all of the methods appear to converge at
approximately the same rate for a given arc length, and that the number of
iterations required is dependent on the length of the step. The primary
distinction between the methods appears in extreme conditions of
nonlinearity where the simple methods fail to converge. The application of
pure Newton updates to the stiffness improved the convergence rates and
general behaviour of all methods.
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Numerical divergence may occur when arc length procedures are used in
conjunction with Newton iteration schemes. The problem arises from the
potential alignment of the update vector and the tangent stiffness under
extremely nonlinear conditions. If these two vectors are approximately
parallel then the calculation of an update produces an error which can be
much larger than the original unbalanced forces. This can cause complete
divergence for all orthogonality methods as well as local divergence for
Crisfield's method. This effect is evident in the path followed by the explicit
iteration on spheres using orthogonality (Figure 2.15). Using the slope at the
start of the arc length step (modified Newton), it is not possible to trace the
path past the tangent of this slope on the other side of the sphere.

A

= y=3Isinx

‘©- Explicit

Figure 2.15 Divergence of Explicit Iteration on Spheres.

The same problem occurs with Crisfield's method. Once this kind of critical
point is reached, iteration must be completely terminated since the roots of
the quadratic expression for A\ become imaginary. This indicates that the
failure of Crisfield’s method is caused by the same geometric problem

associated with the failure of explicit iteration on spheres based on
orthogonality.
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A second type of divergence can occur when using orthogonality procedures
with the pure Newton method. If the stiffness radically changes direction
between increments then a false update may occur. This is analogous with
choosing the wrong root from Crisfield's method. A simple check can be
included in the updating procedure to choose the alternative direction if such
a change in stiffness has occured. Using quasi Newton methods may also
avoid this problem since the secant stiffness will be less likely to radically
change direction between increments.
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Figure 2.16 False Update Divergence.

A summary of the preceeding analysis is given in appendix A.
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2.2 Quasi Newton Methods

Providing updates for the stiffness matrix using a simple correction at every
equilibrium step, rather than recomputing it entirely (pure Newton) or
leaving it unaltered (modified Newton), is the foundation for quasi Newton
methods. Matrix update formulae are extensively documented in recent
literature. A summary is given here to clarify their application in conjunction
with the arc length procedures used in the present numerical studies.

Construction of a secant matrix for incremental iteration can be obtained via
several different formulations. The general quasi Newton equations for use
with arc length procedures stem from linearization of the variation between
successive equilibrium iterations.

A il ANV p=g

AP

AP

Figure 2.17 Quasi Newton Updates for K{).

A set of quasi Newton equations can be derived for arbitrary Au and AA.
kAt - ()\(i)_)\(i-l)) P- (r(i)_, ;(i—l)) +A\Dp (2.24)

This expression can also be written in terms of the difference between the
total out of balance load vector v in successive iterations.

Kilaul) = an@) p - (a1 p - (plL gl , AR p

{(m)\+)\(i)) p- F(i)} - {(m)d)\(i—l)) P- l:(i-l)) + A)\(i) P

Avii) ¢« Antid p | (2.25)
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2.2.1 Rank One Updates

satisfaction of the quasi Newton equations (2.25) can be achieved via many
different formulations. Most common methods utilize one of two classes of
updates. The first involves the generation of an update using one correction
term (rank one), while the second uses two correction terms (rank two). The
update from Broyden provides a close approximation to K, however the
resulting matrices are nonsymmetrical. This is not a problem if the inverse
is directly updated in vector form (2.26). This kind of update requires
storage of 2 vectors and 1 factor per iteration.

Broyden
k" = gl 4 o) Ay @T g1y (2.26)
w'i) = Al - k-0 (Agl) 4 AL p) - (2.27)
odi) = 1 | (2.28)

Au' (Au) - i)

The update from Davidon provides a symmetrical approximation to the
inverse of K which can again be directly updated in vector form (2.29). This
kind of update requires storage of only 1 vector and | factor per iteration.

Davidon
g -1 4 i) ggyi) gy )T (2.29)
wi « Aul) - KD (Agli) « AN p) (2.30)

o) 1 (2.31)
w@T (Avl) « X0 p)
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2.2.2 Rank Two Updates

Generation of updates using two correction terms provides many potential
forms. The Davidon [6], Fletcher/Powell [7] update (DFP) provides a stiffness
matrix built from two symmetrical components. This formulation requires
the storage of 2 vectors and 2 factors per iteration for the vector form (2.32).

DFP
KD = k-1 5 ol AuI AT - B0) ) i) (2.32)
w = k-0l Av 4 AN p) (2.33)
o) - 1 (2.34)
AutT (AvlD) + AXDI P)
gl - l (2.35)
wT (Avl) « AN P)

The most popular rank 2 updates are derived from the BFGS (Broyden [2],
Fletcher [8], Goldfarb [10], Shanno [22]) formulation. Two forms for use with
arc length procedures have been provided by Matthies/Sirang [13] and a
third was developed specially for use with arc length procedures by
Schweizerhof /Wriggers [20]. The general update can be written in vector
form requiring the storage of 2 vectors and 2 factors per iteration (2.36).

BFGS

g1 k-0 L o) (Aui T ¢ i ag®T) - giAuIAWDT  (2.36)

wi) = K- (ApD . ANG) p) (2.37)

ol = 1 | (2.38)
Au(i)T (Avl) « A7) p)

Bl « odi) (o) w®T (Av 4 ANDP) 4 1) (2.39)
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3. A Truss Finite Element for Nonlinear Analysis

Ultimate load analysis of space truss structures requires representation of
the elastic, plastic, and buckling phenomena found under large displacement
conditions. The BTRUSS finite element was developed specifically for this
purpose, and is documented in the following. Newton iteration schemes,
used for the solution of nonlinear equilibrium equations, require the tangent
stiffness. Kinematic, geometric, constitutive, and equilibrium relations are
used to derive the stiffness of a truss for elastic, plastic, and post-buckling
behaviour. Bifurcation member buckling is modelled using an approximate
solution for the elastic problem as proposed by Kondoh and Atluri [12].

3.1 Kinematics

The truss is one of the simplest elements available for structural analysis. In
elementary statics, truss elements are often called “two force members”
since there are only two forces that act on a truss in equilibrium. The nodal
reactions are equal, and act opposingly in line with the truss. Stresses exist
in only one direction, so by application of kinematics this can be reduced to a
one dimensional problem. An investigation into the behaviour of a three
dimensional body leads to this for mulation.

Solution of a general continuum mechanics problem requires the selection of
a reference state. The Euler (Cauchy) formulation uses the deformed
configuration, while the Lagrange formulation uses the initial (undeformed)
configuration. The obvious advantage of the Lagrange formulation is the
natural reference to the initial known state. Strains computed using the
Green-Lagrange tensor refer to fibers originally in line with the coordinate
axes although they are now in a deformed position. This means that rigid
body modes are contained within the strain definition. The Kirchhoff-Piola
pseudo stress tensor (KP2) is obtained by applying two deformation gradient
transformations to the Cauchy stress tensor.. This effectively aligns the
‘stress tensor to the deformed configuration although reference is still to the
original geometry. The combination of the Green-Lagrange strain and the
Kirchhoff-Piola (KP2) pseudo stress is widely used for the solution of
nonlinear continuum mechanics problems since this provides the link
between the initial known configuration, and the load applied to the
deformed body.
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For a truss element this problem is vastly simplified. The use of a local
moving coordinate system allows the superposition of pure strains on top of
the rigid body modes. The traditional engineering approach, which assumes
small rotations within single elements, is exact for the truss by definition.
Since the deformed configuration is essentially known in a one dimensional
problem, reference can be made directly to Cauchy stresses. The truss
element is thus most efficiently formulated in one dimension using
engineering strains and Cauchy stresses, and then simply transformed to
three dimensions for use as a space truss.

3.2 Geometry

Transformations of geometry must be done first for the calculation of global
stiffness from local stiffness, and again for the calculation of local
displacements resulting from global displacements.

Figure 3.1 BTRUSS Global Configuration.

The axial stiffness of a truss element, with direction cosines (¢, , ¢; , ¢3), can
be represented by- global stiffness components for each of the six nodal
degrees of freedom. The global stiffness matrix for a truss with axial
stiffness k in configuration m is transformed by two direction vectors ™c
whose product yields the direction cosine matrix ™C for a truss element.

mg = mgl mg mg , mpmp (3.1)
6x6 6x2 2x2 2x6 6xb

This provides a global stiffness in terms of direction cosines in the deformed
three dimensional configuration and a parameter k from the one dimensional
solution. The complete global stiffness for a single truss element can be
written in expanded form using these parameters.
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The length in the deformed configuration, calculated from the global
displacements, provides the strain condition of figure 3.2. This is used to
calculate the stress condition from the material law and then to update the
one dimensional stiffness k.

o, ' Iy .‘4

7

Figure 3.2 BTRUSS Local Configuration.

3.3 Constitutive Expression

The state of a truss element can be completely described in the deformed
configuration by the length ™L, the cross sectional area ™A, and the applied
axial stress ™0. These parameters can be related to the initial geometry and
the current load condition through the constitutive equations derived from
the strain and material laws.

‘The axial strain for a one dimensional truss can be written using a linear
expression in terms of the deformed and original lengths. .

e ."'Lo;_“L - "% (3.2)
L oL

Using the preceeding engineering strain definition, the strain increment can
be written in terms of the displacement increment.

e-2e-le U (3.3)
0y,
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Stresses are applied to a truss in only one direction; however, strains exist in
all three dimensions. The traditional engineering approach for truss
problems is to assume that ™A is constant (strains exist only in the axial
direction). This is only valid for small strains.

A better result can be obtained by including the effect of strains in the other
directions through the application of Poisson's ratio. The specific
approximation required for a truss element is the relation between the
reduced area and the area in the undeformed configuration. This relationship
is material dependent.  The engineering stress definition assumes an
unaltering cross sectional area. This provides the exact result for materials
with v = 0. Another common definition is for the volume to remain constant
through deformation (good for materials with v = 0.5). A general expression
with 0 as a parameter is derived here and then later a value which is
applicable for steel (0 = 0.3) is used in BTRUSS.

Poisson's ratio provides the relationship between axial and lateral strains.
This can be used to express the deformed cross sectional area of a truss
member in terms of the axial strain condition.

A = 0A(1-mev)’ (3.4)

Incrementation of this expression provides the area in the deformed
configuration in terms of the original area, the current strain condition, and
the awaited strain increment.

2) = 0A(1-20)?

- 0A(1-("esed0)?

= 0A(1-2(1e+€)0 +{1e+€)202)

< 0A(1-2(1es€)u +(1e2 + 2lee +€2)u2)

= 0A((1-2'¢v +1€202) + (-2€v + 21eev? +6202))
- 0a{(1-1ev)’ - 2e0(1-1ev) + €202)

- OA(l-‘eu)z{l - 2ev(1-teu)! + €202(1-tev)?} (3.5)
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3.4 Equilibrium
The stress can also be written in incremental form.

20 = lg+a , (3.6)

Combination of the stress increment and the constitutive expression yields
the incremental axial force in terms of €(u) and o(u). Linearization allows
the construction of a tangent stiffness for use in a Newton iteration
procedure.

S =252 |
= (o +0) °A(l-'eu)2{l - 2¢e0(1-ten)! + €202(1-1ev)-3}
2 10 OA(1-1e0) {1 - 2e0(1-te0) ! + .} + 0 OA(1-1ev) (1 +..}
'S - 'S 2ev)1-ter) + 0 0A(1-1e0) (3.7)

3.5 Elastic Stiffness
The incremental elastic stress comes from Hooke's law.

o = Ee¢ (3.8)

In common notation, this yields the incremental elastié stiffness equation.
AP - F(x) = - 'S (Zz)e)(l-‘eu)‘l + BOAe (l-'eu)2

x-ls 20 Cu o+ EEA(I-leu)z'u (3.9)
OL (1-'ev) oL

In the case where v = 0, the first term drops out and the second term .
reduces to the linear stiffness. This is the same result as derived using
engineering relations where the area is assumed constant throughout
deformation. For v = 0.5, this expression reduces to approximately the same
result as obtained from a derivation where the volume is assumed to remain
constant. In general, for v > 0, the stiffness is reduced by positive axial
strain and by the associated axial load.
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3.6 Plastic Stiffness ~

A material law which includes plastic yielding can be easily applied to the
truss element. Strain hardening effects have been included in BTRUSS. The
model requires an elastic modulus, yield and maximum stresses, as well as a
maximum strain (Figure 3.3). From the mentioned parameters, a reduced

modulus YE (for yielding region) can be calculated and then used in the
stiffness expression for the elastic case.

>
Compression -G
Yielding pl
“Omex

Figure 3.3 BTRUSS Material Law.

The extent of the plastic yielding must be recorded at each step to account
for unloading and the return to elastic behaviour. The yielding condition

derived here is strictly for constant axial strain over the cross section and
does not include bending stresses.
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3.7 Post-Buckling Stiffness

A simplified procedure, proposed by Kondoh and Atluri [12], is used for the
post-buckling analysis of a truss element. The exact solution for an elastic
element has been treated in detail by Timoshenko and Gere [25]. Relations
for the axial stretch and the lateral buckling displacement of the element can
be written in terms of elliptic integrals. These expressions have been
simplified using the first two terms of a series expansion by Byrd and
Friedman [3] and later applied by Kondoh and Atluri to an elastic plane truss
element. The solution was shown to provide accurate results for axial
deformations of up to 15 percent for elastic material. |

Derivation of the stiffness matrix in the post-buckling range is somewhat
different from the elastic and plastic cases. The nonlinear stress definition,
based on the relationship between the axial strain and the cross sectional
area, is no longer applicable since the axial strain is not constant once the
truss is in the post-buckling configuration. A more useful approximation is
the engineering relation ( ™A = OA).

ST A NS

— L]

Figure 3.4 Post-Buckling Configuration.

A solution for buckied truss elements has been derived by Kondoh and
Atluri which provides the two basic equations applied in the following. The
post-buckling load capacity, and the transverse displacement at midspan are
written in terms of an effective axial strain é.

mS x~ ES (1- 0.5™m8) (3.10)
mp x L (mg (44 mg) )" (3.11)
v
e . M8 | (3.12)
o
S - -m2El (3.13)
0L2

Where ™§ is the elongation after buckling, and ES is the Buler buckling load.
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The first expression can be used to obtain the incremental load equation.
B ~ES(1-052%)
IS~F (1-03'e)
S -1S=ES(-05(%-¢)) =-055Qu
oL
This equation can also be written in common notation to yield the stiffness

expression for a buckled member.

AP -F(x) x> - o.sES- u (3.14)
0,

The transverse displacement at midspan ™A is not necessary for the
consiruction of the tangent stiffness, but it is useful for the determination of
the maximum stress in the buckled truss. The expression from Kondoh and
Atluri can be simplified for small values of é. .

mp = L (mg (4.mg))">
w
~ 2L (-me ]0.5
v

% 0.8366L (-M8)0- (3.15)

This simplified expression provides results differing only by 0.6 percent
from the more exact formula for effective strains of 5 percent.
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The maximum stress in the buckled truss is found in the inner fiber at
midspan. This can be approximated using engineering beam theory. The

bending moment at midspan is simply ™S - ™A, so the equation for ™A can
be directly applied. The post-buckling axial load comes from the first
Kondoh and Atluri formula. Further simplification of the expression comes
from the use of the radius of gyration (I = Ar?), an effective slenderness
factor (1] = 0.6366-¢/r), the Euler buckling stress ( 5o ), and a factor f.

mga™S + M¢

A1

™S + PSMA ¢

A A r?

AmS . "S- geue ¢ L (™)
A A ¢ r
xMS(1+7° 1._( mg)0.5 )

A

~EBS (1-05m¢) (1+ M - L (-&)%3)
A r

x By f 4 (3.16)

Introduction of an effective slenderness ratio allows the calculation of the
siress amplification factor ( f ) from the curves given in figure 3.5.

i, -0.6386 ¢ L
'y £ 'y

=L (3.17)
r

The value of T| depends on the particular cross section (For thin walled tubes
7 =091 and for round bars T =127). This can be caiculated for any cross
section given the radius of gyration r and the distance to the outer fiber c.
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The amplification factor f(¢) can be plotted for various values of ffL/r.

Figure 3.5 Post-Buckling Stress Amplification Factor.

The general implication of the amplification factor curves is that for slender
members, where a low stress will cause buckling, there is a high
amplification of the stresses once bending starts to occur. This effect is also
important for relatively thick members, up to a limiting slenderness where
beam theory no longer applies.

Typical members found in space truss structures have values of effi./r in the
range of 25 to 100. This means that the stresses attained at buckling may be
magnified significantly before equilibrium is re-established. For a typical
buckling problem, where the effective strain is 0.03, a member with
effective slenderness of 50 would experience an amplification of 9.8 times
the Euler stress. This may lead to yielding, in which case the elastic solution
provides an incorrect result for the stress. However, since the elastic
stiffness is dramatically reduced once buckling occurs, a further reduction
due to yielding may be ignored if the structure can distribute the load
imbalance to other members. In this case, the elastic solution is valid in the
calculation of loads and displacements for practical truss structures.
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4, Program Development

The software modules used for the analyses in this project originate from the
NISA80 program. Consideration of the potential interface with controller
routines, sofution procedures, and path following strategies plays a guiding
role in the development of the present and proposed versions of NISA.

4.1 NISA - past, present, future

The development of a comprehensive finite element analysis program
typically involves years of research. During this time period many people,
with many concepts, are usually involved in the production. The well known
result of such projects is an integrated chaos of subroutines which somehow
provides the desired results.

NONSAP, originating in Berkeley USA, provided a model for the development
of NISA at the Institot for Baustatik der Universitat Stuttgart. Memory
management was based on the dynamic allocation of segments of one main
array to individual arrays. Allocation was done by the individual modules
when and where the space was required. This allowed independence of
subroutine development and provided a relatively efficient means of
dynamic adaptivity for analyses with a variety of elements.

Modifications to existing NISA modules has proved to be time costly and
error prone. Incorrect allocation of memory due to false parameter lists,
misdimensioning of subarrays, and COMMON block mistakes have prompted
the reconstruction of the NISA controller routines. A project has been
started which will provide one common data base management system to
remove the potential problems associated with memory allocation by each
individual subroutine. Finite elements previously used with NISA are
incompatible with the new memory management system and will requn'e
extensive modifications before they can be applied.

4.2 Path Following Modules in NISA

The present study involved the use of a trial version of NISA which
contained several routines steming from [20] and [21]. A variety of arc
length procedures, quasi Newton update methods, and line search options
were available. These modules were all combined into one group so:that
they could be compared and improved for their eventual implementation in
future versions of NISA. The available arc length procedures included:

1. Updated Normal Plane Iteration [17].

2. Consistently Linearized Iteration [20].
3. Explicit Iteration on Spheres [5].
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Choice of the arc length procedure is controlled by the input parameter
ICIRC. Depending on the value of this parameter, a search direction is
computed using the appropriate formulae. These operations are carried out
in the subroutines RIKWEM and CRISFI. The similarity of the arc length
formulae has been exploited by Schweizerhof in the computation of updates
to provide relatively compact code. Performance of line searches when
required is also initiated at this level. :

Updates for the stiffness via quasi Newton methods are initiated by
specification of a value for the input parameter IBFGS. The value of this
parameter is used to globally set the values of a group of logical variables in
NISA main. These logical variables can then be manipulated independently
of the numbering scheme used as input without requiring alterations
throughout successive modules. Solution of the incremental finite element
equations is done in subroutine ITERAT. The application of quasi Newton
methods is controlled here. Individual lower level routines are called
depending on the values of the previously mentioned logical variables.

The procedures implemented in the test versions of NISA can be easily
applied in future programs since they are separated into independent
modules. Storage locations for intermediate vectors used in the various
update formulae are unfortunately allocated as in NISA80 where required.
The organization of NISA87 should provide the allocation of memory for -
these vectors in a more reasonable fashion.

4.3 BTRUSS implementation in NISA

Truss elements found in NISA80 and NONSAP are the predecessors of
BTRUSS. The original options for dynamic analysis and initial strain were
removed and replaced by yielding and member buckling. The Lagrangian
formulation of the stiffness expression was also changed to the Cauchy form.
The combination of these alterations required the complete reconstruction of
the program module to allow for future implementation into NISA87.

The BTRUSS module is structured in seven parts:

Control.

Data Management.
Option Selection.
Data i/o.

Stiffness Calculation.
Stress Calculation.
Material Law.

NN —

43


ibbaf
Textfeld

ibbaf
Textfeld

ibbaf
Textfeld


The control module (BTRUSS) handles all interface with the calling routines.
Data management, option selection, data i/o, stiffness and stress caiculations
are all initiated and organized here, but performed by lower level routines.

Association of data is provided through a simple management routine
(DBMGR). All possible COMMON blocks are contained here and values of
parameters are passed back to BTRUSS. This should make it easier for the
future application of the data aquisition and management tools in place of
the blank COMMON block concept of NISA80.

The performance of further operations is dependent upon the current status
of a group of parameters. Instead of tracing fiags through a module, to see
where they are tested and altered (a programmer’s nightmare), one module
(OPTION) is used to globally organize the logical execution. The available
options are:

1.0 Datai/o.

2.1 Linear Stiffness Caiculation

2.21 Nonlinear Stiffness Calculation + Effective Load Update
2.21 Only Effective Load Update (quasi Newton procedures)
3.1 Linear Stress Calculation

3.2 Nonlinear Stress Calculation

The first option includes the assembly of data from an input file for the
element connectivity and material properties. This is optionally written to
tape for restart options (inconsistent with the above concept). The second
option provides some flexibility for the solution procedure. Solvers which
require the ability to update the effective loads while using the last or other
previous stiffnesses (quasi Newton procedures) are accomodated by the two
nonlinear options. Stresses can be calculated using the NISA restart option
or by directly calling options 3.1 or 3.2 in BTRUSS. The material law is
contained in one final distinct module. The problem is first transposed from
three dimensions to one. The material law is applied in one dimension and
the solution is transformed back to the three dimensional problem. All
references to elastic, plastic, and member buckling are in one dimension.

A debug version of BTRUSS was first implemented with NISA80 on 3.3.86.

Tests completed up to 8.4.86 showed that it performs the intended
operations of data i/o, stiffness and stress calculation successfully.
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5. Numerical Examples

The application of path following methods in nonlinear [inite element
analysis can be demonstrated by the computation of several demanding
examples. Initially, a few problems are given to confirm the validity of the
results obtained from the BTRUSS element. Several small extremely
nonlinear problems provide further tests for the path following procedures.
A comprehensive study of a large problem provides the basis for numerical
comparison of the various algorithms presently implemented in NISA.

5.1 Test of the BTRUSS Element

Patch tests have been performed which indicate that the element is
performing as desired. This includes the elastic, plastic, and buckling modes
described in its development. Comparison to the results from other finite
element analyses and to theoretical solutions are provided in the following.

Exnampie 1

Numerical solutions for the ultimate elastic behaviour of a shallow two
member truss are available from Papadrakakis [14]. The results from this
reference, the present study, and hand calculations of the problem are in
complete agreement. The solution procedures employed in [14] were the
static perturbation and the conjugate gradient techniques. The arc length
method was used here. All methods were able to represent the snpapping
behaviour of this structure.

4.-

37

51 T g EA=103 |
50——-»!
11
A

2.0 25

4] /

=== Forde
-2 4 O Papadrakakis

Figure 5.1 Shallow Two Member Truss.
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Examples 2 & 3

Simple truss structures, which have theoretical solutions for the initial post
buckling behaviour, are available from Britvec{1], and Kondoh/Atluri[12].
The elastic deformation before buckling in both cases is very small, so the
buckling loads are essentially as predicted from linear theory. The stress in
each element is monitored during the solution procedure allowing the
reduction of local stiffness once the critical member buckling stress is
attained. Stiffening is observed after large deformations have taken place.
Experimental results from Britvec also show the same tendency in the
buckied state, indicating that the elastic solution is reasonably accurate.

25+
>\ 0.
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Figure 5.2 Britvec's Truss Structure®1.
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Figure 5.3 Britvec's Truss Structure®2.
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3.2 Extremely Nonlinear Probiems

Path following procedures can be severely tested in the analysts of small
problems. Nonlinearity of the order found there is usually not present in
larger structures due to the high degree of indeterminacy. Solution
procedures able to handle these small examples can be applied with
certainty to the large problems typically found in practice.

Example 4

A shallow arch/suspension system analysed by Powell and Simons [16]
combines softening and stiffening behaviour which results in several snaps.
This highly nonlinear problem posed no difficulties for all versions of the arc
length procedures used in the present analysis.

The results given by [16] are incorrect after the first snap has occured. The
- correct roots of the load/displacement curve can be calculated directly from
geometrical considerations. Equilibrium for A=0 occurs in stable (0,2,4) and
unstable (1,3) configurations for the following displacements:

0. Initial configuration ' (a=00)
1. Snap-through of arch system (A=20)
2. Unstrained arch system (A = 40)
3. Snap-through of suspension system (A = 4.990)
4. Unstrained suspension system (A = 5.708)
10 7 + AP| 4 ° o
A, o]
b -8 r

- \ |+—10-4L—10

P=5
41 EfA=9x10*

O Forde
-8 1 |9~ Powell & Simons .\.»0/

Figure 5.4 Arch/Suspension Systeh.

47


ibbaf
Textfeld

ibbaf
Textfeld


Example 5

This arch truss was originally analyzed by Powell and Simons [16] using a
displacement control technique, and later by Tan [23] using an extrapolated
stiffness strategy. Extremely complex behaviour is displayed at the point
where snap-through occurs. Controlling the vertical displacement of node 9
leads to failure (since the load/displacement curve is not distinct at A ~8.0).
The same approach with node 13 provides the solution without problem
since this displacement increases monotonically. Since the change in
direction of the displacement of node 9 is so radical, arc length procedures
also experienced difficuity. Explicit iteration on spheres using Crisfield's
method combined with BFGS updates was the only procedure able to
investigate the behaviour at this point. Other arc length procedures were
successfully able to skip over this limit by using a larger arc length.

4 g@10 #!

40 7
A =
35+ A\t\
30¢
25 ¢
A
20+
15+
" Forde N9
1.0 1 “= Forde N13 |~ P=104 O
05 & Tan N9 | ER=9x106 “‘&\
' 7 1
an M1 A
DoQ 4 } + : {
0 2 4 6 8 10 12

Figure 5.5 Shallow Arch with Complex Behaviour.
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Enxample 6

A 24 member shallow dome structure has been analysed by Paradiso [15]
Jagannathan [11], and Papadrakakis [14]. As pointed out by [14] the resuits
of [11] are erroneous due to the missatisfaction of essential geometric
constraints at the snap-through. The present study agrees completely with
the results from [14] and [15].

All arc length procedures were able to follow the load/displacemexit path
without difficuities. This is typical of shallow shell stabmty problems where
the snapping behaviour follows a "smooth” curve.

o Nl
6216
EH=104
6"% .

e

--’1

A
00 0S5 10 115 45 S0
-1 -+
=" Forde
_2 -+ o \
Paradiso
2l ®  Jagannathan

Figure 5.6 Shallow Reticulated Dome.
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Example ¢

A truss strut structure has been analysed by Thompson and Hunt [24], Rosen
and Schmit [19], and Kondoh and Atluril12]. The present study deals with
the inffuence of local buckling on global instability. Variation of the cross
sectional area of key elements introduces an artificial "imperfection” into the
structural system. Four cases are chosen as in [12] by defining two member

property groups, and then specifying a variety of configurations.

Case Member buckling Group | Group 2
1 o 1-21 22-33
2 yes 1-21 22-33
3 yes 1-14, 16-21 13, 22-33
4 yes 1-13, 13, 17-21 14,16, 22-33

The natural tendency of the strut structure, owing to ils nonsymmetrical
geometry, is towards a positive A for positive A. This is amplified. in case 3
where the stiffness of member 15 is lowered. Following the same reasoning,

this effect is reversed in case 4.

ol -

EA,-3781x108N P - 1.0x106N
ER,-3559x108 N El -1519x10'! Nnm?

2 4 8 14 16 18
y A 73\— 0—7’\—“‘2 —A14 "7°<"‘6 —A—'B —AA20 —AB
24 25 26 27 28 29 30 31 32 33 34 356 019
@-—9 13 5 7 —9 2 Y
7 9 11 13 15 17

Figure 5.7 Thompson's Strut Structure.
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The results from the perfectly elastic case are in complete agreement with
the analysis from Kondoh and Atluri [12], however the imperfect structure
behaved differently. For a perfect structure, including the effect of member
buckling (case 2), a slightly lower ultimate load was obtained. The same
uitimate load behaviour was obtained for perfect (case 2) and imperfect
(case 3) structures except for in the initial stages of buckling where the
imperfection caused additional displacements and an associated critical load
reduction. This is more realistic than the results of [12] since the real
structure should not be influenced by small imperfections of this type once
loaded into the post buckling range.

Forde | wow wa w-or  cma

Kondoh
Atlri | & & X O

Almm)

20 40 60 80

Figure 5.8 Load/Displacement of Thompson's Strut Structure.

The arc length procedures employed had no difficulty in the solution of the
problem. Reformation of the stiffness using matrix update methods BFGS,
DFP, Broyden, and Davidon all produced equal improvements in convergence
at the critical point in case 2. This is the point where local buckling occurs in.
member 15 and an associated sudden change occurs in the stiffness. This
effect is not as prevalent for cases 3 and 4 since the present imperfections
cause a more gradual iransition at the critical load.
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Example 8

An experimental study was performed by Britvec [1] on a reticulated shell
structure. Ultimate load capacities were determined for various loadmg
configurations and were compared with theoretical calculations.

1

P=100n ER=100x10%N El=8863x10% Nmm?

N

110

110

110

110

127 127 127 127

Figure 5.9 Britvec's Experimental Grid Shell.
The results available from Britvec are for two loading cases:

1. One single vertical load at the top of the grid shell.
2. Equal loads at each of the seven upper nodes.

Solution of the elastic problem, excluding member buckling, yields the
load/displacement curve for A, of figure 5.10 (load case #1). The analysis of
- this problem provided no difficulty for the arc fength procedures, however
the results are not valid since buckling prevails in the real structure. The
incorporation of member buckling into the finite element model provides a
realistic solution for the snapping behaviour of the grid shell.

Ultimate Load Pmr

Load Case Britvec Theory Experiment Present
1 load 229N 1080 N 1701 N
7 loads - 67.10N 4052 N 6957 N
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60000 1

50000 4 )\

40000 1

30000 ¢+ === Forde
] No member
20000 + buckling

10000 +

1) ! : ¢
0 20 4060
-10000 +

~20000

-20000 4

Figure 5.10 Elastic Solution Excluding Member Buckling.

The severe local alteration of the stiffness experienced when the top six
members simultaneously buckle (assuming no imperfections are present)
causes difficulty for the arc length procedures. If a constant arc length is
desired for the complete analysis of the snapping problem, then a relatively
large step must be taken at the start. This implies a potential convergence
problem at the first step once the stiffness is reformed. Matrix update
methods BFGS, DFP, Broyden, and Davidon improved the convergence rate
when applied in conjunction with explicit iteration on spheres using
Crisfield's method. All other arc length procedures diverged.

SUT

“0* Forde
407 |-~ Britvec Theory
60+
-80 A

Figure 5.11 Elastic Solution Including Member Buckling.
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5.3 Large Nonlinear Problems

Application of path following procedures to the large problems found in
engineering practice requires a comprehensive comparison of the various
methods. The computational efficiency of the individual for mulations can be
tested by performing multiple analyses on a relatively demanding structure
over a common domain of response.

Example 9

A reticulated shell structure previously analysed by Papadrakakis [14],
provides the basis for comparison of the implemented path following
procedures in NISA. The complex behaviour of this structure, exemplified
by figures 5.13-5.15, is caused by the multiple snapping modes present in
the analysis of reticulated shells with many levels. Due to the computational
cost associated with the complete problem, the present study deals with only
the first snapping mode.

- om . e G2 w2 - on

- )
=
o
w0 O
A

e = ,*
B[ o
T L7

b S,

P=1 Efi=10*
Figure 5.12 Geometry of a Large Reticulated Shell.
400 T
200 1
== Forde
200 +
©  Papadrakakis
100 +
A;
0 + % + p, + + o
0 10 2o\c\30 40 50 60 70
o—/ ' .
100 +

Figure 5.13 Vertical Displacement of Joint 1.
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The complex displacement response curves found in this problem provide a
typical application for arc length procedures. The results obtained by
Papadrakakis agree completely with solutions obtained in the present study.
This problem is restricted to elastic behaviour (even though member
buckling may be prevalent) simply to provide a means of comparison to an
established solution.

200 +

= Forde %

O Papadrakakis

-'UO Y

Figure 5.14 Vertical Displacement of joint 2.

2007

=== Forde

O Papadrakakis

20 -3 =10

1001
Figure 5.15 Horizontal Displacement of Joint 2.

A variety of analyses were performed using different path following
methods. Three arc length procedures were used:

1. Updated Normal Plane Iteration [17].

2. Consistently Linearized Iteration [20].
3. Explicit Iteration on Spheres [5].
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Each of these procedures were combined with the quasi Newton methods:

No update.

BFGS - original form [13].
BFGS - product form [13].
BFGS - special form [20].
Broyden - vector form.
Davidon - vector form.
DFP - vector form

rV AW N O

Two different arc lengths were used, and line searches were alternatively
performed, bringing the total number of permutations to 84. The number of
iterations required for equilibrium convergence for each arc length step as
well as the sum of the iterations and the total CPU time required for
computation are listed in tables 5.1 and 5.2.

The results of the analyses indicate that convergence is relatively
independent of the applied arc length procedure, however significant
variations were observed between the quasi Newton methods. BFGS updates
in the special form [20] provided the best overall performance. Ranking the
others in terms of this method provides the following ratios:

Method N CPU Rank
0 No update 1.234 1.036 1]
1 BFGS original 1.000 1.082 2
2 BFGS product f.147 1.150 2
3 BFGS special 1.000 1.000 2
4 Broydan 1.065 1.008 1
5 Davidon 1. 1.000 1
6 DFP 0.996 1.021 2

N = total number of iterations./total number of iterations for method#®3.
CPU = total CPU time/total CPU time for method*®3.

The rank two methods, with the exception of the BFGS product form,
provided a consistent iteration convergence velocity of approximately 23
percent faster than the traditional modified Newton method. In contrast, the
rank one methods provided 15-17 percent improvements. The CPU demand
indicates that the original and product formuiations for BFGS updates are
computationally expensive in comparison to all other methods. Overall
convergence behaviour was best with the use of BFGS original and special
form rank two updates, followed by Broyden and Davidon rank one updates.
Divergence was encountered using the DFP and BFGS product methods in
areas of extreme nonlinearity with the use of large arc lengths. Line
searches were most effective in case 0 (no update). Otherwise, line searches
did not help significantly in terms of iteration convergence nor for CPU
demand reduction. ~
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6. Summary

6.1 Theoretical Resuits

A derivation of all well known arc length procedures is given using a family
of orthogonal plane methods. Various predetermined scalar residuals can be
substituted into a general formula to provide updates for normal plane
iteration, consistently linearized iteration, and Crisfield's explicit iteration.
Based on a theoretical path following example, it was found that convergence
velocity is independent of arc length procedures, however the more
contrained methods provide better convergence characteristics in the
solution of highly nonlinear problems.

Explicitly derived stiffness expressions for space truss elements in elastic,
plastic and buckled configurations provide extremely variable local stiffness
response. This provides a means of effectively representing the typical
stability problems found in reticulated shell structures.

6.2 Numerical Results

As predicted by theory, convergence velocity is relatively independent of arc
length procedures, and the more constrained procedures (Crisfield's method
and the consistently linearized method) provided better convergence
characteristics for the solution of highly nonlinear problems. The use of
quasi Newton updates had a large effect on the performance of the arc
length procedures. A special form of the BFGS update provided the best
results with 23 percent improvement in convergence velocity and 4 percent
reduction in computational cost compared to the modified Newton method.

6.3 Recommendations

For the solution of highly nonlinear problems, with severe local alteration of
stiffness, the most robust arc length procedure is Crisfield's method. BFGS
quasi Newton updates, or pure Newton updates, should be used in
conjunction with Crisfield's method to improve convergence velocity and
computational efficiency. Other arc length procedures can be used for the
solution of less nonlinear problems where convergency is not severely
strained. The BFGS special update can again be used to improve the
convergence velocity, however it may not provide sufficient computational
savings to justify its use under these conditions.
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m" steps of arc length 8" were performed for each set of parameters.

follow the load/displacement curve ( A = A sin x ) provided the following
tables. The convergence criteria was 6% < 10°4. A total of "N" iterations in

A theoretical comparison of the ability of various arc length procedures to
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Appendix B
NISA Input Description for BTRUSS elements

Control Data
¢ Element Group Control Card Cl.1 (one card for each element group)
Column Dariable Description
1-3 NPAR(1) Flag for BTRUSS = 1
4-6 NPAR(2) Number of BTRUSS
elements in this group.
46-48 NPAR(16) Number of different
material/section property groups.
Material Data
e Material Group Card C1.2.1 (one for each material group)
Column Dariable Description
1-5 N Group number.
¢ Material Group Card C1.2.2 (one for each material group)
Column Dariable ~ Description
1-10 E(N) Young's Modulus.
11-20 AREA(N) Cross sectional area.
21-30 XINT(N) Cross sectional inertia.
31-40 SIGPL(N) Yield stress.
41-50 SIGMAX(N) Ultimate stress.
51-60 EPSMAX(N) Ultimate strain.

Element Data
¢ Element Data Card (one for each element)

Column Variable Description

1-5 M Element number ¢1 ¢ H ¢ NPAR(2)).
6-10 I1 Node at truss end |I.

11-15 JJ Node at truss end }.

16-20 MTYP Material group <1 ¢ H ¢ NPARC16)).
21-25 KG Node generation parameter.
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