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Abstract

The present thesis addresses a new approach for solving numerically instationary, incompress-
ible flow governed by the appropriate set of Navier--Stokes equations. This approach named
’variational multiscale method’ has recently been introduced as a powerful means for problems
of computational mechanics having to deal with large ranges of scales. Such notably widened
scale ranges emerge in various flow situations.At large, this study aims firstly at thedevelopment
of a general framework for the numerical solution of the Navier--Stokes equations based on the
variational multiscale method. Secondly, a specific implementation within a Galerkin finite
method is realized based on this general framework. Finally, an extensive test program for the
developed method in form of sample laminar and turbulent flow situations is conducted.

Thevariationalmultiscalemethod enables the separationof the complete scale range into various
scale groups. In this work, the distinction of three different scale groups is mainly proposed in
view of the underlying fluid flow problems. These are especially large resolved scales, small re-
solved scales and unresolved scales. The scale separation is initially applied to the linear model
problem of a scalar convection--diffusion--reaction equation and some solution strategies are
suggested in this context. The transition to the more complicated problem of the nonlinear set
of instationary, incompressible Navier--Stokes equations is performed and reasonable solution
strategies for this problem are picked up again. Additional considerations have to be taken into
account as soon as the challenging phenomenom of turbulent flow regimes is encountered. As
a starting point for these particular considerations, two classical procedures for the numerical
simulation of turbulent flows, Direct Numerical Simulation (DNS) and Large Eddy Simulation
(LES), are adapted to the numerical method of choice in this work, the Galerkin finite element
method, in a straightforward manner. It is, in fact, possible to identify these classical approach
as special cases of the variational multiscale method employing a separation of two scales. Ne-
vertheless, the variational multiscale method gives rise to further approaches going beyond this,
e.g. based on the three--scale separation proposed in this work

As a practical method based on the three--scale separation, a three--level finite element method
is developed. A major objective of this practical method has to be on computational efficiency
inevitably due to the usual imbalance of necessary and available computer resources in the con-
text of turbulent flow situations. Therefore, a local approximation in form of residual--free bub-
bles is exploited as a first approach for the three--level method. The name of the method espe-
cially accounts for three different types of discretizations linked with the respective levels.
Starting with a basic discretization (level 1), submeshes (level 2) are introduced on each element
of this basic mesh. These two levels constitute a two--level finite element method for the time
being, which is tested in numerical examples. With the help of these submeshes, approximate
solutions for residual--freebubbleson these elements are pursued. Particular attention is alsopaid
to the adequate consideration of the continuity equation on level 2. Theproposed three--levelme-
thod is not achieved until a third level is introduced. In particular, a dynamic way of modeling
the still unresolved scales of the problem is proposed as the manifestation of third level. Accor-
ding to this, a third type of discretization, namely elementwise sub--submeshes, i.e. slightly refi-
ned submeshes with regard to the submeshes on the second level, is employed into the method.
The performance of the three--level finite element method is demonstrated for several laminar
and turbulent flow examples.
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Zusammenfassung

Die vorliegende Arbeit behandelt einen neuen Ansatz für die numerische Lösung instationärer,
inkompressibler Strömungen, die mathematisch vom zugehörigen Navier--Stokes’schen Glei-
chungssystem beschrieben werden. Dieser neue Ansatz, ’variationelle Mehrskalen--Methode’
genannt, ist kürzlich als vielversprechendesMittel zur Lösung von Problemen der Numerischen
Mechanik mit sehr breiten Skalenspektren eingeführt worden. Solche deutlich erweiterten Ska-
lenspektren treten in einerVielzahl vonStrömungssituationen auf. In IhrerGesamtheit zielt diese
Studie zunächst auf die Entwicklung eines allgemeinen Rahmensystems für die numerische Lö-
sung der Navier--Stokes Gleichungen basierend auf der variationellen Mehrskalen--Methode.
auf Grundlage dieses allgemeinen Rahmensystems wird hieran anschließend eine spezielle Im-
plementierung innerhalb einer Galerkin Finite ElementMethode vollzogen. Zum Schluss dieser
Arbeit wird ein umfangreiches Testprogramm für die entwickelteMethode in Form von lamina-
ren und turbulenten Beispielströmungen durchgeführt.

Die variationelle Mehrskalen--Methode ermöglicht die Separation des kompletten Skalenspek-
trums in verschiedene Skalengruppen. In dieser Arbeit wirdmit Blick auf die vorliegenden Strö-
mungsprobleme hauptsächlich eineUnterscheidung von drei verschiedenen Skalengruppenvor-
geschlagen. Dies sind namentlich grobe aufgelöste Skalen, feine aufgelöste Skalen und
unaufgelöste Skalen. Die Skalenseparation wird zunächst auf die lineare Problemstellung einer
skalaren Konvektions--Diffusions--Reaktionsgleichung angewendet und es werden einige Lö-
sungsstrategien in diesem Zusammenhang vorgeschlagen. Der übergang zur komplizierteren
Problemstellung des nichtlinearen Systems der instationären, inkompressiblen Navier--Stokes
Gleichungen wird vollzogen und sinnvolle Lösungsstrategien hierfür wieder aufgegriffen.Wei-
tereÜberlegungenmüssen angestellt werden, sobald dasherausfordernde Phänomen turbulenter
Strömungsbereiche auftritt. AlsAusgangspunkt für diese speziellenBetrachtungenwerden zwei
klassische Ansätze für die numerische Simulation, die Direkte Numerische Simulation (DNS)
und die Large Eddy Simulation (LES), auf einfacheWeise in die numerischeMethode derWahl
in dieser Arbeit, der Galerkin Finite Element Methode, eingepasst. Es ist in der Tat möglich,
diese klassischen Ansätze als Spezialfälle der variationellen Mehrskalen--Methode für eine
Zwei--Skalen--Separation zu identifizieren. Die variationelle Mehrskalen--Methode bietet
nichtsdestoweniger die Möglichkeit darüber hinausgehender Ansätze, zum Beispiel basierend
auf der in dieser Arbeit vorgeschlagenen Drei--Skalen--Separation.

Als praktische Methode basierend auf der Drei--Skalen--Separation wird eine Drei--Ebenen Fi-
nite ElementMethode entwickelt. Eine Hauptzielsetzung dieser praktischenMethode muss auf-
grund des üblichen negativen Ungleichgewichtes zwischen notwendiger und verfügbarer Re-
chenleistung im Zusammenhang mit turbulenten Strömungen zwangsläufig auf rechenbetonter
Effizienz liegen. Zu diesemZweckwird als ein erster Ansatz eine lokaleApproximation in Form
von residuenfreien ’bubbles’ ausgenutzt. Der Name der Methode weist insbesondere drei ver-
schiedene Arten von Diskretisierungen, die mit den jeweiligen Ebenen verbunden sind, aus.
Ausgehend von einer Basisdiskretisierung (Ebene 1) werden Unterdiskretisierungen in jedem
Element der Basisdiskretisierung eingeführt.Mit Hilfe der Unterdiskretisierungenwerdennähe-
rungsweise Lösungen der residuenfreien ’bubbles’ in diesen Elementen angestrebt. Besondere
Aufmerksamkeit ist einer adäquaten Berücksichtigung der Kontinuitätsgleichung auf Ebene 2
gewidmet. Diese beiden Ebenen konstituieren zunächst eine Zwei--Ebenen Finite Element Me-
thode, die in numerischen Beispielen getestet wird. Die vorgeschlagene Drei--Ebenen Methode



iii

wird erst mit der Einführung einer dritten Ebene vollendet. Eine dynamischerModellierungsan-
satz für die immer noch unaufgelösten Skalen des Problemswirdhier als dritte Ebeneeingeführt.
Dementsprechend wird eine dritte Diskretisierungsart, nämlich elementweise Unter--Unterdis-
kretisierungen, d.h. leicht verfeinerteUnterdiskretisierungen in relation zu denUnterdiskretisie-
rungen auf der zweiten Ebene, in die Methode eingebracht. Das Verhalten der Drei--Ebenen Fi-
nite Element Methode wird anhand etlicher laminarer und turbulenter Strömungsbeispiele
demonstriert.
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Abbrevations and Notations

The following abbrevations and notations are used within this work:

Abbrevations

BE Backward Euler scheme

CDR Convection--Diffusion--Reaction equation

CFD Computational Fluid Dynamics

CN Crank--Nicolson scheme

Da Damköhler number

DAE Differential Algebraic Equation system

DNS Direct Numerical Simulation

FEM Finite Element Method

IBVP Initial Boundary Value Problem

LES Large Eddy Simulation

Ma Mach number

NS Navier--Stokes equations

ODE Ordinary Differential Equation

Pe Peclet number

PPE Pressure Poisson Equation

RANS Reynolds Averaged Navier--Stokes

Re Reynolds number

RFB Residual--Free Bubble

USFEM Unusual Stabilized Finite Element Method

Notations

Bilinear forms

Bcdr(⋅ ; ⋅) bilinear form (CDR -- stationary)

Btcdr(⋅ ; ⋅) bilinear form (CDR -- instationary)

Bdtcdr(⋅ ; ⋅) bilinear form, discrete in time (CDR -- instationary)

BNS(⋅ ; ⋅) bilinear form (NS)

BdtNS(⋅ ; ⋅) bilinear form, discrete in time (NS)

C(⋅ ; ⋅) projection of the cross stress tensor

L(⋅ ; ⋅) projection of the Leonard stress tensor

R(⋅ ; ⋅) projection of the subfilter--scale Reynolds stress tensor
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Bubble functions

B1 normalized bubble function

F ’right--hand--side’ bubble function

P ’pressure’ bubble function

U velocity bubble function

Domains and boundaries

Γ domain boundary

Γ′ union of all element boundaries excluding the domain boundary

Γe element boundary

Γg Dirichlet boundary

Γh Neumann boundary

Γst space--time domain boundary

Γ− inflow boundary

Γ+ outflow boundary

Ω domain

Ω′ union of all element interiors

Ωe element domain

Finite element matrices and vectors

C convective matrix

D diffusive matrix

E vector containing entries due to Dirichlet boundary conditions (CDR)

EM vector containing entries due to Dirichlet boundary conditions (NS -- momentum)

EC vector containing entries due to Dirichlet boundary conditions (NS -- continuity)

F body force vector

G gradient matrix

GT divergence matrix

K ’stiffness’ matrix

M mass matrix

N Neumann boundary condition vector

R right--hand--side vector

T ’time--right--hand--side’ vector

V viscous matrix

b vector of unknown parameters of normalized bubble function

p vector of unknown parameters of pressure solution function

u vector of unknown parameters of velocity solution function

u
.

vector of unknown parameters of acceleration solution function



x

φ vector of unknown parameters of solution function (CDR)

Function spaces and classes

B(Ωe) bubble function space for element domain Ωe

C0(Ω) class of continuous functions

H1(Ω) Sobolev space of square--integrable functions with square--integrable derivatives

Jh space of discretely divergence--free functions

L2(Ω) Sobolev space of square--integrable functions

Sφ solution function space (CDR)

Sp solution function space for pressure (NS)

Su solution function space for velocity (NS)

Su, p combined solution function space (NS)

Vφ weighting function space (CDR)

Vp weighting function space for pressure (NS)

Vu weighting function space for velocity (NS)

Vu, p combined weighting function space (NS)

VEGF weighting function space for element Green’s function (CDR)

VRFB weighting function space for residual--free bubble function (CDR)

Mathematical symbols
(⋅ , ⋅)Ω L2--inner product on Ω
[⋅]+− jump operator

‖ ⋅ ‖0 L2--norm on Ω

‖ ⋅ ‖1 H1--norm on Ω

 tensor product

 direct sum

∀ for all; for each

meas (⋅) measure symbol

O (⋅) order symbol

9 real numbers

9nsd Euclidean nsd--space

Operator symbols

∇ gradient operator

∇⋅ divergence operator

∆ Laplace operator

A finite element assembly operator

L differential operator

L* adjoint differential operator
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LRFB differential operator indicating zero Dirichlet boundary conditions (RFB)

LC differential operator (NS) -- continuity equation

LM differential operator (NS) -- momentum equation

Ldt, linM differential operator (NS) -- discrete in time and linearized momentum equation

LstatM differential operator (NS) -- stationary momentum equation

Lc differential operator (CDR) -- convective term

Lcdr differential operator (CDR) -- stationary

Lcdr, t differential operator (CDR) -- instationary

Lstabcdr differential operator (CDR) -- stabilizing operator acting on weighting function

L1−Dcdr one--dimensional differential operator (CDR)

Lconv differential operator (NS) -- convective term

Ld differential operator (CDR) -- diffusive term

Lpres differential operator (NS) -- pressure term

Lr differential operator (CDR) -- reactive term

Lreac differential operator (NS) -- reactive term

Lt differential operator (NS) -- temporal term

Lvisc differential operator (NS) -- viscous term

M integral operator

P general projection operator

Ph
G discrete Galerkin projection operator

Ph
J projection operator into discretely divergence--free subspace

Rcdr residual of CDR

RNS,M residual of NS momentum equation

RNS, C residual of NS continuity equation
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θ parameter for generalized trapezoidal scheme

α, α parameters for nonlinear iteration scheme (NS)

β parameter for convective term (NS)

γ parameter for viscous term (NS)

δ Dirac delta function / vorticity thickness

δ0 initial vorticity thickness

δν viscous length

ε rate of dissipation

η Kolmogorov length scale

À kinematic physical diffusivity / scalar wavenumber
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τ stabilization parameter

τη Kolmogorov time scale
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A convective velocity scale
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s temporal separation



xiv

t time
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u0 discrete initial velocity vector

u
.

acceleration vector
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11(1 Introduction

1.1 Motivation

Turbulence is the ”invention of the Devil on the seventh day of creation”. This is the way Peter
Bradshaw expressed his view of this very special flow condition in Bradshaw (1994). Beyond
it, the title of this publication asserts his claim to designate turbulence as the chief outstanding
difficulty in, at least, fluidmechanics. However, turbulence isonly oneaspect of the presentwork
and, more precisely, the one at the road’s end. Correspondingly, it is advisable to start at the be-
ginning of it all -- conspicously later than the seventh day of creation though, in order not to let
this work burst at the seams.

Fluids can be divided into liquids and gases with water and air being the most prominent repre-
sentatives of these two groups, respectively. In Fig. 1.1, some everyday examples for flows of
liquids like the wake of a motorboat, the water flow of an alpine creek, the oil flow in a pipeline,
or the blood flow in an artery are displayed.

Fig. 1.1: Some common examples for liquid flows
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In almost all cases, the flow of liquids like water may be treated as being incompressible. Under
certain conditions like, for instance, flow governed by a low Mach number, air and other gases
may also be dealt with based on the assumption of incompressibility. Fig 1.2 illustrates some
well--known examples for flows of gases like the air flow around a plane, a motorbike, or a
bridge. Of course, a flow around an airplane usually has to be viewed as being compressible.
However, the respective flow parameters have to be considered in the other two cases, in order
to judge the classification of the flow finally.

Fig. 1.2: Some common examples for gas (air) flows

The concept of incompressibility describes a presumed flow performancewhere the temperature
field will exhibit no influence on the velocity and pressure field, if, in addition to the density,
all further characteristic material properties like, for example, the viscosity are constant as well.
The scope of the incompressibility assumption is broad and, thus, the area of application of the
perceptions of this work.

Incompressible flow is specified mathematically by the incompressible version of the set of Na-
vier--Stokes equations. Interestingly, the last proposition is basically valid for two crucial states
of flow, laminar flow and turbulent flow, although they are quite different from the physical point
of view.The occurenceof oneor theother state strongly dependson the so--calledReynoldsnum-
ber associatedwith the flow. This has already been observed byOsborne Reynolds (1842--1912),
the eponym of this dimensionless number, in the later half of the 19th century. In typical enginee-
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ring applications, turbulent flows are surely prevalent due to its positive features like a more ef-
fective transport and mixing ability with respect to a comparable laminar flow. By dissecting
Figs. 1.1 and 1.2, the reader may also verify that most of the depicted common examples repre-
sent turbulent flow situations or flow situations which may at least enter the turbulent regime
temporarily. According to this, the interest in this flow regime is very high.

The analytical point of view is extremely deficient with regard to the turbulent flow regime in
particular. There exist no analytical solutions even to the simplest turbulent flow situations. To
that effect, all hope culminates in a numerical way of solving this ’chief outstanding’ problem.
The straightforward approach, i.e. simply solving the Navier--Stokes equationswith appropriate
boundary conditions in a numerical manner, discovers its limitations very soon. By the way, this
straightforward procedure is called Direct Numerical Simulation (DNS) -- and it shall be explai-
ned later on. It sounds so easy -- what is the trouble? Well, the major problem in solving the Na-
vier--Stokes equations computationally can be assigned to the scales or, more precisely spoken,
the broad range of scales. For laminar flows already, a substantial range of scalesmay be encoun-
tered (and will be encountered indeed as the reader may realize below). Dealing with turbulent
flows, however, ostensibly means nothing more than dealing with even broader ranges of scales
in comparison to laminar flows. A quantitative prediction of this range obeys a simple proportio-
nal correlation with the particular Reynolds number. In computational mechanics, severe diffi-
culties emerge as soon as the spectrum of scales to be treated extends beyond the limits of the
available computer power -- and, still today unfortunately, this is indeed an undisputable actua-
lity for most of the turbulent flows.

Lowering the demands of resolution leads to what is well--established under the name of ’Large
Eddy Simulation’ (LES) in the meantime. The core of this approach may be expressed verbally
as follows: it is aimed at a complete resolution of the large--scale structure of the turbulent flow
and the effect of the smaller scales, which are not acquired by this resolution, is modeled. Techni-
cally, the unresolved scales are distinguished from the resolved scales by the application of a spa-
tial filter of limited extent. Of course, LES is not the ’miracle cure’. The computational effort
required for LES may be less than for DNS, but it is still of substantial complexity. Hence, it is
also still not possible to perform LES for most of the turbulent flows arising in characteristic en-
gineering applications. However, it seems to be more auspicious to believe in LES than in DNS
for thenear future -- and theremaybe somesupport in improvingLESerupting fromquite adiffe-
rent field.

This redeemer potentially being instrumental in fighting the devil of turbulence has also a name
as a matter of course: the variational multiscale method. This theoretical framework has been
established by Hughes (1995) and further developed as a powerful means for problems of com-
putational mechanics having to deal with large scale ranges by Hughes and co--workers in Hug-
hes and Stewart (1996) and Hughes et al. (1998). The basic concept consists in differentiating
scale groups, for example large (resolved) and small (resolved) scales or resolved andunresolved
scales depending on the resolution requirements. This methodological framework has also been
applied to the underlying problem, the incompressible Navier--Stokes equations, in order to faci-
litate numerical simulations in the sense of LES. You may consult Hughes et al. (2000a) for a
theoretical elaboration and Hughes et al. (2001a, 2001b) for results of some early applications.
In preference to the usage of a filter in the aforementioned ’classical’ way of performing LES,
variational projection separates scale ranges within the variational multiscale method. After all,
it has to be remarked that the initial concept of the variational multiscale method as Hughes and
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co--workers have proposed it in their publications assumes a separation of two scale ranges. Ne-
vertheless, the framework is basically unsealed to arrangements going beyond this two--scale de-
composition.

Independent of the author’s thoughts in this direction, Collis (2001) has recently broadened the
picture of the variational multiscale method in the LES--context by raising the number of sepa-
rated scale ranges beyond the original twofold separation. This enables a completely different
numerical treatment for any of these ranges resulting in a paramountly flexible numerical simu-
lation, e.g. by using the finite element method. The variational multiscale method was basically
developed for the application within a Galerkin finite element method and this will, in fact, be
the method of choice in this work. It is by no means restricted to this variant of a numerical
method though. At this stage, it has to be pointed out that the variational multiscale method is
from a practical standpoint ’merely’ a theoretical framework for the separation of scales. Corre-
sponding practical methods fitting in this framework on the one hand and enabling an imple-
mentation as a computational algorithm on the other hand are still rare. For such practical meth-
ods, it is crucial that a clear separation of the different ranges is actually achieved.

The Galerkin finite element method has just been adressed as the numerical method of choice.
This represents a hazardous choice for problems of fluid mechanics -- and, in this context, the
devil actually showsupwith twoheads. Independent of the effective flow regime, it is, in general,
not possible to achieve unspoilt results using the standard form of the Galerkin finite element
in case of a dominanting convective term, i.e. a very large Reynolds number in fact, without re-
sorting to an extremely fine discretization level. The second problem, which has to be dealt with
in the context of theNavier--Stokes equations, is the required fulfillment of the so--called inf--sup
condition exhaustively described, for instance, in Brezzi and Fortin (1991). However, there is
a cure (considered miraculous or not) effectively addressing these two problems in the mean-
time: stabilized Galerkin finite element methods. These stabilizedmethodsmay be incorporated
into the framework of the variational multiscale method though. This leads to the opportunity
to proceed an overall conclusion of this short motivation weaving the adressed problems (and,
accordingly, the respective methods to tackle these problems later on) into a general problem
classification.

In case the very small scales at one end of a scale spectrum represent the essential problem, two
classes of problems can be distinguished according to Franco Brezzi, confer e.g. Brezzi (2000).
To the first class, all the just mentioned situationsmay be assigned for which the chosen discreti-
zation level does not provide the necessary stability properties. This has to be viewed, in general,
as being the result of an improper treatment of the small scales of the problem.An actual physical
effect cannot be ascribed to the small scales of theseproblems though. This is the important diffe-
rence with respect to problems associated with the second class of problems where this small--
scale physics is crucial. Consequently, turbulent flows have to be allocated to the second class
of this simplified categorization. The final result, however, appears to be the same for the repre-
sentativesof both classes in that a questionable solution is achieved in the end due to thedisregard
of the small scales.

Finally, for thismotivation to be what it’s name implies, there should be some light visible at the
end of the ’tunnel of problems’ at least. In treating properly the first kind of problems, a certain
amount of experience has been gathered in the meantime, in particular by using the particular
procedure of stabilizedmethods.Moreover, there is a ray of hope that a transfer of the experience
to the second problem class may be conceivable. In order to express this hope, Franco Brezzi
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(2000) is quoted as follows:”These two situations arequite different, in natureand scale. Nevert-
heless it is not unreasonable to hope that some techniques that have been developed for dealing
with the former class of phenomena might be adapted to deal with the latter one. In this sense,
the most promising technique seems to be the use of Residual--Free Bubbles.”

At this introductory stage already, it has to be emphasized that using residual--free bubbles will
provide uswith substantial computational savings. The quality of approximation, however, may
be qualified as being inadequate, in particular, for turbulent flow applications as will be shown
later in this work.

1.2 Ambition of this work

Thenumerical simulation of problems covering extremelywide ranges of scales like the one con-
sidered in this work is certainly a challenging but, at the same time, a highly contemporary topic
in computational mechanics as has been pointed out, for instance, by Oden et al. (2003) recently.
In order to accomplish this challenge, the following strategy is pursued: Basically, this work tries
to range in the paths enlightened by the ray of hopementioned at the end of the last section. Preci-
sely, this means that the framework of the variational multiscale method shall be exploited, in
order to develop a method suitable for problems with wide ranges of scales governed by the in-
compressible Navier--Stokes equations. Besides the practical implementation of the method,
promising alternative approaches within the variational multiscale method should also been po-
inted out. Initially, there is no special attention to either laminar or turbulent flow situations, re-
spectively. Nevertheless, the ultimate goal is certainly the development of amethod which exhi-
bits its particular strengths in the treatment of turbulent flows. The core of this work primarily
consists in focussing on the methodological aspects of the method and to a lesser extent on the
actual application of themethod. After developing themethodological aspects including its prac-
tical implementation, various laminar flow situations are shownas examples for theperformance
of the multi--level finite element methods in this work. Afterwards, two initial turbulent flow
applications are executed pointing out the still inherent shortcomings of themethods. Hence, this
work leaves room for further improvement of themethods andgives somecomments in direction
of potential developments.

There is an even higher--ranking target though. This work has been proceeded at an Institute of
StructuralMechanics. The readermight have alreadywondered at the, normally, hardly achieva-
ble reconciliation of the topic of this work on the one hand and the scientific environment of its
compilation on the other hand. The dawn for the introduction of fluid mechanical topics into the
Institute brokewith the work ofWall (1999). His work aimed at problems of fluid--structure--in-
teraction and, in consequence, this is actually the aforementioned higher--ranking target. For
tackling the fluid part in Wall (1999), stabilized Galerkin finite element methods have been ap-
plied limited to purely laminar flow situations though. In a second work at the Institute of Struc-
tural Mechanics, Mok (2001) focussed on further developments related to the coupling part of
fluid--structure--interaction problems. The present work aims at further developments within the
fluid mechanical part of coupled fluid--structure--interaction problems. In particular, it is, on the
one hand, the first work dealing with turbulent flows and, on the other hand, also the first work
introducing the topic ofmultiscalemethods at this Institute. Due to this reason, thebasics of these
issues will be presented in a more elaborate manner.
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1.3 Overview

At the end of this introduction, the following short overview should procure an impression of
what will be dealt with in the respective chapters of this work.

In chapter 2, the continuummechanical basics of fluidmechanics related to kinematical, kineti-
cal and constitutive aspects are presented. From the formulation of the conservation principles,
the incompressible Navier--Stokes equations are developed in various forms along with the ap-
propriate initial and boundary conditions as a particular problem of fluid mechanics. At the end
of this chapter, themodel problemof a scalar convection--diffusion--reaction equation is introdu-
ced as another partial differential equation being auxiliary in the subsequent developments.

The necessary foundations for the numerical solution of the scalar convection--diffusion--reac-
tion equation as well as the Navier--Stokes equations are established in chapter 3 with regard
to the spatial and temporal discretization. The numerical problems linked with the standard Ga-
lerkin finite element method are addressed in the last section of this chapter.

Chapter 4 provides a brief insight into some issues of turbulent flows. This material represents
a succint selection of topics which are important for the goals of this work. A furthergoing treat-
ment of theoretical aspects related to turbulence is not feasible within the bounds of this work.

In chapter 5, the three major approaches used for the numerical simulation of turbulent flows,
i.e. DNS, LES and RANS, are presented. After characterizingDNS as the comprehensive proce-
dure, LES will be the main focus of this chapter. On the one hand, the aspect of the ’classical’
way of performing LES is dealt with and, on the other hand, its incorporation into the framework
of a Galerkin finite element method is pushed forward.

Chapter 6 focusses on a comprehensive introduction of the variational multiscale method for
the model case of the convection--diffusion--reaction equation. The solution strategies for the
small scales are particularly emphasized. Two-- and three--scale separations of the basic scalar
variable are distinguished explicitly.

The ’modus operandi’ applied to the convection--diffusion--reaction equation is transfered to the
Navier--Stokes equations in chapter 7. The interpretation of the perceptions of this chapter in
the sense of DNS and LES is enforced. At the end of this chapter, the theoretical basis for the
following two-- and three--level methods is pointed out.

In chapter 8, the practical implementation of the insight from the preceding chapters is realized
in the form of a two-- and three--level finite element method. Starting with the introduction of
the residual--free bubble approach on the second level, an additional third level is presented con-
stituted by the dynamic modeling procedure for the dissipative effect of still unresolved scales.
In the last section of this chapter, some furthergoing developments are addressed related, on the
one hand, to the presented method and, on the other hand, to potentially alternative strategies.

Chapter 9 contains various numerical examples for laminar flow situations. Afterwards, some
initial findings for turbulent flow situations are presented in chapter 10.

This work results in a short summary and future prospects in chapter 11. In the subsequent ap-
pendix, somemeasures for the statistical descriptionof turbulence, a hierarchyof functional spa-
ces in principle aswell as some remarks concerning the computational tools used for the compila-
tion of the sample calculations in chapters 9 and 10 may be found as supportive material to the
preceding elaboration.
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22(2 ContinuumMechanicalBasics of IncompressibleFlow

2.1 Introduction

The continuum approach enables the neglect of themolecular structure of solids and fluids rather
regarding them as being without empty spaces, i.e. there are always neighbor particles. Mathe-
matically, one is left with continuous functions valid at all points in space and time. This applies
to the derivatives of these functions too. The justification for the assumption of a continuousme-
dium in the just described sense may be found by considering the so--called Knudsen number.
This dimensionless number relates the mean free path to the smallest length scale probably ap-
pearing in the flow. With a mean free path of about 10--7 m for e.g. air under atmospheric condi-
tions and an estimated smallest length scale seldomly falling below10--4 m, the Knudsen number
is calculated to be 10--3. For this number being notedly smaller than 1, it is a justifiable approach
to rely on the continuum hypothesis according to e.g. Pope (2000).

Within thewide range of books dealingwith continuummechanics as itsmain topic, a largenum-
ber of monographs is encountered dedicating a predominant part the treatment of themechanics
of solids. For the purposes of this work, three books assigning a considerable portion of their
content to the field of fluid mechanics may be mentioned: Fung (1977), Lai et al. (1993), and
Malvern (1969). Besides the special literature on continuummechanics, a vast number ofmono-
graphs on fluid mechanics also touch the basic continuum mechanical topics more or less com-
prehensive. It should be sufficient to name the classic textbooks of Batchelor (1967) as well as
Schlichting (1979) here. Moreover, the mutimedia package of Homsy et al. (2000) should be
mentioned as a very attractive offer from a didactical point of view. Several visual impressions
may also be gained from the famous album of van Dyke (1982).

2.2 Kinematics

2.2.1 Velocity in Lagrangean and Eulerian description

Although there may be a distinction of up to four descriptions (see Malvern (1969)), it will be
focussed on the popular twofold classification here. On the one hand, the referential description,
called material description by many authors and attributed to Joseph Louis Lagrange (1736--
1813), may be applied. Therein, the velocity vector u of a particle depends here on the material
coordinates X1, X2 and X3, i.e. the coordinates of its position in the reference configuration, and
the time t: uX1, X2,X3, t.
On the other hand, by fixing the observer’s location, u may be expressed as a function of the
spatial coordinates x1, x2 and x3 and the time t. This description is ascribed to Leonard Euler
(1707--1783). For historical correctness, it has to be remarked that both Lagrange and Euler have
been aware of both descriptions which makes this attribution somehow accidential. The spatial
coordinates depend on the material coordinates as

x= x(X, t) (2.1)
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with the essential condition

x= xX, t0 = X (2.2)

at the reference time t0.

2.2.2 Acceleration: Material (Substantial) time derivative

The Eulerian description, which ismostly used in fluid mechanics, will be concentrated on here.
Thematerial time derivative, also termed substantial time derivative, expressing the acceleration

u
. (x, t)= Du

Dt
(X, t) (2.3)

in a Lagrangian description can also be formulated with reference to a spatial description by
using the chain rule as follows:

u
. (x, t)= Du

Dt
(x, t)= ∂u∂t +

∂u
∂x
∂x
∂t =

∂u
∂t + u⋅ ∇u (2.4)

The acceleration in (2.4) consists of the local time derivative vanishing in a steady flow situation
and a convective rate of change.

2.2.3 Rate--of--velocity and spin tensor (spatial gradient)

The unification of the spatial derivatives in the coordinate directions, i.e. the spatial gradient, of
the velocity ∇u may be decomposed into a symmetric part

ε(u)= 1
2
∇u+ (∇u)T (2.5)

and a skew--symmetric part

Ω(u)= 1
2
∇u− (∇u)T (2.6)

The symmetric part ε is termed ’rate--of--velocity tensor’ and the skew--symmetric part Ω is de-
noted ’spin tensor’. Since one may encounter different definitions of the spatial gradient in the
literature, an explicit definition for this work reading

∇u=

⎪⎪⎪⎪⎪⎪

⎧

⎩

∂u1
∂x1
∂u2
∂x1
∂u3
∂x1

∂u1
∂x2
∂u2
∂x2
∂u3
∂x2

∂u1
∂x3
∂u2
∂x3
∂u3
∂x3

⎪⎪⎪⎪⎪⎪

⎫

⎭

= ε(u)+ Ω(u) (2.7)

seems to be necessary, with which its transpose is also defined unambigously. The dual (or axial)
vector of the spin tensor is the vorticity vector ωwhich is obtained by applying the curl operator
to the velocity

ω= 1
2
∇× u (2.8)
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The relation to the nonzero components of Ω is given by

ω=−Ω23e1+Ω31e2+Ω12e3 (2.9)

where ei denotes the unit vector in the coordinate direction i. It is clear by definition (2.6) that
all diagonal components of Ω are always zero. If all off--diagonal components of Ω (and likewise
all components of ω) are zero, the velocity field is said to be irrotational.

2.3 Kinetics

2.3.1 Body and surface force vectors

Two types of external forces have to be respected. On the one hand, body forces act on the ele-
ments of the volume inside the body, e.g. gravity due to long--range interaction with matter. The
body force per unit mass acting on the infinitesimal actual volume dV of the body is denoted by
the vector f. On the other hand, the surface forces (or traction) act on the real or imagined surface
separating two parts of the body. The stress vector (or traction vector) named after Augustin
Louis Cauchy (1789--1857) is defined as

t= lim
∆S → 0

∆F
∆S
= t (x, t, n) (2.10)

where ∆F denotes the resultant force on a small area ∆S on the respective surface. The usual
notation ’body’ and ’force’ stemming from the field of solid mechanicsmay be viewed as being
suboptimal in the field of fluid mechanics. However, it will be stuck to this notation due to its
widespread use in continuum mechanics and thought of a volume of liquid or gas and a ’flow’,
respectively.

2.3.2 Stress tensor

It is indicated in (2.10) that the stress vector is a function of the unit outward normal vector n
of the surface. The vector tmay also be obtained by the transformation

t= n⋅ σ (2.11)

where σ denotes the Cauchy stress tensor. The components of the stress tensor are

σ=⎪
⎧
⎩

σ1
τ21
τ31

τ12
σ2
τ32

τ13
τ23
σ3
⎪
⎫
⎭

(2.12)

with σi indicating normal stresses and τij shear stresses. The principle of conservation ofmoment
ofmomentum,which will not bementioned explicitly in section 2.5, tells us that the stress tensor
is symmetric, i.e. σ= σT. Hence, six independent unknowns remain in (2.12). Like any tensor,
the stress tensor exhibits three invariants, of which merely the first one termed the trace of σ and
reading

tr σ= σ1+ σ2+ σ3 (2.13)
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should be mentioned here. This definition leads to the mean normal stress being equivalent to
the negative thermodynamic pressure

σm=−pdyn=
1
3
trσ=

σ1+ σ2+ σ3
3

(2.14)

Herewith, the stress tensor may be written as the sum of a spherical tensor

σmI=−pdynI=⎪⎪
⎧

⎩

− pdyn
0

0

0

− pdyn
0

0

0

− pdyn

⎪⎪
⎫

⎭
(2.15)

describing a hydrostatic state of stress and a deviatoric tensor

dev σ= σ− − pdynI =⎪⎪
⎧

⎩

σ1+ pdyn
τ21
τ31

τ12
σ2+ pdyn
τ32

τ13
τ23

σ3+ pdyn
⎪⎪
⎫

⎭
(2.16)

where I denotes the identity tensor. (2.16) may be redefined as the viscous stress tensor

τ=⎪
⎧
⎩

τ11
τ21
τ31

τ12
τ22
τ32

τ13
τ23
τ33
⎪
⎫
⎭

(2.17)

with the diagonal components τii= σi+ pdyn.

2.4 Constitutive equation

In order to close the ’gap’ still being open between kinematics and kinetics, a constitutive equa-
tion has to be introduced. As aforementioned, the stress is given by the sum of a purely hydrosta-
tic state of stress represented by the thermodynamic pressure pdyn and the viscous stress tensor
in accordance with

σ=− pdynI+ τ (2.18)

George Gabriel Stokes (1819--1903) assumed the viscous stress to be a function of the rate--of--
velocity tensor, i.e.

τ= F(ε(u)) (2.19)

If this function F is linear, the fluid is called a Newtonian fluid (Isaac Newton (1643--1727)),
which thiswork is focussed on.With the additional assumption of isotropy for Newtonian fluids,
the general functional connection between the viscous stress tensor and the rate--of--velocity ten-
sor reads

τ= λ(trε) I+ 2mε (2.20)

with the material constants λ and m. By introducing the so--called Stokes condition assuming
the bulk viscosity to be zero subject to

λ+ 2
3
m= 0 (2.21)
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the final form of the relation between the stress tensor and the rate--of--velocity tensor reads

σ=− pdynI−
2
3
m(trε)I+ 2mε (2.22)

The only remainingmaterial constant is the dynamic viscosity mwith a dimension of stressmul-
tiplied by time. For elaboration of theunderlying conceptsyielding (2.20) and (2.21), it is refered
to the literature named within the introduction of this chapter as well as references therein.

In historical view, it has to be remarked that the constitutive equation in the 3--dimensional case
was obtained frommolecular models by Claude LouisMarie Henri Navier (1785--1836) in 1821
and by Siméon Denis Poisson (1781--1840) in general in 1831. The continuum theory is due to
Adhémar Jean Claude Barré de St. Venant (1797--1886) in 1843 and Stokes in 1845. See also
Malvern (1969) for this historical perspective.

2.5 Integral and differential formulation of conservation principles

In this section, the principle of conservation of mass leading to the continuity equation and the
principle of conservation of momentum resulting in themomentum equation will be introduced.
Finally, the principle of conservation of a scalar quantity is described paving the way for themo-
del problem of a convection--diffusion--reaction equation which will be used throughout this
work. This will all be done in integral form yielding a global principle which will then be trans-
formed into a differential equation providing us with a local principle valid at every point of the
continuous medium. The result of the principle of moment of momentum has already been esta-
blished in section 2.3 stating that the Cauchy stress tensor σ is symmetric. The formulation of
these conservation principles together with the assumption of incompressible flow lead to the
set of incompressibleNavier--Stokes equationswhichwill both be introduced in the next section.
The principle of conservation of energy is not an essential part of the set of incompressible Na-
vier--Stokes equations. This principlewill not be dealt with explicitly thus. At the beginning, two
important theorems have to be established which will be used in the subsequent derivations.

2.5.1 Gauss’ theorem and Reynolds transport theorem

First of all, the theorem named after Johann Carl Friedrich Gauss (1777--1855), also termed di-
vergence theorem, states that the integral of the outer normal component of a vector over a closed
surface is equal to the integral of the divergence of the vector over the volume bounded by this
closed surface. This reads exemplary for any vector function v(x, t)


S

n⋅ v(x, t) dS=
V

∇⋅ v(x, t) dV (2.23)

with the already introduced outward normal vector n of the surface S.

Any scalar, vector or tensor function F(x, t) may be chosen to be the subject of the explanation
of the transport theorem introduced by Osborne Reynolds. The theorem predicates that the rate
of change of the amount of F(x, t) possessed by thematerial instantaneously inside a control sur-
face S is equal to the rate of change of the total amount of F(x, t) inside S plus the net rate of
outward flux of F(x, t) due to the mass transport with velocity u through S. This reads
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D
Dt

V

F(x, t) dV= 
V

∂
∂tF

(x, t) dV+
S

F(x, t)(n⋅ u) dS (2.24)

2.5.2 Conservation of mass

The principle of conservation of mass declares that the mass contained in a volume V does not
change with time, i.e.

Dm
Dt
= D

Dt

V

Ã(x, t) dV= 0 (2.25)

with the density Ã(x, t) of the continuum. Replacing the right hand side according to the Rey--
nolds transport theorem (2.24) for the scalar function Ã(x, t) results in


V

∂Ã
∂t +

S

Ã(n⋅ u) dS= 0 (2.26)

With the help of Gauss’ theorem (2.23), the integral form of the principle


V

∂Ã∂t +∇⋅ (Ãu) dV= 0 (2.27)

is obtained. Since (2.27) must be valid for any V, the differential form of the principle of conser-
vation of mass is given by

∂Ã
∂t +∇⋅

(Ãu)= 0 (2.28)

which could have also been derived by assuming that the total mass dm= ÃdV of an infinitesi-
mal volume dV remains constant throughout time.

2.5.3 Conservation of momentum

Newton’s laws of motion provide us with the principle that the material rate of change of linear
momentum of any fixed part of material is equal to the resultant of applied forces on this part.
With the already introduced types of forces, namely body and surface forces, this principle is
stated as

D
Dt

V

(Ãu) dV= 
S

t dS+
V

Ãf dV (2.29)

with thematerial rate of change of linear momentum on the left hand side. IntroducingReynolds
transport theorem (2.24) for the vector function (Ãu)(x, t), i.e. density times velocity, this results
in


V

∂(Ãu)
∂t dV+

S

(Ãu)(n⋅ u) dS= 
S

t dS+
V

Ãf dV (2.30)
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Applying Gauss’ theorem (2.23) to the left and right hand side of (2.30) yields


V

∂(Ãu)∂t +∇⋅ ((Ãu) u) dV= 
V

∇⋅ σ dV+
V

Ãf dV (2.31)

where the transformation (2.11) has been exploited and  designates a dyadic product. Since
(2.31) must be valid for any V, the differential form of the principle of conservation of momen-
tum is given by

∂(Ãu)
∂t +∇⋅

((Ãu) u)= ∇⋅ σ+ Ãf (2.32)

Equation (2.32) is called Cauchy’s equation ofmotion and could have also been derived by satis-
fyingNewton’s laws ofmotion for each point of the continuousmedium.An alternative formula-
tionmay subsume the Cauchy stress tensor on the right hand side and the convective term, which
can also be interpreted as a convective ’stress’, on the left hand side of (2.32) yielding

∂(Ãu)
∂t = ∇⋅ σtot+ Ãf (2.33)

where the ’total stress’ is defined to be

σtot=− ((Ãu) u)+ σ (2.34)

The differentiation of (2.32) and (2.33) will become crucial for the later introduction of appro-
priate boundary conditions. Using the differential form of the principle of conservation of mass
(2.28), equation (2.32) may be simplified as follows:

Ã∂u∂t + u⋅ ∇u = ∇⋅ σ+ Ãf (2.35)

Both forms of the convective term, i.e. the one in (2.32) as well as the one in (2.35), will be inve-
stigated in section 2.6.3.

2.5.4 Conservation of a scalar quantity

In view of a convection--diffusion--reaction equation to be introduced as a model problem for
theNavier--Stokes equations, it is required to discuss the conservation of a scalar quantity φ. This
quantity may be specified, for instance, by a temperature which would then be the subject of the
following considerations. Analog to the principle of conservation of momentum, a balance for
a volume V according to

D
Dt

V

Ãφ dV= 
S

tφ dS+
V

Ãfφ dV (2.36)

is established. Applying the Reynolds transport theorem (2.24) transforms (2.36) into


V

∂Ãφ
∂t dV+

S

Ãφ(n⋅ a) dS= 
S

tφ dS+
V

Ãfφ dV (2.37)

where a denotes an independent convective velocity field. In combinationwith theNavier--Sto-
kes equations, a may be replaced by the velocity field u. Fourier’s law for heat diffusion is intro-
duced in order to obtain a specification for tφ as
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tφ= n⋅ Àdyn∇φ (2.38)

where Àdyn denotes the diffusivity for the quantity φ. Using Gauss’ theorem (2.23) in (2.37)
along with (2.38) results in


V

∂φ∂t +∇⋅ aφ dV= 
V

∇⋅ À∇φ dV+
V

fφ dV (2.39)

where the diffusivity À= Àdyn∕Ã is scaled by the density. In case φ is indeed a temperature, À
represents the thermal diffusivity. With the same reasoning as for the momentum and mass con-
servation the differential form may be obtained as

∂φ
∂t +∇⋅

aφ − ∇⋅ À∇φ = fφ (2.40)

where fφ is a source or sink term, respectively. (2.40) represents a convection--diffusion equation
for the scalar quantity φ.

2.6 The incompressible Navier--Stokes equations

2.6.1 Compressible vs. incompressible flow: basic formulation of the equations

It has to be emphasized in the beginning of this section that the property of incompressibility is
not a feature of the fluid. It is rather a feature of the flow performed by the fluid. If the two repre-
sentatives of fluids, liquids and gases are considered, it can be said that most of the time liquids,
in particular its main representative water, may be treated as performing an incompressible flow.
This is due to the fact that the changes of density are mostly negligible. Even though gases are
mostly being viewed as performing compressible flows, sometimes they can also be treated as
incompressible. Roughly speaking, this is possible up to aMach number of 0.3 (see Ferziger and
Peric (1999)). This number, named after the physicist Ernst Mach (1838--1916), relates the cha-
racteristic velocity u of the flow to the velocity of sound c, i.e.

Ma= u
c (2.41)

What does Ma= 0.3 actually mean? Assuming c to be approximately 340 m/s in air, it means
that the conditions of incompressibility can bemaintained up to a fluid velocity of about 100m/s
which corresponds to 360 km/h or 220 miles/h. Using an automobile, for example, this velocity
is hardly within reach. After all, the scope of incompressible flow situations is pretty large and,
thus, the validity of the following elaborations.

The incompressibility assumption, meaning the neglect of density changes, simplifies the resul-
ting equations of sections 2.4 and 2.5. The principle of conservation of mass in differential form
(2.28) then reads

∇⋅ u= 0 (2.42)

The principle of conservation of momentum (2.32) may be simplified to

∂u
∂t +∇⋅

(u u)= 1
Ã∇⋅σ+ f (2.43)
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By inspecting (2.5), one sees that (2.42) corresponds to the trace of the rate--of--velocity tensor
ε(u). Therefore, the constitutive equation (2.22) transfers to

σ=− pdynI+ 2mε(u) (2.44)

where it has to be emphasized that ε(u) is a traceless tensor. This implies the special role of the
pressure as the mean normal compressive stress according to (2.14). Without prescribed boun-
dary conditions for the pressure it is indeterminate in the sense that it can only be determined up
to a constant. Combining (2.42)--(2.44) yields the set of incompressibleNavier--Stokes equations
to be solved in the domain Ω during the time period T subject to

∇⋅ u= 0 in Ω× (0, T) (2.45)

∂u
∂t +∇⋅

(u u)+∇p− 2ν∇⋅ε(u)= f in Ω× (0, T) (2.46)

where p= pdyn∕Ã denotes the kinematic pressure. ν= m∕Ã designates the kinematic viscosity
with a dimension of squared length divide by time, which is assumed to be constant.

The set (2.45)--(2.46) is constituted by a system of nonlinear coupled mixed hyperbolic--parabo-
lic partial differential equations for the vector quantity u and the scalar quantity p. For a classifi-
cation of partial differential equations consult e.g. Bronstein and Semendjajew (1996) or Strauss
(1992). Existence and uniqueness of solutions for the Navier--Stokes equations are discussed,
for instance, by Temam and co--workers in Temam (1979), Marion and Temam (1998) and Du-
bois et al. (1999). For this initial--boundary value problem (IBVP), initial as well as boundary
conditions have to be specified before proceeding towards a solution of (2.45)--(2.46).

2.6.2 Initial and boundary conditions

As an initial condition, a vector field for the velocity u0 at time t= 0may be prescribed on the
domain Ω as

u= u0 in Ω× {0} (2.47)

which certainly has to fulfill the continuity equation, i.e. ∇⋅ u0= 0, in order to obtain awell--po-
sed problem.

Furthermore, the well--posedness of the IBVP depends on the boundary conditions imposed on
the boundary Γ= ∂Ω of the domain. Γ is usually separated into a Dirichlet boundary Γg and
a Neumann boundary Γhwith the conditions Γ= Γg  Γh and Γg  Γh=  . A Dirichlet (or es-
sential) boundary condition in the form of a prescribed velocity g reads

u= g on Γg× (0, T) (2.48)

whereas a Neumann (or natural) boundary condition h usually prescribes the normal component
of the stress on the boundary, already introduced as the traction t, as

t= n⋅ σ= n⋅ − pdynI+ 2mε(u) = h on Γh× (0, T) (2.49)

associatedwith the usual formulations (2.32) or (2.35), respectively. According to the alternative
formulation (2.33) with the total stress in (2.34), the total momentum flux consisting of the con-
vective flux and the traction may be prescribed as
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n⋅ σtot= n⋅ (− Ãu u+ σ)= n⋅ − Ãu u− pdynI+ 2mε(u) = htot (2.50)

Transforming the integral of the continuity equation (2.45) over the domain Ω in the sense of
Gauss’ theorem (2.23) yields a constraint for an IBVP with a pure Dirichlet boundary Γ= Γg
subject to


Ω

∇⋅ u dΩ=
Γ

n⋅ u dΓ= 
Γg

n⋅ g dΓ= 0 on Γ= Γg× (0, T) (2.51)

Simply spoken, (2.51) states that everything which flows into the domain has to flow out of the
domain somewhere sometime. For this purpose, the inflow part

Γ− = {x∈ Γ | u(x)⋅ n(x)< 0} (2.52)

and the respective outflow part

Γ+ = Γ \ Γ− (2.53)

of the boundary may be distinguished depending on the velocity field uwhich is here part of the
solution. The topic of mathematically permissible boundary conditions and, moreover, ’good’
boundary conditions providing us with a well--posed IBVP is exhaustively dealt with in Gresho
(1991a), Gresho (1991b) and Gresho (1992) as well as in section 3.8 of the book by Gresho and
Sani (1998).

The mostly used practical boundary conditions are:

• no--slip boundary condition:
This boundary condition describes the adherence of fluid particles at, for example,
a solid wall. Therefore, the fluid immediately at the wall has to movewith the wall
velocity which may be specified as g in (2.48). In the usual case of a non--moving
wall this comes down to

u= 0 on Γg× (0, T) (2.54)

The no--slip condition prescribes the tangential and the normal component of the
velocity at the wall.

• slip boundary condition:
In contrast to the former boundary condition, the slip boundary condition merely
prescribes the normal component of the velocity at the wall

n⋅ u= n⋅ g on Γg× (0, T) (2.55)

incorporating the special case g= 0. A non--zero boundary condition of this type
may be realized, for instance, by blowing or suction through a permeable wall. Ac-
cording to (2.55), the fluid particle is allowed to slip at the wall, i.e. at a solid wall,
for example, the tangential component of the velocity is not required to be zero.
A special case of boundary conditions lying in between slip and no--slip boundary
conditions are slip boundary conditions with linear friction and no penetration or
slip boundary conditionswith linear friction and penetrationwith resistance. These
special boundary conditions have been developed in Galdi and Layton (2000) and
are further used e.g. in John (2002a) and John (2002b).
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• inflow boundary condition:
The examples in the course of this work are without exception subject to inflow
boundary conditions in the sense of a Dirichlet boundary condition with a prescri-
bed velocity g at the inflow part of the boundary Γ−. This means that the inflow
boundary is completely covered by the Dirichlet part of the boundary: Γ− ⊆ Γg.

• outflow boundary condition:
The topic of ouflow boundary conditions is definitely a challenging one and ac-
tually far from being completely resolved. For elaboration of this, it is refered to
Gresho (1992), Heywood et al. (1996) and section 3.8f of Gresho and Sani (1998).
The frequently (not always) successful simple version of a ’do nothing’ boundary
condition should just be mentioned here. Lack of successful numerical simulation
with this type of boundary condition may be traced back to a disturbance in form
of a wrongly implied Neumann boundary condition by the numerical method.

• pressure boundary condition:
The special role of the pressure resulting in the fact that it can only be determined
up to a constant has already been identified. Pressure boundary conditions fixing
this constant merely appear as a part of the Neumann boundary condition in (2.49)
or (2.50), respectively. If Γ= Γg, i.e. there is noNeumannboundary, twopractical
ways of fixing the constant consist in either prescribing a mean value with respect
to the complete domain reading


Ω

p dΩ= 0 (2.56)

or prescribing discrete value(s) of the pressure at individual node(s) of a discretiza-
tion. The last procedure will be the foremost choice in this work.

• periodic boundary condition:
This boundary condition does not have a physical meaning. It may rather be intro-
duced for computational reasons with the objective of reducing the extent of the
computational domain. This becomes crucial in numerical simulations of turbulent
flows in order to reduce the enormous effort of the computation. The assumption
of periodic conditions determines the simulation to be one period of an infinite
number of such realizations in the periodic direction(s).

2.6.3 Alternative formulations

Alternative formulations being able to replace the Navier--Stokes equations in the form (2.45)--
(2.46) partly or completely will be discussed now. This means a replacement of parts of the mo-
mentum equation (2.46), the complete continuity equation (2.45) or the complete set of Navier--
Stokes equations. Before startingwith a partial replacement of themomentumequation, a dissec-
tion has to be performed. Using differential operators, (2.45)--(2.46) may be written as

LC[u]= Lcontu= 0 (2.57)

LM[u, p]= Ltu+ Lconv(u)u+ Lpresp+ Lviscu= f (2.58)
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The continuity equation is represented by the operator

Lcontu= ∇⋅ u (2.59)

The momentum equation consists of 4 operators, namely the differential operator in time

Ltu= ∂u∂t (2.60)

the nonlinear convective operator

Lconv(u)u= ∇⋅ (u u) (2.61)

the operator acting on the pressure

Lpresp= ∇p (2.62)

and the viscous operator

Lviscu=− 2ν∇⋅ ε(u) (2.63)

The time--dependent operator and the operator acting on the pressure cannot be altered. Howe-
ver, variations of the convective and the viscous operator are possible.

Alternative formulations of the viscous term

According to the notation in Gresho and Sani (1998) the viscous term may be expanded as

− 2ν∇⋅ ε(u)=− ν∆u− γ[ν∇(∇⋅ u)] (2.64)

introducing the factor γ. Setting γ= 1 recovers the stress--divergence form on the left hand side
and ensures (2.64) to be a valid equation. Setting γ= 0 yields the simpler conventional form
− ν∆u. As can be seen by inspecting the dropped out second part of (2.64), this is justified in
the continuous case by the continuity equation (2.45) and yields an equivalent result. However,
in the discrete case this may not be true and, thus, both the stress--divergence form and the con-
ventional form of the viscous term governed by the factor γ have to be kept in mind. Regarding
the boundary conditions, it has to be respected that using the conventional form of the viscous
term alters the Neumann boundary condition (2.49) to

n⋅ − pdynI+ m(∇u) = h (2.65)

and (2.50) to

n⋅ − Ãu u− pdynI+ m(∇u) = htot (2.66)

respectively. (2.65) may be described as a ’pseudo--traction’ bearing severe difficulties concer-
ning their physical interpretation. In passing, further forms of theviscous term, the div--curl form
and the curl form, both playing no role in the following, are noted.

Alternative formulations of the convective term

The convective term may be expanded as

∇⋅ (u u)= u⋅ ∇u+ βu(∇⋅ u) (2.67)
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with the introduction of β= 1 for recovering the divergence formon the left hand side of (2.67)
and ensuring it to be a valid equation. Setting β= 0 provides us with the simpler conventional
form u⋅ ∇u. As for the conventional form of the viscous term, there is no difference in the conti-
nuous case due to the continuity equation. Differencesmay, however, appear in the discrete case.
Besides these two values of β, the important case of β= 1∕2, called skew--symmetric form,
guaranteeing conservation of kinetic energy in the discrete case has to be considered, confer e.g.
Temam (1979) as well as Quarteroni and Valli (1994). Moin (2002) emphasizes the necessity to
conserve energy in discrete methods for large eddy simulation of turbulent flows. The simulta-
neous conservation of momentum and energy in the discrete case is, in general, not possible. In
order to guarantee stability, conservation of energy is actually more important than conservation
of momentum. In passing again, further possibilities, namely the rotational form and a symme-
tric form by Gellert and Harbord (1987) as well as Harbord and Gellert (1990) both playing no
role in the following, are noted.

The pressure Poisson equation

Equal replacement of the continuity equation (2.45) may be executed via a pressure Poisson
equation. The pressure Poisson equation is obtained by applying the divergence operator to the
momentum equation as a whole. For (2.46), this reads

∆p= ∇⋅ − ∂u∂t −∇⋅ (u u)+ 2ν∇⋅ ε(u)+ f in Ω× (0, T) (2.68)

In order to obtain a useful ’working version’ of the pressure Poisson equation, Gresho and Sani
(1998) suggest at least to neglect the time--dependent term by invoking the continuity condition.
Using the conventional form of the convective as well as the viscous term, i.e. β= γ= 0, lea-
ves us with the so--called consistent pressure Poisson equation reading

∆p= ∇⋅ [− u⋅ ∇u+ ν∆u+ f ] in Ω× (0, T) (2.69)

which ’works best’ according to Gresho and Sani (1998). The introduction of the pressure Pois-
son equation bears two important features of the incompressible Navier--Stokes equations.
Firstly, the pressure is governed by an elliptic equation enforcing an immediate transfer of apres-
sure signal over the complete domain Ω. This is based on an infinitely high velocity of sound
in this medium. Secondly, in the basic form of the Navier--Stokes equations (2.45)--(2.46) the
pressure equation is ’camouflaged’, i.e. the pressure is indeed governed by the continuity equa-
tion, although it does not appearwithin this equation. For brevity reasons, the answer to the ques-
tion of boundary conditions for the pressure Poisson equation is omitted and it is rather refered
to e.g. Gresho and Sani (1998) for a discussion of this.

Streamfunction--vorticity formulation

Equally replacing themomentumequation ispossible by refering to the vorticity defined in (2.8).
Applying the curl--operator to the momentum equation (using the conventional form of the con-
vective and the viscous term and no body force here) yields after some analysis

∂ω
∂t + u⋅ ∇ω− ω⋅ ∇u− ν∆ω= 0 in Ω× (0, T) (2.70)

constituting together with the continuity equation (2.45) and the definition of the vorticity (2.8)
an equal representation of the Navier--Stokes equations. In the two--dimensional case, (2.70)
simplifies to



20

∂ω
∂t + u⋅ ∇ω− ν∆ω= 0 in Ω× (0, T) (2.71)

with ω being a scalar. With the streamfunction ψ defined as

u1=
∂ψ
∂x2

, u2=
∂ψ
∂x1

(2.72)

a complete replacement of the set of Navier--Stokes equations by adding to (2.71)--(2.72) the Po-
isson equation

∆ψ=− ω (2.73)

is achieved. This completely equivalent set (2.71)--(2.73) incorporating not anyone of the origi-
nal equations is called streamfunction--vorticity formulation and it is, however, practically possi-
ble only in the two--dimensional case. Themuchmore complicated three--dimensional analogon
can be found e.g. in Gunzburger (1989). The major advantage of the streamfunction--vorticity
formulation may be attributed to the ’loss’ of the continuity equation. For this, one has to pay
with physically more difficult definitions of the boundary conditions for the streamfunction and
the vorticity. In view of problems of fluid--structure--interaction, a long--term goal of the efforts
in this work, these difficulties become crucial. Therefore, this last alternative formulation par-
tially leaving the ground of the primitive variables velocity u and pressure p will be neglected
below.

2.6.4 The Reynolds number rules

The most important non--dimensional number characterising a specific flow situation bears the
name of Osborne Reynolds (1842--1912). It quantifies the relation between the convective term
and the viscous term in the set of Navier--Stokes equations and is defined as

Re= UL
ν (2.74)

where U is a measure of the velocity, L a characteristic length scale and ν the kinematic viscosity
of the respective flow. The associated ’similarity rule’ states that two flows describedby the same
Reynolds number will show similar flow features, even if the individual constituents of the Re-
ynolds number definition are found to be in quite different ranges. Some examples for ’real--life’
Reynolds numbers may be gathered from Table 2.1.

Two crucial features of fluid flows strongly depend on the value of the Reynolds number. On the
one hand, a critical Reynolds number (or a critical Reynolds number range) distinguishes the
laminar flow regime from the turbulent flow regime. This distinction is a crucial aspect of this
work and will be elaborated in chapter 4. On the other hand, one may observe an asymptotic be-
haviour of the flow for extreme Reynolds numbers in the sense of Re→ 0 and Re→∞.

Re→ 0: Stokes equations

A preponderant viscous term with respect to the convective term forces the Reynolds number
to decrease. Asmay be observed by inspecting (2.74), thismay be associatedwith lowvelocities,
small length scales and/or large viscosities. It is usually termed ’creeping flow’. For Re→ 0,
the Navier--Stokes equations (2.45)--(2.46) pass over to the Stokes equations by neglecting the
convective term in order to yield the IBVP
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∂u
∂t +∇p− 2ν∇⋅ ε(u)= f in Ω× (0, T) (2.75)

in combination with (2.45) prescribing the same kind of initial and boundary conditions as in the
case of the Navier--Stokes equations.

Description Re

Spermatozoon (L=0.07 mm) swimming at max. speed 6¢10--3

Water droplet (D=0.07 mm) falling through air 6.4¢10--1

Blood flow (U=13.5 cm/s) in a circular artery (r=0.2 cm) 1.35¢102

Wind blowing (10 m/s) over telegraph wires 1¢103

Cricket or baseball propelled at 35 m/s 2¢105

Car (L=4.5 m) at U=15 m/s (i.e. 54 km/h) 4¢106

Shark (L=1.5 m) swimming at max. speed 8¢106

Large jet transport aircraft (747) at cruise altitude 7¢107

Ocean liner (Q.E. II, L=324 m) at U=15 m/s 4.5¢109

Planetary boundary layer (L=1000 km, U=20 m/s) 18¢1012

Table 2.1 Some ‘typical’ Reynolds numbers (Fletcher (1991) and Wall (1999))

Re→∞: Euler equations and boundary layer theory
The more interesting case in the course of this work and in practice appears to be in the range
of highReynolds numbers. For Re→∞, another asymptotic behaviour may be observed. Here,
the convective term shows a substantial preponderance with regard to the viscous term. For the
’final’ case of ν= 0, the set of Euler equations consisting of (2.45) and

∂u
∂t +∇⋅

(u u)+∇p= f in Ω× (0, T) (2.76)

is encountered describing a system of nonlinear first--order partial differential equations which
leads to necessary deviations from the boundary conditions formulated for the Navier--Stokes
equations. For instance, the no--slip boundary condition at solid walls is no longer capable of
being fulfilled. At this point, the boundary layer theory developed by Ludwig Prandtl
(1875--1953) which initially appeared before the public in his lecture in the year 1904 (Prandtl
(1904)) comes into play. The theory is exhaustively described in the book of Schlichting (1979).
Based on the Euler equations, a flow governed by a finite but very high Reynolds number may
be dealt with as a singular disturbance of theEuler equations. The singular disturbance is exclusi-
vely related to the necessary fulfillment of the boundary condition at, for example, a solid wall.
The finite velocity value in the vicinity of the wall resulting from a solution of Euler’s equations
is transfered to a vanishing value directly at the wall within a boundary layer by this procedure.
The higher the Reynolds number the smaller is the thickness of the boundary layer.
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Practically, the solution procedure of awall--bounded flow goes as follows: In the overwhelming
inner part of the domain the solution may be found utilizing Euler’s equations (or even the La-
place equation for the scalar velocity potential in the case of irrotational flow). The remaining,
usually very thin, boundary layer has to be resolved by respecting the finite viscosity. However,
theNavier--Stokes equations can be simplified substantially due to some reasonable assumptions
valid within the boundary layer. As a result, one encounters the so--called boundary equations
going back to Prandtl’s work. As an important last fact with regard to the next chapter, it has to
be emphasized that the boundary layer concept describes laminar as well as turbulent boundary
layers. Thus, it cannot be stated that every boundary layer has to be either laminar or turbulent.
Frequently, an initially laminar boundary layer undergoes a transition to a turbulent boundary
layer during its course.

2.7 A model problem: scalar convection--diffusion--reaction equation

2.7.1 Problem formulation

In contrast to the set of Navier--Stokes equations (2.45)--(2.46), one merely has to deal with one
scalar equation here. However, this single equation may act as a model problem for the Navier--
Stokes equations on the one hand and will be an essential part of the later described multiscale
strategy on the other hand. By splitting the right hand side of (2.40) as

fφ= f− σφ (2.77)

a reactive term specified by the reaction coefficient σ is introduced. σ is assumed to be positive
and constant. Thus, the case of productive terms (negative σ) is neglected throughout this work.
The conservation form of the convection--diffusion--reaction equation then reads

∂φ
∂t +∇⋅

aφ − ∇⋅ À∇φ + σφ= f in Ω× (0, T) (2.78)

Assuming a constant diffusivity À throughout the domain and a divergence--free velocity field
subject to

∇⋅ a= 0 (2.79)

the conservation form switches over to the convective form

∂φ
∂t + a⋅ ∇φ− À∆φ+ σφ= f in Ω× (0, T) (2.80)

which will be used later on. In case the velocity field is not divergence--free, the additional part
of the convective termmaybe incorporated into the reactive termby defining amodified reaction
coefficient

σmod= σ+∇⋅ a (2.81)

Analog to the Navier--Stokes equations, a dissection may be performed using differential opera-
tors. The complete differential operator is put together by a convective, a diffusive and a reactive
as well as a time--dependent operator subject to

Lcdr, tφ=
∂φ
∂t + Lcdrφ=

∂φ
∂t + Lcφ+ Ldφ+ Lrφ (2.82)
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The operators may easily be identified by comparing (2.80) and (2.82). The respective adjoint
differential operator of the stationary problem reads

L*cdrφ= L*c φ+ L*dφ+ L*r φ=− a⋅∇φ− À∆φ+ σ(mod)φ (2.83)

The parentheses in the subscript of σ(mod) indicate here and below that either the ’pure’ reaction
coefficient or the modified reaction coefficient subject to (2.81) may appear in the respective
equations.

2.7.2 Initial and boundary conditions

As an initial condition, a scalar field φ0 at t= 0 may be prescribed on the domain Ω as

φ= φ0 in Ω× {0} (2.84)

As for the Navier--Stokes equations, the boundary Γ= ∂Ω is usually separated into a Dirichlet
boundary Γg and a Neumann boundary Γhwith the conditions Γ= Γg  Γh and Γg  Γh=  .
The Dirichlet boundary condition reads

φ= g on Γg× (0, T) (2.85)

with the prescribed scalar g. The Neumann boundary condition for the convective form (2.80)
is defined as

n⋅ À∇φ= h on Γh× (0, T) (2.86)

with h being prescribed. If the convective flux on the Neumann boundary is also known and re-
quired to be specified (e.g. for the conservative form (2.78)), the Neumann boundary condition
reads

n⋅ − aφ+ À∇φ = h on Γh× (0, T) (2.87)

Furthermore, the inflow part

Γ− = {x∈ Γ | a(x)⋅ n(x)< 0} (2.88)

and the respective outflow part

Γ+ = Γ \ Γ− (2.89)

of the boundary may be distinguished.

2.7.3 The Peclet number rules

Comparable with the importance of the Reynolds number for the Navier--Stokes equations, a
non--dimensional number bearing the name of Eugene Peclet (1793--1857) is defined as

Pe= AL
À (2.90)

where A is a measure of the convective velocity, L a length scale and À the kinematic diffusivity.
(2.90) quantifies the relation between the convective term and the diffusive term. Usually, one
may denote the flow as being convection--dominated for Pe> 1 and diffusion--dominated for
Pe< 1. As in the case of the Navier--Stokes equations, an asymptotic behaviour is observed for
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extreme Peclet numbers in the sense of Pe→ 0 and Pe→∞. For Pe→ 0, the elliptic character
of the equation emerges being very comfortable from the numerical point of view. In contrast
to this, the case Pe→∞ is extremely challenging for computational purposes, as will be seen
later on. Here again, very thin boundary layers have to be dealt with. An analogon of the Euler
equations is the hyperbolic limit of the convection--diffusion equation appearing for À= 0 as

∂φ
∂t + a⋅ ∇φ= f in Ω× (0, T) (2.91)

with similar consequences for an admissible formulation of boundary conditions. In an artificial
1--D case, for instance, it is not allowed to prescribe a value of φ at the outflow boundary.

For the sake of completeness, theDamköhler number should bementioned governing quantitati-
vely the relationship of the convective term and the reactive term. It is defined as

Da= σL
A

(2.92)

Finally, the Peclet number and the Damköhler number may be combined multiplicatively in or-
der to get a dimensionless number describing the quantitative relation of the reactive and the dif-
fusive term reading

Pe⋅ Da= σL
2

À (2.93)
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33(3 Numerical Simulation of Incompressible Flow using a
Standard Galerkin Finite Element Method

3.1 Introduction

In this chapter, theGalerkin finite elementmethod in its standard form is introduced as the nume-
rical method of choice for solving the equations of incompressible flow. Strategically, the deve-
lopments in the course of this chapter will be applied to the scalar convection--diffusion--reaction
equation first and, afterwards, transfered to the more challenging vectorial set of Navier--Stokes
equations. This twofold procedure is necessary, since both will play a major role in the later to
be introduced two-- and three--level finite element method. Thus, the description of the variatio-
nal multiscale method will also be carried out for both types of equations in chapters 6 and 7,
respectively.

Starting point and, likewise, core of this chapter is the spatial discretization of the partial diffe-
rential equations. Hughes (2000) summarized the procedure of spatial discretization schemati-
cally in four steps:

(S)⇔ (W)≈ (G)⇔ (M) (3.1)

Starting with the strong form (S) of the problem represented by the partial differential equa-
tion(s) having been developed in chapter 2 and to be repeated in section 3.2.1, a weak form (W)
based on themethod of weighted residuals will be derived in section 3.2.2. The only approxima-
tion in (3.1) consisting in the introduction of Galerkin finite element functions (G) into theweak
form will be presented in section 3.2.3 based on two different function types. The result of the
preceding efforts and subject of section 3.2.4 will be the semi--discrete matrix system of alge-
braic equations (M).

The strategy of semi--discretization in time will be followed allowing to separate the temporal
discretization from the spatial discretization. Two different schemes of time integration, a fully
implicit one and a semi--implicit one, will bepresented. Thecrucial advantageof the semi--impli-
cit scheme may be ascribed to the fact that it exhibits a linearization of the originally nonlinear
set of Navier--Stokes equations implicitly integrated into the time integration scheme. This ob-
viates an additional linearization scheme which is, however, necessary for the fully implicit
scheme and will be presented within the respective section 3.3.2 thus. The part devoted to the
discretization in timewill end upwith the finalmatrix system. It is stopped there and the undoub-
tedly important topic of solvers for thismatrix systemwill not be discussed. For this, it is refered
to special literature on this issue and the literature on the finite element method to be mentioned
at the end of this introduction which also partly deals with solution strategies.

This chapter will be concluded by pointing out the two major problems linked with numerical
solution attempts using the standardGalerkin finite element method. The first problem, an expli-
cit preponderance of the convective term with respect to the viscous or diffusive term, respecti-
vely, may be gathered quantitatively by the respective Reynolds or Peclet number of the flow
situation. This problem candefinitely occur for both the convection--diffusion--reaction equation
and theNavier--Stokes equations. The second problemmaymerely be encountered in the context



26

of the Navier--Stokes equations, since it is actually set up by the relationship between the appro-
ximations of the velocity and the pressure. The name of this ’devil’ reads inf--sup--condition.
LBB (Ladyzhenskaya--Babuska--Brezzi)-- or, shorter, BB--condition are alternative names of the
same ’fate’ which will be the subject of section 3.4.2. Both problems are viewed as a matter of
’missing’ scales which leads to the assumption that both problems may also be overcome by the
strategy of including more scales.

This introduction is concluded by providing the reader with some references. Some classic text
books on the finite element method in general are Bathe (1996), Hughes (2000), Szabo and Ba-
buska (1991), as well as Zienkiewicz and Taylor (2000a) aiming more at the engineering point
of view and Brenner and Scott (1994), Eriksson et al. (1996), Johnson (1987), as well as Strang
and Fix (1973) aiming more at the mathematical point of view. The finite element method for
incompressible flow is dealt with in the more engineering--related books of Cuvelier et al.
(1986), Donea and Huerta (2003), Gresho and Sani (1998), Löhner (2001), Reddy and Gartling
(2001), as well as Zienkiewicz and Taylor (2000b) and the more mathematically oriented books
like Girault and Raviart (1986), Gunzburger (1989), as well as Pironneau (1989). The classifica-
tion separating intomathematical and engineering books carried out heremerely relies on a sub-
jective impression of the author concerning the general tendency of the respective book. The
frontiers are surely ’fluid’. The book of Brezzi and Fortin (1991) should bementioned explicitly,
since this is (at least one of) the standard text(s) on mixed methods and the inf--sup--condition
realted to these methods. Gresho and Sani (1998), for instance, appeal to it as the ’authority’.

Despite its immense popularity for problems of structural mechanics, the finite element method
is far from being the most popular numerical method in fluid mechanics as well. This may,
among others, be ascribed to the fact that the finite elementmethod exhibits the feature of so--cal-
led ’best approxpimation’ for elliptic problems with self--adjoint differential operators mostly
found in structural mechanics. In fluid mechanics, non--self--adjoint differential operators
usually have to be faced and the ’best approximation’ is lost thus. Confer e.g. Hughes (2000),
section4.1, for elaboration of this. In the end, this leads to thenumerical problems to bedescribed
in section 3.4.

More widespread reputation within the field of computational fluid dynamics (CFD) has to be
ascribed to the finite difference method and, in particular, the finite volume method described,
for example, in Ferziger and Peric (1999), Hirsch (1988), Hirsch (1990), andWesseling (2001).
Especially for turbulent flow applications in relatively simple domains, spectral methods still
enjoy anoverwhelming prestige. See e.g.Canuto et al. (1988) for elaborationof spectralmethods
for problems of fluid mechanics. Overcoming the problems of the standard Galerkin finite ele-
ment, for instance, by way of the variational multiscale method described in this work may pave
the way for a growing popularity of the finite elementmethod for problems of CFD, in particular
for turbulent flow problems.

3.2 Spatial discretization

3.2.1 Systems of partial differential equations (strong form)

The systems of partial differential equations developed in chapter 2 from continuummechanical
considerations are restated here in compact form for convenience.
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Convection--diffusion--reaction equation

The convection--diffusion--reaction problem with a potentially modified reaction coefficient on
the space--time domain Ω× (0, T) including an open, bounded domain Ω⊂ 9d (d= 2, 3)
with sufficiently smooth boundary Γ= ∂Ω is considered, i.e. it is searched for the scalar quan-
tity φ : Ω× (0, T)→ 9 such that

∂φ
∂t + a⋅ ∇φ− À∆φ+ σ(mod)φ= f in Ω× (0, T) (3.2)

with the boundary conditions

φ= g on Γg× (0, T) (3.3)

n⋅ À∇φ= h on Γh× (0, T) (3.4)

and the initial condition

φ= φ0 in Ω× {0} (3.5)

Navier--Stokes equations

Here, the object of consideration is the set of instationary incompressible Navier--Stokes equa-
tions phrased in the primitive variables velocity u and kinematic pressure p, i.e. pressure divided
by density. Accordingly, it is searched for u : Ω× (0, T)→ 9d and p : Ω× (0, T)→ 9 on the
space--time domain specified above such that

∂u
∂t + u⋅ ∇u+ βu(∇⋅ u)+∇p− 2ν∇⋅ ε(u)= f in Ω× (0, T) (3.6)

∇⋅u= 0 in Ω× (0, T) (3.7)

with the boundary conditions

u= g on Γg× (0, T) (3.8)

n⋅ σ= n⋅ (− pI+ 2νε(u))= h on Γh× (0, T) (3.9)

and the initial condition

u= u0 in Ω× {0} (3.10)

where the initial velocity field u0 has to be divergence--free. The expanded form (2.67) of the
convective term has been chosen here in viewof the crucial choice of the parameter β for discrete
methods (see also the respective discussion in section 2.6.3).

3.2.2 Variational formulation (weak form)

By introducing theweak formof the problem, the condition of fulfillment of the sets of equations
(3.2)--(3.5) and (3.6)--(3.10), respectively, at every single point of the domain Ω is weakened to
a desired fulfillment in an integral sense over the complete domain Ω. This procedure termed
weighted residual method consists of two steps. Firstly, the residual of the respective equation
is weighted by a test function and, secondly, integrated over the domain Ω.
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For the convection--diffusion--reaction equation this reads


Ω

wRcdr dΩ= 0 (3.11)

where w is the scalar test function and Rcdr denotes the residual of the convection--diffusion--re-
action equation.With the usual notation for the L2--inner product in the domain Ω (seeAppendix
B) subject to

(a, b)Ω= 
Ω

ab dΩ (3.12)

(3.11) may be expanded as

w, ∂φ∂t
Ω
+ w, a⋅ ∇φΩ+ w, À∆φΩ+ w, σ(mod)φΩ= (w, f)Ω (3.13)

After integration--by--parts of the diffusive term, a bilinear form Btcdrw,φmay be defined ac-
cording to

Btcdrw,φ = w, ∂φ∂t
Ω
+ w, a⋅ ∇φΩ+ ∇w, À∇φΩ+ w, σ(mod)φΩ (3.14)

and (3.13) can be restated as

Btcdrw,φ = (w, f)Ω+ (w, h)Γh (3.15)

where the second term on the right hand side denotes an L2--inner product in the sense of (3.12)
on the Neumann boundary Γh arising ’naturally’ from the integration--by--parts of the diffusive
term. This represents the Neumann boundary condition (3.4) within the integral formulation. A
weak formwith lower demands of differentiability (first derivative instead of second derivative)
is obtained in the wake of the integration--by--parts procedure. It remains to choose the solution
andweighting function space wherein the problem of finding φ is defined such that (3.15) is ful-
filled. The solution function space reads

Sφ= φ∈ H1(Ω) | φ= g on Γg (3.16)

and the weighting function space

Vφ= w∈ H1(Ω) | w= 0 on Γg (3.17)

where H1(Ω) denotes the Sobolev space of square--integrable functions and square--integrable
first derivatives. For some further remarks concerning this Sobolev space as well as a classifica-
tion of this space within a hierarchy of spaces, please consult appendix B.

Navier--Stokes equations

The weighted integral statements of (3.6) and (3.7) are given by


Ω

vRNS,M dΩ= 0 (3.18)
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and


Ω

qRNS,C dΩ= 0 (3.19)

respectively, where v is the vectorial test function applied to the residual of themomentum equa-
tion RNS,M and q indicates the scalar test function applied to the residual of the continuity equa-
tion RNS,C. (3.18) and (3.19) are combined by a minus sign as


Ω

vRNS,M dΩ−
Ω

qRNS,C dΩ= 0 (3.20)

in order to get one integral formulation bearing a symmetric matrix system in the end. Applying
the notation (3.12), the weak form of the Navier--Stokes equations reads

BNS(v, q;u, p)= (v, f)Ω+ (v, h)Γh (3.21)

where thebilinear form BNS(v, q;u, p) on the left hand side isobtained after integration--by--parts
of the viscous term as well as the pressure term according to

BNS(v, q; u, p)= v, ∂u∂t Ω+ v, u⋅ ∇u+ βu(∇⋅ u)Ω− (∇⋅ v, p)Ω

+ (ε(v), 2νε(u))Ω− (q,∇⋅u)Ω (3.22)

The Neumann boundary term on the right hand side again comes into play ’naturally’ from the
integration--by--parts of the viscous and the pressure term. The highest derivative appearing in
(3.21) is of first order. Thus, similar function spaces with respect to the case of the convection--
diffusion--reaction equation can be chosen. The vectorial solution function space for the velocity
is defined as

Su= u∈ H1(Ω) d | u= g on Γg (3.23)

and the weighting function space as

Vu= v∈ H1(Ω) d | v= 0 on Γg (3.24)

The respective scalar function spaces for the pressure read

Sp= Vp= (p, q)∈ L2(Ω) (3.25)

Applying e.g. the pressure constraint (2.56), the solution function spacewould have to be expan-
ded as

Sp= ⎪
⎪⎨
⎧

⎩
p∈ L2(Ω) | 

Ω

p dΩ= 0⎪
⎪⎬
⎫

⎭
(3.26)

The solution and weighting function spaces may be written in combined form as
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Sup := Su× Sp ; Vup := Vu×Vp (3.27)

3.2.3 Galerkin finite element functions

The presupposition for the application of the finite element method is a discretization of the do-
main Ω into nel element subdomains Ωe e= 1, ..., nel with element boundaries Γe where

Ω′ =∪
nel

e=1
Ωe (3.28)

denotes the union of all element interiors and

Γ′ =∪
nel

e=1
Γe \ Γ (3.29)

denotes the union of all element boundaries excluding the domain boundary Γ.

The solution and weighting functions may now be replaced by standard Galerkin finite element
functions in (3.15) and (3.21) yielding the problem of finding φh∈ Shφ such that

BtCDRwh,φh = wh, fΩ+ w
h, h

Γh
∀ wh∈ Vh

φ (3.30)

as well as the problem of finding uh, ph ∈ Shup such that

BNSvh, qh; uh, ph = vh, fΩ+ v
h, h

Γh
∀ vh, qh ∈ Vh

up (3.31)

In (3.30) and (3.31), the finite--dimensional subspaces Shφ, V
h
φ, S

h
up and V

h
up replace their basi-

cally infinite--dimensional counterparts Sφ, Vφ, Sup and Vup. Within these finite--dimensional
subspaces, the solution functions φh, uh and ph as well as the weighting functions wh, vh and
qh are chosen to replace the respective original functions without superscript h. The usual finite
element functions are constituted by unknown parameters φB, uB and pBwhich will have to be
determined and shape functions NB, mostly represented by polynomial functions, subject to

φh= 
ndofs

B=1
NB φB , uh= 

ndofs

B=1
NB uB , ph= 

ndofs

B=1
NB pB (3.32)

where ndofs indicates the number of degrees of freedomof the problem. Choosing the same func-
tions for the approximation of the weighting functions subject to

wh= 
ndofs

A=1
NA wA , vh= 

ndofs

A=1
NA vA , qh= 

ndofs

A=1
NA qA (3.33)

leaves us behind with a standard Galerkin method which is also termed Bubnov--Galerkin me-
thod sometimes. Different choices for the solution and the weighting functions are usually cate-
gorized under the label of Petrov--Galerkin methods.

Two different concepts for (3.32) and (3.33) are possible on principle: standard Lagrange--based
shape functions and hierarchical shape functions. Within the standard Lagrangean concept, the
parameters, for example φB, are entirely assigned to nodal values whereas in the hierarchical
concept this is not the case in general. The crucial second difference lies in the generation of the
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polynomial shape functions NB. In the standard concept every polynomial order k is associated
with a completely different set of shape functions entirely built by functions of this order kwhe-
reas the hierarchical shape functions of a particular order k are made up of functions of order k
and lower order. This constitutes the basic reason for the suitability of the hierarchical concept
for the variationalmultiscale method as awhole. That is to say that the hierarchical basis of order
k− 1 is a subset of the one of order kwhich amounts to a natural scale separation. This point
will bepickedup againwithin the context of the variationalmultiscalemethod.Whereas the stan-
dard Lagrange--based concept may be found in every referenced book on the finite element me-
thod mentioned in the introduction of this chapter the hierarchical concept is more rarely inclu-
ded. Elementary descriptions of the hierarchical concept can be found in Szabo and Babuska
(1991), Zienkiewicz et al. (1983), and Zienkiewicz and Taylor (2000a).

3.2.4 Semi--discrete matrix systems

Thematrix systems follow from the introduction of the functions (3.32) and (3.33) into thevaria-
tional formulations (3.30) and (3.31). After all, it has to be solved for the unknown parameters
of the solution functions φB and uB as well as pB, respectively. The linear matrix system for the
convection--diffusion--reaction equation reads after assembly of the element matrices

Mφ
.
+ C(a)+ D+ σ(mod)M φ= F+ N− E (3.34)

The nonlinear matrix system for the Navier--Stokes equations reads

Mu
. + C(u)+ V+ β(∇⋅ u)M u+ Gp= F+ N− EM (3.35)

GTu=− EC (3.36)

Please observe that the notation u and u
.
already introduced as the velocity and accelerations vec-

tor, respectively, is used here and in the following also for denoting the vector containing the
respective unknown parameters of the solution function. This is a widespread way of marking.
Hopefully, there will be no chance of confusion due to this double notation. Accordingly, φ and
φ
.
represent the vectors incorporating the unknown parameters φB and its first time derivative,

respectively. The same applies to p. In (3.34)--(3.36), M, C, D, V, G and GT denote the mass,
convective, diffusive, viscous, gradient, and transposed gradient, i.e. divergence, matrix, respec-
tively. F and N indicate the right hand side vectors due to the body force term and the Neumann
boundary conditions (3.4) and (3.9), respectively. E, EM and EC denote the vectors on the right
hand sidewith entries due to the essential Dirichlet boundary conditions (3.3) and (3.8), respecti-
vely, whereby the influence is splitted for the momentum and the continuity equation within the
set of Navier--Stokes equations. The structure of the respective matrices and vectors or, more
precisely spoken, the respective element matrices and vectors which they are composed of will
be explained for the final matrix system to be presented in section 3.3.4 after the introduction
of the temporal discretization.

3.3 Temporal discretization and linearization

3.3.1 Introduction

The matrix systems (3.34) and (3.35)--(3.36), respectively, now have to undergo a discretization
in time after the just described discretization in space. In particular, the matrix system
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(3.35)--(3.36) for the Navier--Stokes equations is extremely challenging concerning its temporal
discretization. (3.35)--(3.36) represents a differential--algebraic equation (DAE), i.e. an ordinary
differential equation (ODE) represented by (3.35) subject to an algebraic constraint represented
by (3.36). There is no intent here to discuss thedifficult topic of solvingDAE’s efficiently. Elabo-
ration of thismay be found, for instance, in Gresho and Sani (1998) or Wall (1999). The particu-
lar choice of time integration schemes is just described here and, moreover, this introduction is
utilized in order to motivate this particular choice.

First of all, the path of semi--discretization in time is followed as a sequential way of discretizing
in space and time. A potential alternative consists in a simultaneousway of discretizing in space
and time, i.e. applying finite element functions in space and time N(x, t) acting on so--called
space--time elements. These would replace the ones in section 3.2.3 which only depend on the
spatial coordinates N(x). This is usually practised with discontinuous Galerkin methods for the
discretization in time, see e.g. Johnson and Saranen (1986), Shakib (1988) or Hughes et al.
(1989). Themost important disadvantage of simultaneousmethods shows up in substantially lar-
ger systems of equations. This disadvantage lets the alternative of simultaneousmethodsbecome
unattractive, since it already has to be dealt with extremely large systems of equations in turbu-
lent flow applications.

Another alternative, namely decoupled solution methods in the sense of pressure projectionme-
thods, has also not been established within this work. The advantage consisting in the fact that
one is allowed to deal with smaller equation systems in the respective fractional steps is oversha-
dowed by the drawbacks in the behaviour at the boundaries yet (see also the discussion in Wall
(1999)). Nevertheless, a first implementation of a pressure projection--based solver at the Insti-
tute of StructuralMechanics has been carried out inBasol (2003) and is about to be used for com-
parison with the coupled methods favoured herein.

Following the strategy of using a coupled and sequentialmethod, a fully implicit scheme, namely
the implicit variants of the generalized trapezoidal method, will be described. This constitutes
the ’workhorse’ for the applications. Itwill be introduced for the linear convection--diffusion--re-
action equation and then transfered to the nonlinear Navier--Stokes equations, for which a linea-
rization step is necessary. In addition to this, a semi--implicit scheme is introduced for the Na-
vier--Stokes equationsmaking the linearization unnecessary. This scheme may potentially act as
an alternative to the semi--implicit schemesmostly used for turbulent flow simulations consisting
in an implicit variant of the generalized trapezoidal scheme, e.g. the Crank--Nicolson scheme,
for the linear terms and an explicit method, e.g. a variant of the Adams--Bashfort schemes, for
the nonlinear convective term. Another interesting alternative is the generalized α--method. This
method, well--established in computational solidmechanics, has recently been applied by Jansen
et al. (2000) to the compressible Navier--Stokes equations in the context of a stabilized finite ele-
ment method.

The procedure of section 3.3 is as follows. The temporal discretization with the generalized tra-
pezoidal method (and, additionally, the linearization in the case of the Navier--Stokes equations)
is carried out in section 3.3.2. Both, the temporal discretization and the linearization, is firstly
executed for the strong as well as for the weak form of the problem, in order to exemplify the
procedure in these stages. Subsequently, a semi--implicit scheme is pointed out as a potential al-
ternative. Hereafter, the fully discrete matrix systems are shown in section 3.3.4 as a result of
the application of the temporal discretization (and linearization) to the semi--discrete matrix sy-
stems which have been obtained from the spatial discretization and displayed in section 3.2.4.
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Due to this modus operandi, the follower of both strategies, i.e. ’spatial discretization first, tem-
poral discretization after’ and ’temporal discretization first, spatial discretization after’, respecti-
vely, will hopefully find everything they need for their individual way of proceeding within this
chapter 3.

3.3.2 Fully implicit scheme

Temporal discretization of the convection--diffusion--reaction equation

Startingwith adiscrete initial field φ0 according to (3.5), the application of the generalized trape-
zoidal scheme to the convection--diffusion--reaction equation yields for the scalar field φn+1 at
time level n+ 1 the formula

φn+1− φn
δt

+ θLcdrφn+1 + (1− θ)Lcdrφn = θf n+1+ (1− θ)f n (3.37)

subject to the discrete Dirichlet boundary condition

φn+1= gn+1 (3.38)

and the discrete Neumann boundary condition

n⋅ À∇φn+1= hn+1 (3.39)

where δtdenotes the chosen time step, n the previous time level subject to n= 0, ..., T∕δt − 1,
T the simulation time and θ the parameter of the method, taken to be in the interval [0, 1]. Here
and below, the concise notation for the values depending on the parameter θ subject to

(⋅)n+θ= θ(⋅)+ (1− θ)(⋅) (3.40)

is used. Herewith, (3.37) is transfered to

φn+1− φn
δt

+ a⋅ ∇φn+θ− À∆φn+θ+ σ(mod)φ
n+θ= fn+θ (3.41)

The variational formulation analog to (3.15) for the now discrete--in--time problem reads

Bdtcdrw,φ = w, φnδtΩ+ w, fn+θΩ+ w, hn+θΓh (3.42)

where

Bdtcdrw,φ = w, φn+1δt 
Ω

+ w, a⋅ ∇φn+θ
Ω
+ ∇w, À∇φn+θ

Ω

+ w, σ(mod)φn+θΩ (3.43)

After the introduction of the respective finite element functions in (3.32) and (3.33), the fully
discrete matrix system for the convection--diffusion--reaction equation is obtained reading

M+ θδtC(a)+ D+ σ(mod)M φn+1
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= M− (1− θ)δtC(a)+ D+ σ(mod)M φn

+ θδt(F+ N− E)n+1+ (1− θ)δt(F+ N)n (3.44)

(3.44) may also be achieved as a continuation of the semi--discrete matrix system (3.34) after
temporal discretization.

Temporal discretization of the Navier--Stokes equation

The realization for the convection--diffusion--reaction equationmay now be transfered to the set
of Navier--Stokes equations with some modifications. The discrete initial (divergence--free) ve-
locity field u0 according to (3.10) constitutes the start of the algorithmwhich reads for time level
n+ 1 in concise notation

un+1− un
δt

+ un+θ⋅∇un+θ+ βun+θ∇⋅un+θ + ∇pn+θ−2νεun+θ = fn+θ(3.45)

∇⋅ un+θ= 0 (3.46)

where again the expanded form (2.67) of the convective term has been used. The discrete--in--
time boundary conditions are

un+1= gn+1 (3.47)

n⋅ − pn+1I+ 2νεun+1 = hn+1 (3.48)

As aforementioned, a pressure Poisson equation may replace the continuity equation. The PPE
is discretized in time subject to

∆pn+θ= ∇⋅ − un+θ⋅ ∇un+θ+ ν∆un+θ+ fn+θ (3.49)

The variational formulation analog to (3.21) for the temporally discretized Navier--Stokes equa-
tions reads

BdtNS(v, q;u, p)= v, unδtΩ+ v, fn+θΩ+ v, hn+θΓh (3.50)

where

BdtNS(v, q; u, p)= v, un+1δt Ω+ v, un+θ⋅ ∇un+θ+ βun+θ∇⋅ un+θΩ
− ∇⋅ v, pn+θ

Ω
+ ε(v), 2νεun+θ

Ω
− q,∇⋅ un+θ

Ω
(3.51)

After the introduction of the respective finite element functions in (3.32) and (3.33), the fully
discrete matrix system for the Navier--Stokes equations is obtained reading

M+ θδtCun+1 + V+ β∇⋅ un+1M un+1+ θδtGpn+1
= M− (1− θ)δtC(un)+ V+ β(∇⋅un)M un− (1− θ)δtGpn
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+ θδtF+ N− EMn+1+ (1− θ)δt(F+ N)n (3.52)

θδtGTun+1=− (1− θ)δtGTun+ θδt− ECn+1 (3.53)

(3.52)--(3.53) may also be achieved as a continuation of the semi--discretematrix system (3.35)--
(3.36) after temporal discretization.

Analysis of the generalized trapezoidal method

Famous representatives of the generalized trapezoidalmethod are the explicit forward Eulerme-
thod (θ= 0), the implicit backward Euler method (θ= 1) and the implicit Crank--Nicolson
scheme (θ= 1∕2). Furthermore, the schemes with θ= 1∕3 and θ= 2∕3 are sometimes ter-
med ’Galerkin schemes’. Particular attention has to be paid to theCrank--Nicolson scheme, since
it is the only scheme bearing second--order accuracy. The other schemes exclusively show up
with first--order accuracy. However, there are some significant drawbacks associated with the
Crank--Nicolson scheme. The crucial disadvantage surely lies in the potential occurence of
oscillations during the development of the solution. This is usually blamed to be due to a chosen
time step being too large for the underlying problem. Using, for example, the backward Euler
scheme such an ’incorrect’ time step may be overcome by the strong damping feature of the
scheme. This damping feature comes into play by choosing θ> 1∕2and is, hence, not inherent,
in theCrank--Nicolson scheme. For a general analysis of the generalized trapezoidalmethodwith
regard to these damping features, onemay consult e.g. Hughes (2000). For a furthergoing analy-
sis of thismethod, among others, particularly aiming at stabilizedmethods for theNavier--Stokes
equations, it is refered to the recent publication of Dettmer and Peric (2003).

The explicit forward Euler method is subject to the so--called CFL(Courant--Friedrich--Levy)--
condition governing the size of the time step depending on the velocity and the chosen spatial
discretization. TheCFL--conditionmay become very restrictive reulting in extremely small time
steps. Despite the still enjoyed popularity of explicit time stepping schemes (which may surely
be justified for a vaste number of problems), implicit schemes whose parameter θ lies between
1/2 and 1 are favoured here. In order to overcome the oscillations associated with the Crank--Ni-
colson scheme, Heywood and Rannacher (1990) suggest a slight increase of θ beyond θ= 1∕2
if necessary. It has to be remarked, however, that this also reduces the order of accuracy loosing
the second--order accuracy of the Crank--Nicolson scheme.

Two potential simplifications of (3.45)--(3.46) and (3.49), respectively, should be remarked.
Firstly, it is a widespread used option to set θ= 1 in (3.46) or (3.49), respectively, although this
may be, in general, algorithmically inconsistent with the chosen parameter θ for themomentum
equation (3.45). The ’dangerous’ aspect of this choice results in some kind of ’damping--out’
process of ill--posed initial conditions. Secondly, the pressure in (3.45) may be evaluated at time
level n+ 1, independent of the choice of θ. Although this results in a similar ’danger’ with re-
spect to the first simplification, this second assumption avoids the necessity of determining an
initial pressure field p0 required to be compatible with the initial velocity field u0. It is obvious
that both simplifications are inherently employed by choosing the backward Euler scheme.

Finally, the question why multistep methods are not considered as an alternative probably has
to be answered. This is definitely a subjective choice driven by the smaller complexity and sto-
rage requirements posed by the one--step schemes yet. However, multistepmethodsmay become
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an attractive alternative which have to be investigated more thoroughly for the methods presen-
ted in this work.

Linearization of the Navier--Stokes equations

At the end of the description of the fully implicit schemes the necessity still remains to linearize
the nonlinearmatrix system for the set of Navier--Stokes equations.Within the standardGalerkin
method the only nonlinear term is the convective term expanded in (2.67). A linearization ap-
plying the Gateaux--derivative is performed inWall (1999) and details may be found therein. In
consequence, the discussion will be started with a global linearization equation for the convec-
tive term in the expanded form of (2.67) reading

ui+1⋅ ∇ui+1+ βui+1∇⋅ ui+1 = αui⋅ ∇ui+1+ βui+1∇⋅ ui

+ ααui+1⋅ ∇ui+ βui∇⋅ ui+1 − αui⋅ ∇ui+ βui∇⋅ ui (3.54)

with the current iteration step indicated by the subscript i+ 1. By altering the pair of parameters
[α,α] one encounters various ways of linearizing the convective term. For [0,− 1], a fixed
point iteration, for [1, 1], a Newton(--Raphson) iteration and, for [1, 0], a fixed point like itera-
tion is obtained according to the notation in Wall (1999). There is undoubtedly some confusion
in literature concerning the correct denotation of the respectivemethods. Due to its good numeri-
cal features the fixed point like iteration is the method of choice throughout this work. In order
to explain some of the confusion, it may be alluded to the fact that this method is termed, for
instance, Picard iteration in Codina (2000a). The linearized convective term to beworkedwithin
the framework of the generalized trapezoidal method is un+θi ⋅ ∇un+θi+1 + βu

n+θ
i+1 ∇⋅ un+θi

 thus.
In view of the introduction of the variational multiscale method for the Navier--Stokes equations
in chapter 7, it is helpful to define formally the underlyingdifferential operator for the temporally
semi--discrete momentum equation (3.45) along with the just described linearization in form of
a fixed point like iteration. First of all, (3.45) after introducing the linearization is rearranged as

1
θδt

un+1i+1 + un+1i ⋅ ∇un+1i+1 + βu
n+1
i+1 ∇⋅ un+1i

 + ∇pn+1i+1−2ν∇⋅ εun+1i+1 

= fn+1+ fnt (3.55)

where a ’time--rhs’ fnt containing all known values of time level n has been introduced in (3.55)
being defined as

fnt = 1
θδt

un−
(1− θ)
θ
un⋅ ∇un+ βun(∇⋅ un)+∇pn−2ν∇⋅ ε(un)− fn (3.56)

Analogously to what has been carried out in the continuous case (confer section 2.6.3), the com-
plete differential operator of themomentum equation (3.55) can be split into a convective, diffu-
sive and reactive differential operator plus a differential operator acting on the pressure subject
to

Ldt, linM
[u, p]= Lconvuiu+ Lviscu+ Lreacu+ Lpresp

= ui⋅ ∇u− 2ν∇⋅ ε(u)+ 1
θδt
+ β∇⋅ uiu+∇p (3.57)
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The respective adjoint differential operator reads

L* dt, linM
[u, p]= L*convuiu+ L*viscu+ L*reacu+ L*presp

=− ui⋅ ∇u− 2ν∇⋅ ε(u)+ 1
θδt
+ β∇⋅ uiu−∇p (3.58)

A stationary version of (3.57) is defined as

LstatM
[u, p]= Lconvuiu+ Lviscu+ Lstatreacu+ Lpresp

= ui⋅ ∇u− 2ν∇⋅ ε(u)+ β∇⋅ uiu+∇p (3.59)

with its adjoint counterpart

L* statM
[u, p]= Lconvuiu+ Lviscu+ L* statreac u+ Lpresp

=− ui⋅ ∇u− 2ν∇⋅ ε(u)+ β∇⋅ uiu−∇p (3.60)

which both will be used later on.

3.3.3 Semi--implicit scheme

Although the idea for thismethod probably goes back towork of Temam in the 1960’s, this group
of methods was particularly proposed by Simo and co--workers, see e.g. Simo and Armero
(1994) and Simo et al. (1995). The crucial aspect of the semi--implicit scheme is the treatment
of the nonlinear convective term. Aside from this, the remaining terms may be dealt with by the
generalized trapezoidal method with any choice for the parameter θ.

For the derivation of the scheme, the just obtained final form of the convective termmay bemo-
dified after applying the generalized trapezoidalmethod and the fixed point like iteration scheme
as un+γ⋅ ∇un+θ+ βun+θ∇⋅ un+γ. Thismeans that the values from the last iteration step un+θi
have been replaced by the value un+γ which is defined as

un+γ=⎨⎧⎩
γun+1+ 1− γun ; γ> 0

γun−1+ 1− γun ; γ≤ 0
(3.61)

Certainly, a nonlinear scheme is still encountered for γ> 0. Hence, it has to be focussed onme-
thodswith γ≤ 0 in order to achieve the premier goal, a linear scheme. Such a linearizationmay
be interpreted as an extrapolation in time. Obviously, choosing γ to be zero is equal to one fixed
point like iteration if un+10 at time level n+ 1 is taken to be the converged velocity from the
previous time level n. It has to be remarked, however, that the combination of γ= 0 and a
Crank--Nicolson scheme is an overall method of first order. The most attractive scheme seems
to be the two--step scheme γ=− 1∕2 and θ= 1∕2which keeps up second--order accuracy. A
high price has to be paid for this, however, in form of the necessity to store the results of an addi-
tional time level. The drawback of this necessity for large systems has already been pointed out.
Practically, this two--step scheme has to be initiated utilizing a starting algorithm in form of a
one--step method, for instance, with a backward Euler scheme using γ= 0 and θ= 1. An im-
portant remark aims at the form of the convective term. Simo and Armero (1994) have shown
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a favourable stability behaviour of the linear schemes with good accuracy. The presupposition
for this, however, is a strictly skew--symmetric form of the convective term achieved by setting
β= 1∕2 in (2.67). Since this is the foremost choice herein due to similar reasoning for other
methods as well (see also the discussion in section 2.6.3), this constraint poses no additional pro-
blem. Due to the extended storage requirements of the aforementioned most attractive scheme,
this method will not be used for the numerical examples within this work. It offers itself as a po-
tential alternative in the future however.

3.3.4 Final matrix systems

The final matrix system for the convection--diffusion--reaction equation (3.44) reads in short
form

Kcdr, t φ
n+1= θδt(F+ N− E)n+1+ Tcdr (3.62)

where the ’stiffness’ matrix is composed as

Kcdr, t= M+ θδtC(a)+ D+ σ(mod)M (3.63)

and the ’time--rhs’ as

Tcdr= M− (1− θ)δtC(a)+ D+ σ(mod)M φn+ (1− θ)δt(F+ N)n (3.64)

Sample components of the respective element matrices based on the discretization subject to
(3.28) and (3.29) read

Me
ab= 

Ωe

Na Nb dΩ (3.65)

Ceab(a)= 
Ωe

Na a⋅ ∇Nb dΩ (3.66)

De
ab= À 

Ωe

∇Na⋅ ∇Nb dΩ (3.67)

Sample components of the element vectors on the right hand side are defined as

Fea= 
Ωe

Na fdΩ (3.68)

Nea= 
Γh ,e

Na hdΓ (3.69)

The element matrices (3.65)--(3.67) as well as the element vectors (3.68)--(3.69) are then assem-
bled in order to get the global matrices and vectors in (3.62). This assembly operation may be
expressed by the assembly operator A, for instance, for the mass matrix (3.65) subject to
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M= A
nel

e=1
(Me) (3.70)

The entry E on the right hand side of (3.62) is due to a potential Dirichlet boundary condition
and arises from the assembly operation. Please consult the general references considering the
finite element method mentioned in the introduction for details of this operation.

For the Navier--Stokes equations, the final matrix system (3.52)--(3.53) reads in short form after
applying the fixed point like iteration scheme

⎪⎡⎣
KNSun+1i


θδtGT

θδtG

0
⎪⎤⎦
⋅ ⎪⎡⎣

un+1i+1

pn+1i+1
⎪⎤⎦
= ⎪⎪
⎡

⎣

θδtF+ N− EMn+1+ TNS,M

θδt− ECn+1+ TNS, C
⎪⎪
⎤

⎦
(3.71)

where the ’stiffness’ matrix is put together as

KNSun+1i
 = M+ θδtCun+1i

 + V+ β∇⋅ un+1i
M (3.72)

and the ’time--rhs’ for the momentum equation as

TNS,M= M− (1− θ)δtC(un)+ V+ β(∇⋅ un)M un− (1− θ)δtGpn

+ (1− θ)δt(F+ N)n (3.73)

as well as the ’time--rhs’ for the continuity equation as

TNS, C=− (1− θ)δtGTun (3.74)

Applying the semi--implicit scheme, the iteration countermay beomitted and the velocities un+1i
as well as un have to be replaced by un+γ.

The definitions of the sample components of the element matrices Me
ab and C

e
ab as well as the

element vectors Feab and N
e
abmay easily be transfered to the case of the Navier Stokes equations.

Sample components of the viscous element matrix and the gradient element matrix are defined
as

Veab= 2ν 
Ωe

ε(Na) : εNb dΩ (3.75)

Ge
ab=− 

Ωe

∇⋅ Na Nb dΩ (3.76)

respectively. For choosing the conventional form of the viscous term in (2.64), the form of the
diffusivematrix (3.67) may be adopted with ν replacing À for the Navier--Stokes equations. The
element matrices and vectors are then subject to the same assembly process symbolically indica-
ted in (3.70). As before, the entries EM and EC on the right hand side of (3.71) are due to a poten-
tial Dirichlet boundary condition and arise from the assembly operation.
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3.4 Numerical problemswith the standardGalerkin finite elementmethod

3.4.1 Velocity oscillations for high Reynolds and Peclet number flow

Problem demonstration for a model case

This problem is usually demonstrated for the model case of a one--dimensional stationary con-
vection--diffusion equation, i.e. (3.2) with the just named simplifications, reading

a
dφ
dx
− À

d2φ
dx2
= 0 in Ω (3.77)

where, additionally, the right hand side is set to zero for convenience. For instance, this model
case is used as an initial example in the didactically oriented lecture notes of Hughes et al.
(1994a). (3.77) is confined to the domain Ω= [0, L] with Dirichlet boundary conditions at the
the inflow boundary φ(x= 0)= 0 and at the outflow boundary φ(x= L)= 1. For a constant
convective velocity a being defined positive in positive x--direction and a constant diffusive
coefficient À, the analytical solution of (3.77) reads with the Peclet number defined in (2.90)

φ(x)= ePe
x
L− 1

ePe− 1
(3.78)

The flow is assumed to be convection--dominated for Pe> 1 and diffusion--dominated for
Pe< 1 with a quite different behaviour for extreme values of the Peclet number, see Fig. 3.1.
For Pe→∞, Fig. 3.1 displays the thin boundary layer which has to be resolved at the outflow
boundary x= L. The application of the standard Galerkin finite element method in the sense
of section 3.2 with piecewise linear elements, for example, leads to equations similar to the ones
achievedwith a central difference approximation in a finite differencemethod, confer e.g.Donea
and Huerta (2003). After all, the solution of the approximate problem at some discrete node
A (A= 0, ...,N) reads

φA= φxA= Ah =
1+Pee
1−Pee
A− 1

1+Pee
1−Pee
N− 1

(3.79)

where a uniform discretization with N elements of length h has been applied. Pee denotes the
element--based Peclet number subject to

Pee= ah
2À

(3.80)

By inspecting (3.79), one may observe that the numerical solution oscillates for Pee> 1. This
situation is sketched in Fig. 3.2. Please compare the numerical solutions to the situation in Fig.
3.1 above and note, in particular, the obvious corruption in the convection--dominated case.

The only way to solve this problem with the standard Galerkin finite element method lies in an
adequate choice of the element lenghts such that Pee< 1 for every element. This, however, will
in almost every case result in an enormous computational effort which is not feasible in general.
Therefore, the scales not resolved will be incorporated by a multiscale approach below.
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Fig. 3.1: Sketch of analytical solutions in convection-- and diffusion--dominated case

diffusion--dominated flow

x= 0

φ= 0

x= L

φ= 1

convection--dominated flow

a

Fig. 3.2: Sketch of numerical solutions in convection-- and diffusion--dominated case

diffusion--dominated flow

x= 0

φ= 0

x= L

φ= 1

convection--dominated flow

a

Mathematical analysis of the problem

The focus is still leveled at the model case of a stationary convection--diffusion equation. In va-
riational formulation after the introduction of the finite element functions, it looks like

wh, a dφh
dx

Ω

+dwh
dx

, À
dφh

dx

Ω

= wh, f
Ω

(3.81)

with the right hand side f being introduced again. Thismodel case reduces the convection--dif-
fusion--reaction equation in general form to a crucial balance of a convective and a diffusive term
quantitatively expressedby the element Peclet number (3.80) for adiscretizationwith characteri-
stic element length h. Two properties for a bilinear form like (3.81) which is expressed more ge-
nerally as
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Bwh,φh = wh, f
Ω

(3.82)

have to be established in order to prove that amethod converges: consistency and stability. Addi-
tionally, interpolation estimates for the finite element functions of the standard Galerkin finite
element method have to be carried out, but they will be omitted here. It is straightforward to
prove the consistency of the bilinear form of (3.81), since (3.81) has been achieved by applying
a weighted residual method. Subtracting the general bilinear form for the exact solution

Bwh, φ = wh, f
Ω

(3.83)

from (3.82) results in

Bwh, φh− φ = 0 (3.84)

due to the conditions of bilinearity of B. (3.84) establishes that the error e= φh− φ is orthogo-
nal to all test functions wh∈ Vh

φwith respect to the bilinear form B (Galerkin orthogonality).
The problem is to be found within the proof of the stability condition, also termed condition of
V--ellipticity, requiring

Bwh,wh ≥ c |||wh|||2 (3.85)

with c being a constant and ||| ⋅ ||| some norm defined on Vh
φ. For (3.81), this results in

Bwh,wh = À ‖ ∇wh ‖20 ∀wh∈ Vh
φ (3.86)

For Pe→∞, Àmay become very small revealing a serious deficiency of the standard Galerkin
finite element method. An estimate of the error e in Hughes (1987) reading

‖ ∇e ‖= o((1+ Pee)h) (3.87)

shows the definite dependency of the error eon the element Peclet number Pee yielding an opti-
mal error bound for diffusion--dominated flows with small Pee and the loss of it for Pee increa-
sing.

3.4.2 Pressure oscillations and the role of the inf--sup--condition

Mathematical analysis of the problem

In order to explain the problem of potential pressure oscillations it is sufficient to concentrate
on the stationary Stokes equations, i.e. (2.75) without the time--dependent term along with the
continuity equation (2.42), reading

∇p− 2ν∇⋅ ε(u)= f in Ω× (0, T) (3.88)

∇⋅ u= 0 in Ω× (0, T) (3.89)

The omitted time--dependent and nonlinear convective terms do not have a direct influence on
the core of the problem. The variational formulation of (3.88)--(3.89) reads

− (∇⋅ v, p)Ω+ (ε(v), 2νε(u))Ω− (q,∇⋅ u)Ω= (v, f)Ω (3.90)
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with homogeneousDirichlet boundary conditionsassumed on the complete boundary for simpli-
city. The theory of mixed finite element methods governing (3.90) is explicitly described in
Brezzi and Fortin (1991). As a result, it bears a constraint alternatively called inf--sup--condition,
LBB--condition or BB--condition. The condition, howsoever named, demands the existence of
a constant c such that

inf
0 ≠ qh ∈ Vh

p

sup
0 ≠ vh ∈ Vh

u

∇⋅ vh, qh
‖ vh ‖1 ‖ qh ‖0

≥ c (3.91)

for any characteristic length h. After all, (3.91) determines the relationship between function
spaces for thevelocity andpressure approximation. In particular, the convenient choice of equal--
order interpolations for velocity and pressure is ruled out to be a stable method by condition
(3.91).

Alternatively, the problem may be observed by inspecting the matrix system resulting from
(3.90) by following the usual steps. In the end, it looks like

 V
GT

G
0
 ⋅ up = F0 (3.92)

with the matrix and vector definitions of section 3.3.4. It is evident that thematrix system (3.92)
is singular, if the kernel of G is not equal to zero, i.e.

Ker G≠ {0} (3.93)

This means that pressure solutions p≠ 0 appear belonging to the zero eigenvalues of matrix
G and, hence, resulting in Gp= 0 for these non--zero pressure solutions. This fatal result may
be blamed on the fact that the only term testing the pressure in (3.90), namely − ∇⋅ vh, ph

Ω
after the introduction of the finite element functions, is not equipped with a sufficient number
of weighting functions for vh to ’rule out’ all artificial pressure modes. In consequence, the
weighting function space Vh

u is definitely too small in this case.

Satisfying the inf--sup--condition by a proper choice of interpolation functions

Two procedures may be distinguished to solve the problem, confer Franca and Hughes (1988).
On the one hand, the variational formulation (3.90) may be enhanced by introducing additional
terms which will also weight and potentially ’rule out’ artificial pressure modes. This concept
named ’Circumventing Babuska--Brezzi’ (CBB) will be inherent for the multiscale methods to
be presented in the following. However, the alternative concept of ’Satisfying Babuska--Brezzi’
(SBB) should at least be adressed briefly for one explicit example of choosing the interpolation
functions. Simply spoken, SBBmeans increasing the number of velocity functions with respect
to the number of pressure functions. In the end, the interpolation for the pressure must be at least
one order lower than the one for the velocity.

One element satisfying the inf--sup--condition is the so--called Taylor--Hood quadrilateral ele-
ment (Taylor andHood (1973)). In its original version in the two--dimensional case, it is constitu-
ted by a serendipity--type quadratic interpolation with 8 degrees of freedom for each spatial di-
rection of the velocity and a bilinear interpolation with 4 degrees of freedom for the pressure
(Q(8)

2
Q1). The slightly different element with a biquadratic velocity interpolation with 9 degrees
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of freedom (Q2Q1) is also often termed to be a Taylor--Hood element. Concerning these and a
tabulation of other elements in 2--D and 3--D satisfying the inf--sup--condition please consult, for
instance, Gresho and Sani (1998) or Gunzburger (1989).
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44(4 A Brief Insight into Turbulence

This chapter aims at providing the reader with a short introduction into some characteristics of
turbulent flows. The bounds of this work allow no exhaustive description of all aspects of turbu-
lence. For example, everything but the famous Kolmogorov energy spectrum which is related
to a spectral description will be omitted, since numerical methods ’living’ in the physical space
are merely considered afterwards. Due to this necessary lack of completeness, the reader will
now be given a longer list of references dealing with the topics of turbulence for consultation.
Proceeding in chronological order of their first appearance, it is started with the classic mono-
graphs of Batchelor (1953), Townsend (1956), andHinze (1959). At the beginning of the 1970’s,
a large number of books were published, e.g. Bradshaw (1971), Panchev (1971), the exhaustive
two--volume work of Monin and Yaglom (1971/1975), Tennekes and Lumley (1972), Rotta
(1972), Launder and Spalding (1972), as well as Leslie (1973). More recent works are the ones
of Landahl andMollo--Christensen (1986), Lesieur (1990), McComb (1990), and Frisch (1995).
About three years ago, the books of Mathieu and Scott (2000) as well as Pope (2000) have been
published.

4.1 What is so special about turbulent flows ?

4.1.1 Laminar vs. turbulent flow

For ’low enough’ Reynolds number, flows can be described as ’well--behaved’, largely control-
led by viscous diffusion. Such flow regimes are called laminar due to an idea of fluid motion
within orderly ’laminae’. With increasing Reynolds number, laminar flow regimes become un-
stable. Passing a transitional stage, the range of turbulent flow regimes is entered1. In the turbu-
lent regime, the main velocity field is superimposed by random velocity fluctuations making a
comprehensive theoretical solution approach hopeless. However, nearly all flows of practical
engineering interest are in fact turbulent. This indicates its importance and, thus, the need of fin-
ding adequate solutionmethods. Depending on one’s personal point of view, dealing with turbu-
lent flows may be described as being attractive by an optimist, challenging by a neutral person
or terrible by a pessimist. Please remember the quoting of Peter Bradshaw given at the beginning
of the general introduction classifying turbulence as ”the invention of the devil on the seventh
day of creation”. The two major problems in solving the Navier--Stokes equations within turbu-
lent flow regimes will now be addressed within the following two sections.

4.1.2 Random feature of turbulent flows

The usual approach to a description of turbulence is based onmethods of statistics. The necessity
to fall back on thisway of describing is due to the appearance of the random velocity fluctuations
forcingus to leave the ’safeground’ of deterministicmethods.Although it sounds hardly believa-

1. The perception of the existence of two quite different flow regimes goes back toOsborne Reynolds proving
this in his famous experiment where he injected a dye streak into a pipe flow and observed its behaviour.
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ble on first sight that deterministic equations are the source of random solutions, thismay be ex-
plained precisely by the existence of the nonlinear convective term. The basic reason for the ca-
sualness of the solutions lies, on the one hand, in unavoidable perturbations e.g. in initial
conditions, boundary conditions andmaterial parameters and, on the other hand, in the high sen-
sitivity of instantaneousvalues of turbulent flows to all these perturbations.However, the statisti-
cal averages do not show this sensitivity predestinating this approach for use in the analysis of
turbulent flows. Somemeasures for the statistical description of turbulence may be found in ap-
pendix A.

4.1.3 Wide range of scales

The second important problem related to turbulent flows besides its random feature is the wide
range of scales usually linked with such a flow. For instance, a crude measure for the range of
length scales depending on the Reynolds number reads

L
η ~ Re

3
4
L

(4.1)

with L denoting a measure of the largest scales, the smallest so--called Kolmogorov scale η and
theReynolds number ReLbased on L and a related velocitymeasure U. For instance, a flowwith
a thoroughly usual ReL of about 10

6 bears a smallest scale η being about 32,000 times smaller
than the largest scales in this flow. There is also a chance besides the burden. In particular, this
wide rangeof scales also opensawide field for the applicationofmultiscalemethods for reasona-
ble numerical solutions of suchproblems. In fact, itmay beviewed asa challenging ’playground’
for multiscale methods offering the opportunity to show their qualities.

4.2 The Reynolds equation and its closure problem

4.2.1 Reynolds decomposition

Based on, for instance, time or ensemble averaging (see appendix A), the velocity u(x, t) may
be decomposed into a mean value < u(x, t)> and a fluctuating part u~(x, t) such that

u(x, t)=< u(x, t)>+ u~(x, t) (4.2)

and, accordingly, the pressure such that

p(x, t)=< p(x, t)>+ p~(x, t) (4.3)

Spatial and temporal differentiation commute with averaging revealing

∂u∂t  = ∂ < u>
∂t , < ∇u>= ∇ < u> (4.4)

The continuity equation (2.45) formulated for the mean flow with the help of (4.4) reads

∇⋅ < u>= 0 (4.5)

By the way, subtracting (4.5) from (2.45) shows that the fluctuations are also divergence--free:

∇⋅ u~ = 0 (4.6)
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The introduction of (4.2), (4.3) and (4.4) into the momentum equation (2.46) leads to the mo-
mentum equation for the mean flow reading

∂ < u>
∂t +∇⋅ (< u u>)+∇< p>− 2ν∇⋅ ε (< u>)= 0 (4.7)

where the right hand side f is omitted for simplicity.

4.2.2 Reynolds stress tensor

The problematic aspect of (4.7) is the averaging of the nonlinear convective term. Using (4.2),
it may be expanded as

< u u>=< (< u>+ u~) (< u>+ u~)>

=< (< u>< u>+< u> u~+ u~< u>+ u~ u~)>

=< u>< u>+< u~ u~ > (4.8)

where it has been taken advantage of

<< u>>=< u> , < u~ >= 0 (4.9)

and

< (< u> u~)>= 0 (4.10)

As a result, the so--called Reynolds equation reading

∂ < u>
∂t +∇⋅ (< u>< u>)+∇ < p>

−∇⋅ (2νε (< u>)−< u~ u~ >)= 0 (4.11)

is obtainedwhere the last term on the left hand side is constitutedby the so--calledReynolds stress
tensor2. It has been arranged within (4.11) according to its physical interpretation as stress in
order to get an overall stress term constituted by the viscous stress and the Reynolds stress. The
Reynolds stress tensor is the only component of (4.11) distinguishing it from amomentum equa-
tion like (2.46) formulated for the mean values< u> and < p>. However, it is the crucial
component of (4.11), since it ’brings the turbulence into this equation’.

The analogy to the viscous stress lies in the fact that both stem from momentum transfer. The
viscous stress results frommomentum transfer at themolecular levelwhereas theReynolds stress
results from momentum transfer by the fluctuating velocity field. Therefore, a Reynolds stress
tensor may be built up analog to the viscous stress tensor (2.17) as

τR=⎪⎪⎪
⎧

⎩

u~1u~1
u~2u~1
u~3u~1

u~1u~2
u~2u~2
u~3u~2

u~1u~3
u~2u~3
u~3u~3
⎪⎪⎪
⎫

⎭
(4.12)

(4.12) is symmetric with u~ iu~ i indicating normal stresses and u~ iu~ j(i≠ j) indicating shear
stresses. Half the trace of the Reynolds stress tensor in the form (4.12) is defined to be the turbu-
lent kinetic energy, i.e.

2. More precisely, the stress tensor is usually termed to be the respective term multiplied by the density.
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k(x, t)= 1
2
< u~(x, t)⋅ u~(x, t)> (4.13)

Analog to the viscous tensor, τRmay be written as the sum of a spherical tensor depending on
the turbulent kinetic energy k subject to

2
3
kI=
⎪⎪⎪⎪

⎧

⎩

2
3
k

0

0

0

2
3
k

0

0

0

2
3
k

⎪⎪⎪⎪

⎫

⎭

(4.14)

and a deviatoric tensor dev τR being defined as

dev τR= τR− 2
3
kI=
⎪⎪⎪⎪

⎧

⎩

u~1u~1 − 2
3
k

u~2u
~
1


u~3u~1

u~1u~2

u~2u
~
2
 − 2

3
k

u~3u~2

u~1u~3

u~2u~3

u~3u~3 − 2
3
k

⎪⎪⎪⎪

⎫

⎭

(4.15)

Transfering this decomposition to (4.11) yields

∂ < u>
∂t +∇⋅ (< u>< u>)+∇< p>+ 2

3
kI

− ∇⋅ 2νε (< u>)− dev τR = 0 (4.16)

demonstrating that the spherical part of τR may be subsumed in a modified term for the mean
pressure and the deviatoric part of τR is the part beingmore effective inmomentum transport than
the spherical part.

4.2.3 Closure problem

Unfortunately, a severe imbalance between the number of equations and the number of un-
knowns has occured. Starting from the initial position with four equations, i.e. 3 components of
the momentum equation and the continuity equation, for four unknowns u1, u2, u3 and p, the
introduction of the symmetric Reynolds stress tensor bears six additional unknowns with no ad-
ditional equation for their solution. By multiplying the momentum component equations with
a fluctuating value and averaging the product afterwards, differential equations for the compo-
nents of the Reynolds stress tensor can be derived. This makes the problem worse though. It
brings up 6 new equations (one for each independent component of τR), but also 22 additional
new unknowns of the form < u~ u~ u~ >. With every higher and higher moment applied
to the momentum equation it becomes even worse in bearing more and more unknowns with no
chance of reaching a balance between equations and unknowns -- a situation typical for all nonli-
near stochastic systems. During the averaging process, information is removed from theNavier--
Stokes equations which cannot return. This describes the closure problem which has to be over-
come by a modeling process in practice.

4.2.4 Boussinesq’s turbulent (eddy) viscosity assumption

The basicmodeling hypothesis consists in the introduction of a (here kinematic) turbulent visco-
sity (also named eddy viscosity) νT. This simple ansatz goes back to work of Valentin Joseph
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Boussinesq (1842--1929) in the year 1877 (see Boussinesq (1877)). The hypothesis exploits the
aforementioned analogy of momentum transfer at the molecular level and by the fluctuating ve-
locity field. Despite its (in the meantime well--known) limitations it is still a widespread used
modeling procedure and, moreover, the basis for more sophisticated models. For elaboration of
the analogy of the molecular and turbulent transport of momentum the Boussinesq hypothesis
relies on and its limitations, the reader may consult the literature mentioned in the introductory
part of this chapter and e.g. Wilcox (1998).

Analog to Stokes’ hypothesis (2.22) governing the relation between the viscous stress and the
rate--of--velocity tensor for a Newtonian fluid, Boussinesq assumes a linear connection between
the deviatoric part of theReynolds stress tensor and the rate--of--velocity tensor for themean flow
reading

− dev τR= 2νTε (< u>) (4.17)

Incorporating (4.17) into the Reynolds equation (4.16) yields

∂ < u>
∂t +∇⋅ (< u>< u>)+∇< p>+ 2

3
kI

− 2∇⋅ ν+ νTε (< u>) = 0 (4.18)

In consequence, one ends up with the original momentum equation (2.46) formulated for the
mean flow with a modified mean pressure and an effective kinematic viscosity

νeff(x, t)= ν+ νT(x, t) (4.19)

replacing the kinematic physical viscosity alone.With the Boussinesq hypothesis being introdu-
ced, the closure problem has been overcome and the Navier--Stokes equations for the mean flow
(4.5) and (4.18) can be solved provided that the turbulent viscosity νT can be specified.

4.2.5 Prandtl’s mixing--length hypothesis

By exclusively argumenting on dimensional grounds, one may state that the kinematic turbulent
viscosity νTmust be put together by some velocity v and some length l in the sense that

νT~ vl (4.20)

Prandtl (1925) specified this initial guess physically by introducing the mixing--length hypothe-
siswhich further exploits the analogy ofmomentum transfer on themolecular level and by turbu-
lent fluctuating velocities. According to this, the mixing length lmix is the analogon to the mean
free path on themolecular levelwithin the kinetic theory of gases. Amixing velocity vmix is then
based on thismixing length and ameasureof the rate--of--velocity tensor of themean flowsubject
to

vmix= const lmix meas(ε (< u>)) (4.21)

with some constant factor. Absorbing the constant in (4.21) and the proportionality constant lea-
ding to an equation in (4.20) in themixing length lmix, one obtains Prandtl’s definition of the tur-
bulent viscosity as

νT= l2mix meas(ε (< u>)) (4.22)
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Admittedly, Prandtl has merely shifted the crucial problem from finding a specification for
Boussinesq’s turbulent viscosity νT to finding a specification for the mixing length lmix. Howe-
ver, he has gone a substantial step further, since themixing length ismore open to physical reaso-
ning. Within the scope of numerical methods, a length definition being characteristic for the re-
spective discretization replacing in somehowmodified form lmix is appropriate in order to close
the overall problem. This idea will be picked up again below.

4.3 Spatial and temporal scales based on two--point correlations

4.3.1 The benefit and burden of two--point correlation

Up to now, a one--point correlation in form of the Reynolds stress has already been considered
as away to describe the effect of turbulencewithin the resultingmomentumequation. Here, one--
point means that the velocity at one particular point in space and time is viewed as a measure for
the turbulent flow. However, this is not a sufficient proceeding in general. Due to the presence
of the pressure, the motion at one point is rather affected by the motion at other points separated
from the original point both in space and time. Generally, a correlation between the velocity fluc-
tuations at two points being separated spatially and temporally can be defined as

RSTx1,x2, t1, t2 = u~x1, t1  u~x2, t2 (4.23)

The bulk of information contained in a two--point correlation like (4.23) may easily be imagined.
By introducing some restrictions in (4.23), it is possible to identify some relevant scales yet. Ba-
sically, the correlation in space and time will be clearly distinguished in order to obtain spatial
and temporal scales describing the respective correlations.

4.3.2 Spatial scales

The two--point correlation tensor based on a spatial separation assumes homogeneous turbulence
and is defined as

RS(x, t; r)=< u~(x, t) u~(x+ r, t)>= RS(t; r) (4.24)

where r denotes the vector specifying the geometrical distance between the two points in space.
(4.24) does obviously not depend on the location x due to the assumption of homogeneity. The
Reynolds stress tensor is recovered by setting r= 0 in (4.24) revealing

τR(x, t)= RS(x, t; 0)=< u~(x, t) u~(x, t)> (4.25)

Themost important aspect to be observed is the tendency of decorrelationwith the spatial separa-
tion r increasing. This may be analyzed, for example, for the first diagonal element of (4.24) at
some point in time RS11(r) with r= r1, 0, 0 being representative in its qualitative progress for
other elements of RS and other directions of r. Scaling RS11r1, 0, 0 by the one--point correlation
RS11(0, 0, 0)= u

~
1u
~
1
, the resulting spatial correlation coefficient reads

ÃS11r1, 0, 0 =
RS
11
r1, 0, 0
u~1u

~
1
 (4.26)
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Fig. 4.1: Principal sketch of spatial (temporal) correlation coefficient

r1

Ã11

λ11

OL11,T11

1

The course of ÃS11r1, 0, 0 depending on the separation r1 is sketched in Fig. 4.1 in principal.
It is to be observed that Ã11 is a symmetric function starting at r1= 0with unit value anddecrea-
sing to zero for r1 → ∞. As ameasure of the length overwhich the order of separation is signifi-
cantly nonzero, the integral length scale L[1]

11
is introduced with its definition

L[1]
11
= 

∞

0

ÃS11r1, 0, 0 dr1 (4.27)

The second measure displayed in Fig. 4.1 is the Taylor microscale λ[1]
11
defined as

λ[1]
11
= − 2

∂2ÃS11
∂r21

r1=0

 (4.28)

which hopefully becomes somewhatmore distinct by its geometric interpretation. Creating a pa-
rabola which osculates, i.e. matches the curvature of, ÃS11r1, 0, 0 at r1= 0 (indicated in Fig.
4.1 as a dashed line), the Taylormicroscale λ[1]

11
may be interpreted as the intersectionof theoscu-

lating parabola with the r1--axis. Although both spatial scales, the integral scale and the Taylor
microscale, have been defined here for a particular component of RS in a particular direction,
the definition can be transfered to other components and other directions in a straightforward
manner.

4.3.3 Temporal scales

Analog to theprocedure for a spatial separation, a two--point correlation tensor basedon a tempo-
ral separation, also named auto--correlation tensor, is defined by assuming a steady flow as

RT(x, t; s)=< u~(x, t) u~(x, t+ s)>= RT(x; s) (4.29)
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where s denotes the time of separation at one point in space. (4.29) does obviously not depend
on the point in time tdue to the steadiness assumption. Again, the Reynolds stress tensor is reco-
vered by setting s= 0 in (4.29) yielding

τR(x, t)= RT(x, t; 0)=< u~(x, t) u~(x, t)> (4.30)

With the time delay s increasing, a tendency of decorrelation will be observed. Analyzing this
again for the first diagonal element of (4.29) at some point in space RT11(s), a temporal (or auto--)
correlation coefficient

ÃT11(s)=
RS
11
(s)

u~1u~1
(4.31)

may be defined with the one--point scaling factor RT11(0) being equivalent to RS11(0, 0, 0) in
(4.26). Displaying the course of ÃT11(0) now depending on the time separation s instead of the
spatial separation r1 yields a very similar picture as can be seen in Fig. 4.1. The integral time
scale T11 replacing L

[1]
11
reads

T11= 
∞

0

ÃT11(s) ds (4.32)

and the micro--time scale λT11 replacing λ
[1]
11
reads

λT11= − 2

∂2ÃT11
∂s2

s=0

 (4.33)

Again, the analysis for this particular component of RT bears representative temporal scales also
for other components.

4.4 Richardson’s energy cascade and Kolmogorov energy spectrum

The turbulent kinetic energy or, more precisely, its distribution among the scales of various size
is the topic of this section. Two concepts are helpful in understanding the physical processes in-
volved. Firstly, the idea of an energy cascade introduced by Lewis Fry Richardson (1881--1953)
in Richardson (1922) qualifies the process. Secondly, the later introduced hypotheses of Andrei
Nikolaevich Kolmogorov (1903--1987) in Kolmogorov (1941) (republished in an English trans-
lation in Kolmogorov (1991) on the occasion of the fiftieth anniversary of the original publica-
tion) quantify this view. These two concepts are, for instance, described in Pope (2000), section
6.1, which the following short summary is mostly relied on.

4.4.1 Richardson’s energy cascade

At the outset of Richardson’s energy cascade, the kinetic energy is introduced by productiveme-
chanisms at the largest scales. Following the picture of a cascade, the energy is then transmitted
to smaller and smaller scales by processes not dependingon themolecular viscosity ν. Thevisco-
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sity merely acts at the end of the process enforcing dissipation of the energy. The end of the ca-
scade is characterized by the smallest scales of motion. The basic constituents of turbulence are
eddies of various scale sizes ranging from very large to very small ones. The energy cascade pro-
ceeds due to a breaking up of larger eddieswhich transfers the energy formerly attributed to these
larger scales to smaller eddies. This goes on until a finally stable eddymotion is reached and dis-
sipation of kinetic energy can take place. Hence, the rate of dissipation ε is actually caused by
the transfer of energy from the largest eddies subject to

ε=− dk
dt

(4.34)

which is independent of the molecular viscosity ν. It scales as

ε~ U3

L
(4.35)

with U and L being a typical velocity and length scale of the largest eddies, respectively. As a
measure for L, it may be fallen back upon the integral length scale L[1]

11
introduced in section

4.3.2.

4.4.2 Kolmogorov’s hypotheses and Kolmogorov scales

Kolmogorov quantified Richardson’s picture of an energy cascade. In particular, he identified
the smallest scales in this energetic process which are named in his honour thus. He formulated
3 hypotheses all being valid only for a flow with a sufficiently high Reynolds number. The first
one is his hypothesis of local isotropy stating that the small--scale turbulent motions, i.e. the
ones with a characteristic length scale l≪ L, are statistically isotropic. Pope (2000) introduces
a length scale lEI≈ 1∕6 L denoting the limit between the anisotropic larger eddies and the iso-
tropic smaller eddies. Using this definition, Kolmogorov’s first similarity hyothesis is formula-
ted as follows: For all scales l< lEI, the statistics has a universal form uniquely determined by
the rate of dissipation εand the viscosity ν. Hence, the range l< lEImay be named the universal
equilibrium range. Using only the two values ε and ν, a length scale

η= ν3ε 
1
4

(4.36)

a velocity scale

uη= εν4 (4.37)

and a time scale

τη= ν
ε
 (4.38)

can be created. These so--called Kolmogorov scales assemble a Reynolds number

Reη=
ηuη
ν = 1 (4.39)

marking the lower end of the scale range. These smallest scales can now be related to the largest
scales using the scaling law (4.35) and the concept of the energy cascade stating that we encoun-
ter a constant rate of dissipation throughout the complete transfer process. This results in a length
scale ratio
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η
L
~ Re−

3
4

L
(4.40)

a velocity scale ratio
uη
U
~ Re−

1
4

L
(4.41)

and a time scale ratio
τη
T
~ Re−

1
2

L
(4.42)

(4.40)--(4.42) show the unique dependence of the scale range width on the Reynolds number
ReL.

Kolmogorov’s second similarity hyothesis further distinguishes an inertial subrangewithin the
universal equilibrium range. The lower limit of this inertial subrange is indicated by the length
scale lDI. Beyond lDI, the dissipation range is encountered. The crucial feature of the inertial sub-
range is its sole dependence on ε. Fig. 4.2 summarizes the just introduced ranges and length sca-
les between the (problem dependent) maximum flow scale Lmax and the Kolmogorov length
scale η for a flow at very high Reynolds number.

Fig. 4.2: Various length scales and ranges on a logarithmic scale (Pope 2000)

dissipation range inertial subrange

energy--containing range

η lDI lEI

universal equilibrium range

L Lmax

The last length scale of section 4.3.2 remaining to be categorized is the Taylor microscale λ. Ba-
sed on an analysis of Taylor (1935), it may be assumed that for homogeneous isotropic turbu-
lence

λ
η≈ 7Lη

1
3

(4.43)

λ will usually lie within the inertial subrange and, hence, in amedium range between the largest
and the smallest scales.

4.4.3 Kolmogorov energy spectrum

Starting point of the considerations in this section is the two--point correlation tensor based on
a spatial separation RS defined in (4.24). Transfering this correlation into the spectral space by
a Fourier transform yields the velocity spectrum tensor

Φ(À, t)= 1
(2π)3

∞

−∞


∞

−∞


∞

−∞

e−iÀr RS(t; r) dr (4.44)
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with the usual relation between the wavenumber vector À and the corresponding wavelength l
subject to

l= 2π
|À|

(4.45)

If all directional information is removed from (4.44), the energy spectrum function

E(À, t)= 1
2

∞

−∞


∞

−∞


∞

−∞

trΦ(À, t) δ(|À|− À) dÀ (4.46)

is obtained which depends on the scalar wavenumber À. Summing over the complete range of
scalar wavenumbers reveals the kinetic energy


∞

0

E(À, t) dÀ= k(x, t) (4.47)

already introduced in (4.13) as half the trace of the Reynolds stress tensor. According to this,
E(À, t)dÀ denotes the contribution to k(x, t) contained in the modes between À and À+ dÀ. Cer-
tainly, both Kolmogorov’s first and second similarity hypothesis also transfer to the spectral
space. This means that there exists an inertial subrange ÀEI< À< ÀDI and a dissipation range
À> ÀDI. Kolmogorov’s famous− 5∕3--lawwas developed by a dimensional analysis and isva-
lid within the inertial subrange. It reads

E(À)= CKε
2
3À−

5
3 ; ÀEI< À< ÀDI (4.48)

where CK denotes the Kolmogorov constant. The functional dependencies E(À) valid within the
energy--containing range À< ÀEI andwithin the dissipation range À> ÀDI as well as the subse-
quent matching process yielding (4.48) will not be developed here. For this purpose, it is refered
to the literature mentioned in the introduction of this chapter. However, the famous graphical
display of the Kolmogorov energy spectrum is obligatory and, thus, shown in Fig. 4.3. The spec-
trum in Fig. 4.3 is typical for any turbulent flow. It iswell established and confirmed in themean-
time.
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Fig. 4.3: Kolmogorov energy spectrum
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55(5 Alternative Procedures for the Numerical Simulation
of Turbulent Flows

5.1 Introduction

The standard Galerkin finite element method for the incompressible Navier--Stokes equations
has been developed in the preceding chapter. By taking additional measures to overcome the nu-
merical problems described in section 3.4, this method may be utilized to simulate laminar flow
situations. However, new challenges have to be faced as soon as a turbulent flow regime is re-
ached. This chapter is devoted to the introduction of three alternative procedures to adapt the
standard Galerkin finite element method also to simulations of turbulent flow regimes. The first
one, named Direct Numerical Simulation (DNS), does not need an adaption in principle. Thus,
the respective sectionof this chapter is basically a statement of the unfeasibility of aDNS ingene-
ral. In the author’s view, the most promising ’tool’ for the numerical simulation of turbulent
flows seems to be within the basic concept of Large Eddy Simulation (LES). It is intermediate
in its requirement of computational effort between DNS and the simulation utilizing the Re-
ynolds Averaged Navier--Stokes equations (RANS) which will be briefly introduced in the last
section of this chapter. In Fig. 5.1, a comparison of the three procedures concerning the respec-
tive degree of modeling and resolution inherent in the method is displayed.

Fig. 5.1: Schematical classification of the alternative procedures (Breuer (2000))
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5.2 Direct Numerical Simulation (DNS)

The basics of aDirect Numerical Simulation and its impact on the numerical simulation of turbu-
lence including ahistorical revieware providedbyMoin andMahesh (1998). Thebooks of Ferzi-
ger andPeric (1999), Pope (2000), andWilcox (1998), for instance, also devote a section toDNS.
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Basically, it can be stated that DNS is conceptually the most straightforward approach of all
three. In the present case, DNS exclusively relies on the standard Galerkin finite elementmethod
introduced in the preceding chapter, since it is widely accepted in the meantime that the Navier--
Stokes equations in its basic form describe the turbulent flow regime as well. Thus, the finite
element formulation (3.31) which is repeated here in symbolically modified form as

BNSvh, qh; uh, ph = vh, fΩ+ v
h, h

Γh
+ [unresolved scales] (5.1)

may be applied. The symbolical modification consists in the addition of a term representing the
effect of the unresolved scales onto the scales resolved by the standard Galerkin FEM. A short
remark concerning (5.1) is perhaps necessary. It goes without saying that the Galerkin method
with the characteristic element length h→ 0 is basically able to resolve all scales. However,
(5.1) addresses the usual situation that refinement of the discretization beyond a certain (mostly
low) level is not feasible. Aside from this, the formulation (5.1) is already an anticipation in view
of the latermultiscale formulation. In fact, DNS aims at a complete resolution of all scales linked
with the respective flow situation. Hence, therewouldnot be any unresolved scales. Theproblem
lies in the extremely wide range of length and time scales appearing in a turbulent flow. Awidely
usedmeasure for the necessary computational effort is based on the estimation (4.1) quantifying
the ratio of the largest and the smallest scale. Assuming the computational domain to be at least
as large as the largest eddy alongwith the necessity to resolve theKolmogorov scale ηat theother
end of the scale spectrum, a three--dimensional spatial resolution approximately requires

NS≈ Lη
3

~ Re34
L
3= Re

9
4

L
(5.2)

degrees of freedom to be made available. Furthermore, assuming a time step of the same order
as the characteristic length scale, the sumof ’temporal’ and spatial degrees of freedom is approxi-
mately

NS+T≈ Lη
4

~ Re34
L
4= Re3L (5.3)

i.e. the number of degrees of freedom scales with Re3. Due to this reason, DNS is still unfeasible
to simulate high Reynolds number flows of engineering interest with the currently existing com-
puter hardware. Even for the lower Reynolds number flowswhich have been simulated in aDNS
manner, the Kolmogorov scale is indeed seldomly resolved. The smallest resolved scale usually
appears to be merely of O(η), confer Moin and Mahesh (1998). Collis (2001) even claims that
the smallest resolved scale in a DNS is often up to four times the size of the Kolmogorov scale.
Thus, there are still unresolved scales in a DNS. The crucial modeling approach for a DNS assu-
mes

[unresolved scales]= 0 (5.4)

in (5.1) according to this. More precisely spoken, (5.4) does not suppose the unresolved scales
itself being zero. It rather states that the Galerkin projection of the unresolved scales onto the
Galerkin finite element space is zero. This way of thinking will hopefully become clear with the
introduction of the Galerkinmethod as a projectionmethod in section 5.2.2 and, finally, with the
multiscale interpretation in chapters 6 and 7.
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5.3 Large Eddy Simulation (LES)

5.3.1 ’Classical’ Large Eddy Simulation based on explicit spatial filtering

Basic concept and literature

Usually, a situation will have to be faced in that adequate computational power to execute aDNS
of a turbulent flow is (by far) not available. In this case, a promising approach commending itself
for this purpose is Large Eddy Simulation (LES). The basic idea of LES consists in the strategy
of resolving the larger eddies andmodeling the effect of the smaller eddies onto the larger eddies.
Since it has been learned from Kolmogorov’s hypotheses in section 4.4 that the smaller scales
exhibit a more universal character in general, this seems to be a promising approach in two re-
spects. On the one hand, a (sometimes very much) coarser discretization is sufficient for resol-
ving the larger scales and, on the other hand, the universal character of the smaller scales poten-
tially simplifies the modeling process. The ’classical’ way of performing LES is described, for
instance, in the comprehensive articles of Fröhlich and Rodi (2000), Lesieur andMetais (1996),
Piomelli (1994), Piomelli (1999), Rogallo and Moin (1984), and, in particular, in the book of
Sagaut (2002), which has appeared in its second edition in 2002 after the first edition was being
released in 2001. Massimo Germano values this within the foreword to the second edition as an
indicator for the strong interest in the topic. Some recent advances in LES for complex flows are
reported in Moin (2002) and steps towards amathematical analysis are carried out in Guermond
et al. (2002) and Layton (2003).

Explicit spatial filtering

The first step in a ’classical’ LES consist in applying a spatial filter G to the unknown velocity
u resulting in

u(x, t)= 
+∞

−∞


+∞

−∞


+∞

−∞

G(x− ξ) u(ξ, t) d3ξ (5.5)

This procedure was first proposed by Leonard (1974). The threemost commonly used filters for
LES are the box filter, the Gaussian filter and the sharp or spectral cutoff filter. These filters are
displayed in physical space as well as their associated version in the spectral space, for instance,
in Sagaut (2002), Figs. 2.1--2.6, and it is refered to this reference for an extensive discussion of
these types of filters and some other ways of filtering. It should be remarked that only the sharp
cutoff filter has the property of a projector for the multiple application of the operator, i.e.

G
^ n= G

^
○ G

^
○ ... ○ G

^ = G
^

(5.6)

and is idempotent in the spectral space thus. The problems associated with the extension of these
homogeneous filters to the inhomogenous casewhich have to be taken into account, in particular,
as soon as a domain boundary is approached should just bementioned here. For proposals in this
context, consult e.g. Ghosal andMoin (1995) for second order andVasilyev et al. (1998) for hig-
her order commuting filters, respectively. This strategy has been extended to the case of unstruc-
tured meshes in Marsden et al. (2002).
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After applying a filter to (2.45)--(2.46), the Navier--Stokes equations for the filtered velocity u
and the filtered pressure p reading

∇⋅ u= 0 in Ω× (0, T) (5.7)

∂u
∂t +∇⋅

u u + ∇p− 2ν∇⋅ ε(u)= 0 in Ω× (0, T) (5.8)

are obtained where the right hand side f has been omitted for simplicity. The difference between
the original unknown velocity and the new filtered unknown velocity

u′ = u− u (5.9)

represents the subgrid--scale or, more precisely, the subfilter--scale velocity in ’classical’ filter--
based LES. The term ’subgrid scale’ is certainly established, but in order to distinguish it from
following approaches the term ’subfilter scale’ is introduced.

A very illuminating impression of the different scale ranges and the effects of filtering can be
achieved by considering the Kolmogorov energy spectrum in Fig. 4.3. After applying the filte-
ring procedure, the spectral amplitude of the kinetic energy E(À) may look as displayed in Fig.
5.2. The area under the curve still illustrates the turbulent kinetic energy. Using the box or Gaus-
sian filter results in the deviating line, see e.g. Fröhlich and Rodi (2000). Of course, the progres-
sion still obeys the Kolmogorov --5/3--law in the inertial range.

Fig. 5.2: Kolmogorov energy spectrum for LES with different types of spatial filters
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The nonlinear term incorporates the effects of the subfilter scales onto the resolved scales. Since
one is only able to compute u u, the difference between the nonlinear term in (5.8) and the
computable nonlinear term has to bemodeled. This describes the closure problem of LES exhi-
biting a similar character with respect to the famous closure problem of turbulence pointed out
in section 4.2. The only difference consists in the fact that the closure problem in chapter 4 has
been encountered after a process of Reynolds averaging, usually in time, and here it has risen
due to a process of spatial filtering. Both procedures show basic similarities though. The tensor
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comparable to the Reynolds stress tensor (4.12) which may be termed subfilter--scale stress ten-
sor is defined as

τS= u u− u u (5.10)

and the ’new’ momentum equation including τS can be written as

∂u
∂t +∇⋅

(u u)+∇p−∇⋅ 2ν∇ε(u)− τS = 0 in Ω× (0, T) (5.11)

Double and triple (Leonard) decomposition

The unknown nonlinear term in (5.8) may be extended analog to what has been done in (4.8) as

u u= u+ u′  u+ u′ = u u+ u u′ + u′  u+ u′  u′ (5.12)

Starting from (5.12), a double or a triple decomposition may be developed, see Winckelmans
et al. (1996). The more popular triple decomposition was first proposed by Leonard (1974) and
is named Leonard decomposition thus. It expands the subfilter--scale stress tensor according to

τS= L+ C+ R (5.13)

where L is the Leonard stress tensor reading

L= u u− u u (5.14)

C denotes the cross stress tensor reading

C= u u′ + u′  u (5.15)

and R is called the subfilter--scale Reynolds stress tensor reading

R= u′  u′ (5.16)

It is obvious that the Leonard stress tensor represents interactions among resolved scales, the
cross stress tensor interactions between resolved and unresolved scales and the subfilter--scale
Reynolds stress tensor is restricted to interactions among unresolved scales.

The double decomposition assuming

τS= C+ R (5.17)

considers all terms including the nonlinear term in (5.11) to be filtered quantities, i.e. the nonli-
near term ∇⋅ (u u) in (5.11) is altered to be ∇⋅ u u. This, however, requires a second ap-
plication of the filter in contrast to the triple decomposition where the Leonard stress tensor re-
presents the result of this process and has to be modeled thus.

If the applied filter fulfills the requirements of a Reynolds operator, i.e. the filtering processmay
be viewed as a projection, then L= C= 0 and

τS= R= u′  u′ (5.18)

which is obviously the same for the double and triple decomposition. As aforementioned, the
sharp cutoff filter exhibits this property in the spectral space. A generalization of the Leonard
decomposition was developed by Germano as a consistent decomposition defining generalized
central moments with the filter G, see e.g. Germano (1986) and Germano (1992).
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Implicit and effective filtering

According to Sagaut (2002), four different types of filters in a LES may be identified:

• an explicit analytical filter G represented by a convolution product as in (5.5)

• an implicit filter induced by the numerical scheme applied to the underlying pro-
blem whichmay be, for instance, ascribed to the approximation of continuous dif-
ferential operators by discrete operators (The introduction of an implicit filter due
to the use of artificial dissipation, for example, in the context of an upwinding
scheme should also been mentioned here in the author’s point of view, although
this filtering is very similar to the filtering introduced by a subgrid viscositymodel
stated below.)

• an implicit filter linked to the chosen discretization (It is obvious that no frequency
higher than the Nyquist frequency associated with this computational grid can be
resolved.)

• an implicit filter associated with a potentially applied subgrid--scale model due to
the inherent length scale of the model (In the context of a subgrid viscosity model,
this may, for instance, be interpreted as the mixing length.)

It is a difficult but crucial question how the effective filter built up by all or some of the filters
just mentioned looks like. It is refered to the exhaustive discussion of this important question
carried out in Sagaut (2002). One way of clearly identifying the effective filter is by letting one
of the filters become predominant over the other filters. This may be done by the so--called pre--
filtering technique actually using the explicit filter and, hence, allowing strict control of the form
of the filter and the cutoff length. The drawback of this procedure lies in the fact that subfilter
scales appear which are resolved by the computational grid but are not resolved scales in the
sense of LES and useless therefore. This may increase computational demands substantially wi-
thout increasing the amount of resolved scales. Thus, an explicit filter actually does not appear
in virtually all LES codes, if it is not necessary, for example, to carry out a dynamic modeling
process for the unresolved scales as will be presented below, confer e.g. Fröhlich and Rodi
(2000). Some explicit discrete filters for this purpose are described in Sagaut (2002), section
12.2.

As a consequence, the usualway of filtering is an implicit onemainly based on the chosen discre-
tization with the other implicit filters mentioned above potentially having an impact. This may
be viewed, in principle, as a variant of the ’volume--balance’ approach of Schumann (1975)
where the respective cells of a finite volumemethod are utilized as a ’filter’ very similar to a box
filter. The problem with this filtering approach has to be ascribed to the a priori unknown cutoff
length. However, the problems associated with necessary modifications of explicit filters in
wall--bounded flows also become obsoletewith this purely implicit filtering technique. This stra-
tegy will now be extended and adapted to finite element methods by identifying the variational
projection within the Galerkin method as a ’filter’ for the Navier--Stokes equations.

5.3.2 Large Eddy Simulation based on the Galerkin projection

Some reported applications of the finite element method for LES

As already pointed out, the finite element method is not the numerical method mostly used in
CFD and, in particular, scarcely applied for LES or even DNS of turbulent flows yet. Neverthe-
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less, some early developments may be found in literature. Firstly, the work of Kenneth Jansen
should be mentioned here. He used a stabilized finite element method (variants of this will be
developed in chapter 7) on unstructured grids for LES of the flow over an airfoil and published
it in a series of Annual Research Briefs of the Center for Turbulence Research (CTR) (see e.g.
Jansen (1993, 1994, 1995, 1996)). A summary of themethod and the results achievedwith it was
then reported in Jansen (1999). Secondly, the work of Giovanni P. Galdi, Traian Iliescu, Volker
John, and William Layton as well as their co--workers has resulted in a number of publications,
of which only a selection are named here: Galdi and Layton (2000), Iliescu et al. (2002), John
(2002a), John and Layton (2002), as well as Iliescu et al. (2003). Coming from a mathematical
background, the authors particularly approach the topics of filtering and numerical errors in LES
as well as some new boundary conditions and subgrid(filter)--scale models.

Besides the aforementioned publications, some more will now be named in their chronological
appearance: Chalot et al. (1998), Rollet--Miet et al. (1999), Ding and Tsang (2001), Kollmann
et al. (2002), Camarri et al. (2002). For example, Chalot et al. (1998) use a stabilized finite ele-
ment method similar to Jansen which is implemented into an industrial code. In Ding and Tsang
(2001), a least--squares finite element method is utilized for LES. Camarri et al. (2002) use a
mixed finite volume / finite element solver on coarse unstructured grids for LES of a flow past
a square cylinder.

A common procedure in some of the work named here is an implicit approach to filtering the
variables. Nevertheless, some explicit filters particularly suited for the finite element method are
described in Jansen (1999), Tejada--Martinez and Jansen (2003), as well as Kollmann et al.
(2002), in the two former references exclusively devoted to an employment in a dynamicmode-
ling procedure. The problemof using finite elements satisfying the inf--sup condition by a proper
choice of the interpolation functions is pointed out in Rollet--Miet et al. (1999). Since these ele-
ments usually go alongwith a higher--order interpolation for the velocitywith respect to thepres-
sure, a larger implicit ’filter width’ for the pressure has to be expected according to this.

Galerkin projection acting as an implicit filter

Before using the Galerkin projection as a way of implicit filtering or, more precisely, as a way
of separating resolved scales from unresolved scales, it has to be clarified that the Galerkin finite
element method is indeed a projection. This question is discussed and, in fact, answered in
Gresho and Sani (1998), appendix 3, in exhaustive form. They investigate L2-- and H

1--projec-
tions both in scalar and vector form. The most important results for the considerations of this
section will be summarized here briefly.

Basically, the scalar H1--projection both in infinite--dimensional and finite--dimensional form
are proven to be projections. The case of primary interest is the projection from an infinite--di-
mensional original space, e.g. H1(Ω) (or its vectorial counterpart H1(Ω)d) to a finite--dimensio-
nal subspace. Here, onemay state that the approximate solution of the underlying problem is ac-
tually identical to the H1--projection of that solution onto the subspace spanned by the basis
functions of the Galerkin finite element method. Denoting the Galerkin projection by Ph

G, it ful-
fills the necessary property for the multiple application reading

Ph
G
n= PhG ○ P

h
G
○ ... ○ Ph

G= PhG (5.19)

However, the important property of the projection being orthogonal can only be proven for the
rather academic cases of a pure Neumann boundary, i.e. Γ= Γh, or vanishing Dirichlet boun-
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dary conditions like e.g. φ= g= 0 on Γg in (3.3) for the convection--diffusion--reaction equa-
tion. In contrast to this, inhomogeneous Dirichlet boundary conditions cause the appearance of
a non--linear subspace of H1(Ω) containing the admissible functions for the problem. Therefore,
the Galerkin projection is non--orthogonal in general and projects into a non--linear subspace.

In view of the actual problem, the incompressible Navier--Stokes equations, the step to vector
projections has to be taken. Grounding on the findings for the scalar case and its straightforward
transformation to the vector space, an additional projection has to be introduced, that is the pro-
jection to the (discretely) divergence--free subspace. Denoting by Jh the discretely divergence--
free subspace and by Ph

J the respective projection, it was shown by Gresho and Sani (1998) that
either applying the projection Ph

Jdirectly or applying thenon--divergence--free projectionopera-
tor Ph

G first and then P
h
J yields the same result, i.e.

uJ= Ph
Ju= Ph

JP
h
Gu (5.20)

In (5.20), u denotes the solution vector and uJ its discretely divergence--free H
1--projection. For

elaboration of this, it is refered to Gresho and Sani (1998).

After clarifying the role of the Galerkin finite element method as a projection, it may now be
applied in the sense of LES. For this purpose, an intuitive procedure will be followed here by
adopting the separation of the velocity and the pressure from ’classical’ LES and incorporating
them into the finite element framework as

u= uh+ u′ , p= ph+ p′ (5.21)

The decompositions (5.21) are then introduced into (3.31) yielding

BNSvh, qh;uh+ u′, ph+ p′ = vh, f
Ω
+ vh, h

Γh
∀ vh, qh ∈ Vh

up (5.22)

What is done here intuitively will be arranged in the more general framework of the variational
multiscalemethod in chapter 7 and justified yet. The procedure is continued here in a straightfor-
wardmanner however. For this purpose, the bilinear form BNS is linearized according toHughes
et al. (2000a) by expanding it as

BNSvh, qh;uh+ u′, ph+ p′ = BNSvh, qh;uh, ph

+ d
dÁ
BNSvh, qh;uh+ Áu′, ph+ Áp′|Á=0+ d2

dÁ2
BNSvh, qh; uh+ Áu′, ph+ Áp′|Á=0

= BNSvh, qh;uh, ph + B1NSvh, qh; uh, u′, p′ + B2NSvh;u′ (5.23)

where BNSvh, qh; uh, ph is given according to (3.22),
d
dÁ
BNSvh, qh;uh+ Áu′, ph+ Áp′|Á=0

= vh, ∂u′∂t Ω+ vh, u
h⋅ ∇u′ + βu′∇⋅ uh + u′⋅ ∇uh+ βuh(∇⋅ u′)

Ω

− ∇⋅ vh, p′
Ω
+ εvh, 2νε(u′)

Ω
− qh,∇⋅ u′

Ω
(5.24)

and
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d2

dÁ2
BNSvh, qh;uh+ Áu′, ph+ Áp′|Á=0= vh, u′⋅ ∇u′ + βu′(∇⋅ u′)Ω (5.25)

Rearranging (5.22) with the help of (5.23) yields

BNSvh, qh; uh, ph = vh, fΩ+ v
h, h

Γh

− B1NSvh, qh;uh, u′, p′ − B2NSvh; u′ ∀ vh, qh ∈ Vh
up (5.26)

The last two terms on the right hand side of (5.26) may now be identified as the influence of the
unresolved scales onto the resolved scales. In terms of the interpretation of the Galerkin FEM
as a projection, these two terms can be viewed as the projection of the unresolved scales into the
subspace of the resolved scales -- and, hence, it is only this projection that has to be represented
by a subgrid--scale model in this context, confer Collis (2001). With this knowledge at hand, the
DNS--equation (5.1) may also be re--interpreted in that the symbolic term on the right hand side
merely has to be replaced by the two terms on the right hand side of (5.26). Moreover, these two
terms, i.e. the projection of the unresolved scales onto the resolved scales, are assumed to be zero
in a DNS--FEM as already indicated in (5.4).

Double and triple (Leonard) decomposition

Analog to what is usually done in ’classical’ LES, the triple summation according to Leonard
(1974) may be adopted to this case. However, the identification of the projection of the Leonard
stress tensor L has to be postponed until the completemultiscale frameworkwill have beendeve-
loped in chapter 7. Therefore, the analogon of the double decomposition is identified first. The
projection of the cross stress tensor C reads

Cvh; uh, u′ = − vh, uh⋅ ∇u′ + βu′∇⋅ uh + u′⋅ ∇uh+ βuh(∇⋅ u′)
Ω

(5.27)

where the cross stress tensor can be easily isolated by setting β= 1 and shifting the differential
operator to the test function through integration--by--parts which results in

Cvh; uh, u′ = ∇vh, u u′ + u′  u
Ω

(5.28)

Of course, an additional Neumann boundary termwill appear in the wake of the integration--by--
parts. The projection of the Reynolds stress tensor Rmay be defined as

Rvh; u′ = − vh, u′⋅ ∇u′ + βu′(∇⋅ u′)
Ω

(5.29)

With the same rationale and, as amatter of course, the same consequence as before, theReynolds
stress tensor can be isolated within the bilinear form as

Rvh; u′ = ∇vh, u′  u′
Ω

(5.30)

Collis (2001) suggests assuming an orthonormal basis which modifies (5.26) to

BNSvh, qh; uh, ph = vh, fΩ+ v
h, h

Γh
+ Cvh;uh, u′ + Rvh; u′ (5.31)

With (5.31) at hand, a simple comparison with the equations (5.7) and (5.11) of ’classical’ LES
including the double decomposition (5.17) of the subfilter--scale stress tensor is enabled. As a
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result, the onlymajor difference lies in the use of Galerkin variational projection in lieu of expli-
cit (or implicit) spatial filtering.

5.3.3 Subgrid(filter)--scale modeling

Functional vs. structural modeling and the subgrid viscosity concept

As a matter of principle, two different modeling strategies of ’classical’ LES may be distinguis-
hed according to Sagaut (2002). On the one hand, it is intended to approximate the subgrid(fil-
ter)--scale stress tensor τS itself. Thus, a relation

τS= F(u) (5.32)

is assumed. This first strategy is called structuralmodeling. Perhaps themost famous structural
modeling approach is the Bardina model (see Bardina et al. (1980), Bardina et al. (1983)) or its
improved version, the filtered Bardina model (see Horiuti (1997), Layton (2000)), respectively.
The basic idea behind these models is the hypothesis of a similarity between the subgrid(filter)
scales which have to be modeled and the smallest resolved scales which are available for mode-
ling purposes. This basic idea is also picked up beyond the borders of the Bardina models and
will, for instance, be instrumental to the dynamicmodeling procedure to bepresented below.The
drawback of the Bardina models lies in its only slightly dissipative character and its herewith
linked underestimation of the energy cascade. In order to remedy this problem, the Bardinamo-
del is often used in a mixed form along with a functional (and usually more dissipative) model
like e.g. the Smagorinsky model to be presented in the next section. See, for example, Sarghini
et al. (1999) for applications of mixed models. For an exhaustive list of structural models, it is
refered to Sagaut (2002), chapter 6.

The second strategy aims at modeling the action of the subgrid scales onto the resolved scales
and not the tensor τS itself. This assumption may look like

∇⋅τS= F(u) (5.33)

In the following, this second assumption called functionalmodelingwill be focussedon. Avery
popular and widespread way of functional modeling relies on the subgrid (or eddy) viscosity
concept which is based on the Boussinesq turbulent (or eddy) viscosity assumption explained
in section 4.2.4. Here, it is assumed that the energy transfer mechanism from the resolved to the
unresolved scales is similar to the molecular mechanism based on the physical viscosity of the
respective fluid. Analog to (4.17) thus, the tensor τS or, more precisely expressed, the deviatoric
part of it is calculated as a product of a subgrid viscosity νT and the rate--of--velocity tensor of
the resolved scales ε(u) such that

− dev τS= 2νTε(u) (5.34)

The reason for constricting themodeling efforts to the deviatoric part of the subgrid(filter)--scale
stress tensor is justified by the concept. For incompressible flows, ε(u) has a zero trace which
results in an identity between the tensor and its deviatoric part. Depending on such a deviatoric
tensor, one is only able to model a deviatoric tensor aswell. The complementary spherical tensor
is usually added to the pressure term which then reads in modified form

pmod= p+ 1
3
tr τS (5.35)
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and, hence, requires no modeling. However, the picture would not be complete without descri-
bing what should be modelled by νT. There are two main phenomena in the interaction between
the resolved scales, particularly the small resolved scales, and the unresolved scales. The main
process is generated by a drainage of energy from the resolved scales to the unresolved scales.
Aside of this, aweak backscatter occurs in the opposite direction. All functionalmodeling efforts
are based on the hypothesis that the action of the unresolved scales onto the resolved scales can
be viewed as an energetic action whose respective energy transfer balance should be sufficient
for its description.

There is another interesting functional modeling strategy called implicit diffusionwhich is so-
lely based on the numerical scheme used and the hypothesis that the aformentioned subgrid scale
action is strictly dissipative. Here, the associated truncation error is asked to create the desired
effects. The most popular examples for this strategy are constituted by the variety of upwind
schemes. The later to be presented stabilized finite element methodsmay also be ranged into this
class, although they have not been designed for this purpose initially. In Donea and Huerta
(2003), it is depicted that all three approaches, i.e. the direct introduction of numerical diffusion
(or viscosity), the use of an upwinding scheme or a stabilized method, may basically viewed as
equivalent methodologies in that all of them introduce some kind of numerical diffusion (or vi-
scosity) finally. However, the different approach of stabilized methods with respect to the other
two techniques is slight but crucial as will be seen later on.

Please consult Sagaut (2002), chapters 4 and 5, for a comprehensive description of functional
models basically developed for an isotropic case and their adjustment to anisotropic cases. An
investigation of the emphasized subgrid--scalemodels, i.e. the Smagorinskymodel, the dynamic
modeling procedure and further models based on the scale similarity hypothesis may be found
in Meneveau and Katz (2000).

’Static’ modeling using Smagorinsky’s model

The Smagorinsky (1963) model was the first subgrid--scale model and is still a commonly used
one due to its attractive simplicity. Its basic idea falls backupon Prandtl’smixing lengthhypothe-
sis (see section 4.2.5). The mixing length lmix is replaced by, for example, the filter size ∆ in
’classical’ filter--based LES scaled by the so--called Smagorinsky constant CS. The norm of the
rate--of--velocity tensor based on the mean velocity is replaced by the rate--of--velocity tensor
ε(u) based on the resolved velocity. Herewith, the Smagorinsky model reads

νT= CS∆
2
|ε(u)| (5.36)

The obvious analog would be to replace ∆ by a characteristic element length h in LES based on
theGalerkin projection. Theweak point of the Smagorinskymodel is representedby the constant
in (5.36). Due to investigations of isotropic turbulence, a value of CS= 0.18 (see e.g. Lilly
(1967)) had been proposed which proved to be too large formost flows yet. Hence, a lower value
should be employed usually. Furthermore, the value has to be reduced artificially in the vicinity
of walls, mostly with the aid of van Driest damping, see e.g. Fröhlich and Rodi (2001). Since
it does not vanish in laminar regimes, it is not useful for the simulation of transition. A last pro-
blem with the Smagorinsky model concerns the exclusion of the mechanism of backscatter due
to the strictly dissipative character of the model resulting in νT≥ 0 for all time.
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Dynamic modeling using Smagorinsky’s model

All of the aformentioned negative features of the Smagorinsky model somehow trace back to
the preliminary fixing of the constant CS. Therefore, the idea of Germano et al. (1991) was to
unfix the constant and permit it to change in space and time, i.e. CS= CS(x, t), bywayof adyna-
mic algorithm. The original idea was slightly modified by Lilly (1992) and generalized to inho-
mogeneous cases in Ghosal et al. (1995). According to the scale similarity hypothesis, the basic
intention of the dynamic procedure consists in exploiting the resolved scales, particularly the
ones in the vicinity of the filter scale, to get information for themodeling. A test filter with a filter
size ∆

^
larger than the basic LES filter (often twice as large) is introduced. Thus, a subtest--scale

stress tensor

τT= u u
^
− u^ u^ (5.37)

appears besides the subfilter--scale stress tensor τS. Germano’s identity provides uswith the ten-
sor

LT= τT− τS
^
= u u

^ − u^ u^ (5.38)

which can actually be calculated. On the other hand, a model expression LTmod which should ful-
fill the condition

LT− LTmod= 0 (5.39)

has to be established. This gives rise to a tensor equation which can only be solved in some ave-
rage sense in order to get one value for CSwhich may then be used for the subgrid--scale mode-
ling with, for example, the Smagorinskymodel. However, it has to be emphasized that the dyna-
mic procedure is not restricted to being based on the Smagorinskymodel. In principle, it is rather
open to any modeling ansatz including an a priori undertermined constant. Fig. 5.3 depicts the
dynamic procedure against the background of the Kolmogorov energy spectrum, solely for a
sharp or spectral cutoff filter here. A furthergoing development of the dynamic procedure for
more complex configurations is the so--called Lagrangean Dynamic Procedure, see Meneveau
et al. (1996). Further details of the dynamic procedure are left out here and it is refered to the
literature on LES alluted in the beginning of section 5.2 besides the original references mentio-
ned above.

Finally, it should be noted that all the problems associated with the constant--coefficient Smago-
rinskymodelmay be adressed adequately by this procedure. Admittedly, some potential numeri-
cal difficulties have to be faced related to either unbounded or negative (and, thus, anti--dissipa-
tive) values of CS jeopardizing the stability of the simulation. On the one hand, appropriate
measures may be taken to overcome these problems, see e.g. Sagaut (2002). For example, an
artificial condition may be introduced as

ν+ νT≥ 0 (5.40)

On the other hand, negative valuesof CSand, consequently, of the subgrid viscositymay be inter-
preted physically asmodeling the process of backscattering.The problem becomes critical when
the dynamically calculated constant remains too long in the negative range. This corresponds to
a too high transfer of kinetic energy to the resolved scales, see Carati et al. (1995). Within the
localized dynamic model in Ghosal et al. (1995), an energy equation is included preventing the
simulation from becoming unstable.
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Fig. 5.3: Kolmogorov energy spectrum for dynamic procedure of Germano et al. (1991)
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5.4 Simulation based on the Reynolds Averaged Navier--Stokes equations
(RANS)

Since this simulation technique is not an essential part of this work, it will be mentioned here
merely for reasons of completeness. It basically relies on the explanations and results of section
4.2, i.e. Reynolds averaging (see appendix A.1) is used instead of spatial filtering in form of
(5.5). As a result, the decompositions (4.2) and (4.3) are obtained instead of (5.21). According
to this, the complete fluctuations or, more precisely, the complete Reynolds stress tensor have
to be modeled. Turbulence models have to be used for this purpose which are, however, lacking
generality, since they have to model an extremely wide range of scales. The principal advantage
of LES in that only the small scales with their more universal character have to be modeled is
lost within the RANS technique. A large number of turbulence modeling approaches have been
developed ranging from simple algebraicmodels to a full Reynolds stress closure. For an exhaus-
tive description of RANS and related modeling approaches, it is refered to Wilcox (1998).

An interesting aspect with respect to LES is the potential application of RANS and LES in com-
bined form which may reduce the computational effort necessary for the numerical simulation.
Such hybridRANS/LES approaches are described in Sagaut (2002), chapter 11. Representatives
of this method are, for example, the so--called Detached Eddy Simulation (DES) proposed by
Philippe Spalart and co--workers (see e.g. Spalart et al. (1997), Travin et al. (1999), Strelets
(2001), and Spalart (2002)) and the zonal multi--domain RANS/LES simulation proposed by
Quéméré and Sagaut (2002). Among other attempts in this direction, a universal modeling ap-
proach for hybrid RANS/LESmodels that should ’throw a bridge fromRANS to DNS’ has been
proposed by Germano (1999).
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66(6 Variational multiscale method for scalar convection--
diffusion--reaction equations

The current and the subsequent chapter are devoted to the application of the variational multi-
scale method to the convection--diffusion--reaction equation and the Navier--Stokes equations,
respectively. Two versions of the variational multiscalemethodwill be presented bearing a sepa-
ration of two and three scales. Further applications of a two--scale separation in fields of activity
besides the ones addressed here have been reported, for example, by Garikipati and Hughes
(1998, 2000a, 2000b) for problems of strain localization with an extension to the case of strong
discontinuities.

6.1 Separation of two scales

The first attempt of separation distinguishes two scale ranges of the problem variable that is to
say the solution function φ∈ S is decomposed as

φ= φh+ φ′ (6.1)

and the weighting function w∈ V as

w= wh+ w′ (6.2)

The characteristic element length h is introduced here in the context of the variationalmultiscale
method in view of a later to be introduced characteristic element length h′. In the following, φh

and whwill be denoted φand w, respectively, for convenience.Accordingly, a direct sumdecom-
position of the solution and weighting function spaces is performed reading

Sφ= Sφ S′φ (6.3)

Vφ= VφV′φ (6.4)

Here, Sφmay be thought of as, for instance, a standard finite element space analog to S
h
φ associa-

tedwith a discretization characterized by h and, for the time being, S′φ as an infinite--dimensional
space. That applies to the decomposed weighting function spaces too. φ is required to fulfill the
essential Dirichlet boundary condition (3.3) exclusively, i.e.

φ= g on Γg ∀ φ∈ Sφ (6.5)

All other function variables, namely φ′, w and w′, face zero Dirichlet boundary conditions. The
first application will now be done to the stationary convection--diffusion--reaction equation, i.e.
(3.2) without the transient term ∂φ∕∂t. In section 6.5, the procedure will be extended to the insta-
tionary case. The variational form of the stationary problem reads according to (3.15) with
Btcdrw,φ being replaced by Bcdrw,φwhich is defined as

Bcdrw,φ = w, a⋅ ∇φΩ+ ∇w, À∇φΩ+ w, σ(mod)φΩ (6.6)

Inserting (6.1) and (6.2) into (3.15) leads to
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Bcdrw+ w′, φ+ φ′ = (w+ w′, f)Ω+ (w+ w′, h)Γh (6.7)

from which the two subproblems

Bcdrw,φ + Bcdrw,φ′ = (w, f)Ω+ (w, h)Γh ∀w∈ Vφ (6.8)

Bcdrw′,φ + Bcdrw′,φ′ = (w′, f)Ω+ (w′, h)Γh ∀w′ ∈ V′φ (6.9)

can be derived due to the linearity of the problem. Since it is intended to solve the (⋅)′--scales
somehow in the following, it will be deviated from a usual way of naming (⋅)--scales resolved
scales and (⋅)′--scales unresolved or subgrid scales with one important exception described in
section 6.3. With regard to the later separation of three scales, they are named large and small
(resolved) scales. Accordingly, (6.8) is called ’large--scale equation’ and (6.9) is called ’small--
scale equation’ below.

In the context of the finite element method with the usual choice of C0--elements for problems
described by second--order differential operators, the problem of ’loosing’ continuity of the first
derivatives on the element boundaries is encountered. The second derivatives even cause Dirac
delta functions at the element boundaries. Hence, some terms showing up due to integration--by--
parts have to be understood in a distributional sense. For a description of the theory of distribu-
tions, confer e.g. Stakgold (1998), chapter 2. In the current context, this topic is dealt with ex-
haustively in the publication of Hughes et al. (1998). Thus, it is refered to it for further
elaboration. In order to demonstrate the procedure, the attention is concentrated on the general
integrated--by--parts term Bcdrw,φΩe

on one element domain Ωe without any particular refe-
rence to large or small scales. The integration--by parts procedure will be carried in two direc-
tions, i.e., on the one hand, the weighting function wwill be ’isolated’ in the variational formula-
tion and, on the other hand, this ’isolation’ processwill be applied to the solution function φ. The
results of these two procedures will then be applied to various terms in the two subproblems
(6.8)--(6.9).

Bcdrw,φΩe
differs from (6.6) due to the presence of the Dirac delta functions on the element

boundary Γe which give rise to an additional boundary integral such that

Bcdrw,φΩe
= w,LcdrφΩe

+ w, n⋅ À∇φΓe

= 
Ωe

w a⋅ ∇φ− À∆φ+ σ(mod)φ dΩ+ 
Γe

w n⋅ À∇φ dΓ
(6.10)

Here, n indicates the outward unit normal vector on the element boundary of Ωe. Integrating
(6.10) by parts in the other direction by ’shifting’ derivative operators on the weighting function
w reveals

Bcdrw,φΩe
= L*cdrw, φΩe

+ n⋅ aw,φΓe+ n⋅ À∇w,φΓe

= 
Ωe

− a⋅ ∇w− À∆w+ σ(mod)w φ dΩ
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(6.11)+ 
Γe

(n⋅ aw) φ dΓ+ 
Γe

(n⋅ À∇w) φ dΓ

The boundary terms in (6.10) and (6.11) have ambiguous meaning in this respect, since they be-
long to two elements. Due to the opposite direction of n from the neighbour element’s point of
view, the difference of the boundary value from both elements merely has to be taken into ac-
count. This is indicated by the jump operator [⋅]+−. Hence, by summing (6.11) over all elements
and adding the Neumann and Dirichlet boundary terms,

Bcdrw,φ = L*cdrw,φΩ′ + [n⋅ À∇w]
+
−,φ

Γ′
+ n⋅ (aw+ À∇w),φΓh

+ n⋅ À∇w, φΓg

= L*cdrw,φΩ+ n⋅ (aw+ À∇w),φΓh+
n⋅ À∇w, φΓg (6.12)

is obtained where the third line of (6.12) has to be understood as an integral on the global domain
Ω in a distributional sense plus a Neumann and a Dirichlet boundary term. Please note that the
first boundary term in (6.11) drops out at the interelement boundaries in the summing--up of all
elements due to the continuity of the functions and at theDirichlet boundarydue to the zeroboun-
dary condition for the large-- and small--scale weighting functions. By doing the same in (6.10),
one obtains

Bcdrw,φ = w,LcdrφΩ′ + w, n⋅ À∇φ
+
−

Γ′
+ w, n⋅ À∇φΓh

= w,LcdrφΩ+ w, n⋅ À∇φΓh (6.13)

where the Dirichlet boundary term has been omitted due to the zero boundary conditions for the
large-- and small--scale weighting functions.

As a result, the final form of the large-- and small--scale equation in (6.8)--(6.9) is achieved after
integrating by parts Bcdrw, φ′ according to (6.12) as well as Bcdrw′,φ and Bcdrw′, φ′ accor-
ding to (6.13) as

Bcdrw,φ + L*cdrw, φ′Ω+ n⋅ (aw+ À∇w), φ′Γh=
(w, f)Ω+ (w, h)Γh (6.14)

w′,Lcdrφ+ Lcdrφ′Ω+ w′, n⋅ À∇φ+ À∇φ′
Γh
= (w′, f)Ω+ (w′, h)Γh (6.15)

where the third term in the third line of (6.12) drops out in the large--scale equation (6.14) due
to the zeroDirichlet boundary condition for φ′. This systemof two coupled variational equations
will now be the subject of different solution strategies whereby the main focus will be on the
small--scale equation in the form of (6.9) or (6.15), respectively.

6.2 Solving for the small scales

The first imaginable (and perhaps most obvious) solution strategy for the coupled system of
large-- and small--scale equation consists in solving themonolithic matrix scheme resulting from
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the application of the usual finite element methodology to (6.8)--(6.9). The scale separation in
this context can be done, for example, by using hierarchical shape functions. Onemight ask here
why the scale separation has been performed, although the completematrix is solved in the usual
way. The reason for this distinction lies in the opportunity to treat the large and the small scales
in a different way by, for instance, applying different (Petrov--)Galerkin methods to them or ad-
ding additional terms only to one of the two scale groups. The motive for proceeding this way
will hopefully become clear during the course of this work.

On the other hand, explicitly solving for the small scaleswill provide theopportunity to eliminate
them from the large--scale equation in the form (6.14). The related global strategy may be based
on the use of Green’s function. Restricting this function to individual elements of the original
discretization named element Green’s function offers the possibility to localize the small--scale
solution. Such a localization has the benefit of drastically reducing the necessary computational
effort along with the drawback of diverging from the real, in general globally affected, solution
to a greater or lesser extent. With regard to the handled problem, one will have to judge, if this
’approximation by localization’ seems to be reasonable. The interrelation between element
Green’s function and elementwise residual--free bubbles, which will be presented finally, is des-
cribed in Brezzi et al. (1997), Hughes (1995) and Hughes et al. (1998).

6.2.1 Global monolithic solution using hierarchical shape functions

The hierarchical concept has been briefly explained in section 3.2.3. Picking up the essential fea-
ture of a natural scale separationwithin the set of shape functions of order k, a certain polynomial
order k for the large--scale space and a, necessarily higher, complete order kmay now be chosen.
The order(s) k′ subject to

k< k′ ≤ k ; [k, k′, k]∈ 8 (6.16)

are then assigned to the small--scale space. Adjusting (6.3) and (6.4) to this approach yields

Sφ= Sφ S′φ≈ Sφ, k S′φ, k−k (6.17)

Vφ= VφV′φ≈ Vφ, kV′φ, k−k (6.18)

where S′φ, k−k indicates the finite--dimensional space approximating S
′
φ. Of course, the same ap-

plies to Vφ in (6.18). Accordingly, large-- and small--scale shape functionsmay be distinguished
so as to get the large--scale approximations

w= 
ndofs

A=1
NA wA , φ= 

ndofs

B=1
NB φB (6.19)

and the small--scale approximations

w′ = 
n ′dofs

A′=1
N′A′ w

′
A′ , φ′ = 

n′dofs

B′=1
N′B′ φ

′
B′ (6.20)

with the respective number of degrees of freedoms ndofsand n
′
dofs for the two approximation spa-

ces. Tobe sure, both the large-- and the small--scale approximations are subject to the samediscre-
tization characterized by an element length h. The only distinction lies in the different assign-
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ment of shape functions of certain polynomial orders to either the large-- or the small--scale
approximation. Feeding these shape functions into (6.8)--(6.9) yields the matrix equivalent of
the Galerkin problem reading

⎪⎡⎣
K−−cdr
K′−cdr

K−′cdr
K′′cdr
⎪⎤⎦ ⋅ φφ′ = F+ N− E

F′ + N′  (6.21)

where Kcdr= C(a)+ D+ σ(mod)M indicates the respective submatrices for the left hand sides
and F as well as N the respective subvectors for the right hand sides of (6.8)--(6.9). E denotes
the entries due to the Dirichlet boundary conditions subject to (6.5). Please consult section 3.3.4
for elaboration of the respective matrices and vectors.

An important remark concerns the stability of this Galerkin approximation. It is well known that
the standard Galerkin method irrespective of the use of hierarchical or standard Lagrange shape
functions yields an unstable formulation for convection--dominated problems. Therefore, stabi-
lizing terms have to be added to the matrix, for instance in the fashion of what will be proposed
in section 6.3.1, resulting in additional stabilizingmatrices Kcdr, stab in the scheme (6.21). Please
keep inmind that scale separation is the only target of this global strategy. Thus, there is no ’help’
in stabilizing the problem unless all scales of the problem are captured by the chosen discretiza-
tion and polynomial order k -- an unlikely case in general. The situation will, however, change
substantially for all other concepts below with regard to the stability of the final problem to be
solved.

Closing the description of this global solution concept, the merits and troubles of the hierarchic
concept are emphasized, see e.g. Whiting and Jansen (2001) and Zienkiewicz et al. (1983). One
may benefit from an improved conditioning of the matrix (6.21) with respect to matrices stem-
ming from standard concepts. Furthermore, the special structure of the matrix consisting of sub-
matrices whichmay be preserved allows for some potential computational savings as well as as-
sistance in case of mesh refinement. Some problems associated with the hierachical concept
should be remarked as well. Difficulties arise with the coverage of initial and boundary condi-
tions as well as with the post--processing of the solutionswhich do not occur in the standard con-
cept.

6.2.2 Global solution by Green’s function

The alternative global concept may be introduced by starting from the matrix form (6.21) and
applying the process of static condensation. Thus, the description will go the other way round
in comparisonwithHughes (1995) andHugheset al. (1998). According to thenotation inHughes
(2000) (see (3.1)), the usual way consists in starting with the strong form of the problem and re-
sulting in thematrix form in the long run passing theweak (or variational) form and theGalerkin
equation. Starting here with the static condensation procedure for (6.21), the analogon in the va-
riational form (6.15) of the small--scale equation will then be identified.

Solving the second line of (6.21) for φ′ yields

φ′ = K′′cdr
−1

(F′ + N′)− K′′cdr
−1

K′−cdr φ (6.22)

which by inserting in the first line of (6.21) results in the matrix equation for φ reading
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K*cdr φ= R*cdr (6.23)

where

K*cdr= K−−cdr − K−′cdr K′′cdr
−1

K′−cdr (6.24)

and

R*cdr= F+ N − K−′cdr K′′cdr
−1

(F′ + N′)− E (6.25)

The attention is now turned to the corresponding continuous problem of (6.14)--(6.15) where
(6.15) may be rearranged as anEuler--Lagrange equationwith the help of the projection operator
P′ projecting onto the small--scale function space V′φ as follows

P′Lcdrφ′ = − P′Lcdrφ− f in Ω (6.26)

φ′ = 0 on Γg (6.27)

n⋅ À∇φ′ = − n⋅ À∇φ− h  on Γh (6.28)

Please note that the right hand side of (6.26) is exclusively governed by the residual of the large
scales projected on the small--scale space. This assures the consistency of the method, since a
function completely resolved by the large--scale approximation leaves nothing for the small sca-
les to be done. Accordingly, they are equal to zero all over the domain Ω. One potential way of
solving partial differential equations consists in the use of Green’s function whereby one has to
dealwith a slightly differentGreen’s function due to the fact that it is operatedwith theprojection
P′ of a strong form of a partial differential equation. The adjoint problem for the small--scale
Green’s function g′x, x0 corresponding to (6.26)--(6.28) reads

P′L*cdrg′x, x0 = P′δx− x0 in Ω (6.29)

g′x, x0 = 0 on Γg (6.30)

n⋅ À∇x g′x, x0 = 0 on Γh (6.31)

where x denotes a general location vector, x0 a specific location vector and δx− x0 the Dirac
delta function at the specific location x0.With thehelp of the solutionof the adjoint Green’s func-
tion problem, the small--scale solution at x0 may be determined exactly as

φ′x0 = − 
Ω

g′x, x0Lcdrφ− f(x) dΩx− 
Γh

g′x, x0n⋅ À∇φ− h (x) dΓx

=− 
Ω′

g′x, x0Lcdrφ− f(x) dΩx− 
Γ′

g′x, x0n⋅ À∇φ
+
−(x) dΓx

− 
Γh

g′x, x0n⋅ À∇φ− h (x) dΓx (6.32)
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which is written in shorthand with the help of a small--scale integral operatorM′ as

φ′ =M′Lcdrφ− f (6.33)

The fact that one is indeed able to recover an explicit result for the small scales on the entire do-
main Ω is the cause for refusing to designate the small scales as unresolved scales -- a ’modus
operandi’ becoming crucial below. With (6.33) at hand, the small--scale part in the large--scale
equation (6.14) may now be eliminated in order to get the one and only (large--scale) equation
to be solved reading

Bcdrw,φ + L*cdr w,M′Lcdrφ− f
Ω
+ n⋅ (aw+ À∇w),M′Lcdrφ− f

Γh

= (w, f)Ω+ (w, h)Γh ∀w∈ Vφ (6.34)

with the integral operator M′Lcdrφ− f being defined by the right hand side of (6.32). The
process of eliminating the small scales from the large--scale equation may be called static con-
densation in an infinite--dimensional sense in comparison with what has been done before in a
discrete sense, confer Brezzi (2000).

Since the achievement of the exact small--scale solution in (6.32), which implies the exact solu-
tion of the small--scale Green’s function problem (6.29)--(6.31), will be impossible in almost all
cases of interest, it has to be thought of good approximate solutions. What does thismean in this
context? With respect to the function spaces, a good approximate, necessarily finite--dimensio-
nal, small--scale solution has to be found associated with function spaces S′φ, h′ and V

′
φ, h′ such

that

Sφ= Sφ S′φ≈ Sφ S′φ, h′ (6.35)

Vφ= VφV′φ≈ VφV′φ, h′ (6.36)

is reasonable. This goes along with a good approximation of the small--scale Green’s function
formally expressed as

g′x, x0 ≈ g′h′x, x0 (6.37)

replacing the exact analogon on the right hand side of (6.32). The subscript h′ should act here
as a symbol for any kind of discrete procedure for the small scales. Now the first circle can be
closed, since the use of hierarchical bases in the sense of (6.17)--(6.18) has already been the first
attempt in doing this approximation. According to this, (6.22) is the discrete analogon of (6.32)
and thepart in (6.22) that constitutes the approximate small--scaleGreen’s functionmay formally
be identified as containing the inverse of the matrix K′′cdr. If the polynomial order in (6.16) is
chosen to be going to infinity as k→∞, the exact small--scale Green’s function would truly be
encountered.

However, one is still left with the problem of huge demands on computational power by this glo-
bal ansatz. Therefore, it is helpful to get deeper into the topic of coming up to a more localized
approach for the small--scale solution in the following.

6.2.3 Local solution by element Green’s function

As aforementioned, the localization approach as an assumption for the small scaleswill be confi-
ned by the borders of individual elements of the original discretization used to obtain the large--
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scale solution. The underlying separation of function spaces (here only executed for the weigh-
ting function space for brevity reasons) for this purpose reads

Vφ≈ VφV′EGF= VφΩe
H1
0(Ωe) ; e= 1, ..., nel (6.38)

where H1
0(Ωe) is the infinite--dimensional space having its support in the respective element Ωe

and nel the number of elements subject to the discretization. Ωe
indicates that the small--scale

space V′EGF is made up of a sum of nel independent partial spaces. This is accomplished by intro-
ducing zero Dirichlet boundary conditions on the borders of every element as

φ′ = 0 on Γ′  Γ (6.39)

w′ = 0 on Γ′  Γ (6.40)

Here, one can see the crucial assumption of this (and likewise the later to be addressed residual--
free bubble) approach, i.e. only those scales are taken into account that do not cross the element
boundaries. Please note that any Neumann boundary for the small scales is replaced by a homo-
geneousDirichlet boundary herewith, whichmeans that Neumann boundary conditions can only
be represented by the large--scale solution φ. Hence, (6.37) is specified to be

g′x, x0 ≈ g′ex, x0 ; e= 1, ..., nel (6.41)

Assumptions (6.39)--(6.40) give rise to a simplified version of (6.32) reading

φ′x0 = −
nel

e=1


Ωe

g′ex, x0Lcdrφ− f(x) dΩx (6.42)

which goes along with an approximate small--scale integral operatorM′
e in (6.33). The large--

and small--scale equations (6.14)--(6.15) simplify to

Bcdrw,φ + L*cdr w, φ′Ω= (w, f)Ω+ (w, h)Γh ∀w∈ Vφ (6.43)

w′,LcdrφΩ+ w′,Lcdrφ′Ω= (w′, f)Ω+ (w′, h)Γh ∀w′ ∈ V′EGF (6.44)

as well as the final equation (6.34) to be solved to

Bcdrw,φ + 
nel

e=1

L*w,M′
eLcdrφ− f

Ωe
= (w, f)Ω+ (w, h)Γh ∀w∈ Vφ (6.45)

At this point, the only thing remaining to be done is to solve the element Green’s function pro-
blem in every element e subject to

P′L*cdrg′ex, x0 = P′δx− x0 in Ωe (6.46)

g′ex, x0 = 0 on Γe (6.47)

An important question is linked with the projection operator P′ concerning the cases which al-
low us to omit the projection onto the small--scale space. By doing this, one is in the position of
’merely’ solving a small--scale equation in strong formon each element domain Ωewhich is then
again open to any discretemethod on this level. This is the strategy tobe followed in a subsequent
part of this work. The answer to this question is postponed until the end of the discussion of resi-
dual--free bubbles in the next section.
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An analytic solution for (6.46)--(6.47) may hardly be found, although the equation is, in general,
put on a simpler domain from now on with respect to the global equation system (6.29)--(6.31).
For a few situations, solutions are available, see e.g. Duffy (2001) and Stakgold (1998). For the
underlying problem of convection--diffusion--reaction equations, Hauke and Garcia--Olivares
(2001) give a solution for the one--dimensional version of this equationwhich theyuse to develop
a stabilization parameter on this ground. This will be picked up again below in the context of
stabilized methods. Beyond the one--dimensional case however, the limitations of solving this
local approach in analytic form are encountered. Thus, it is now turned to a closely related local
strategy paving the way to practical use.

6.2.4 Local solution by residual--free bubbles

Residual--free bubbles represent a very similar strategy in comparison towhat has just been intro-
duced as element Green’s functions. According to this, using residual--free bubbbles means
obeying two basic rules:

• The governing differential equation has to be satisfied by the complete solution
function in strong formon every individual element domain Ωe of the basic discre-
tization.

• Zero Dirichlet boundary conditions in the sense of (6.39)--(6.40) have to be assu-
med for the small--scale part of the solution function on the boundary of every indi-
vidual element domain Ωe.

For the underlying case of a separation of the solution function into a large-- and a small--scale
part, following the above rules amounts to selecting the small--scale bubble part of the solution
function such that the governing equation is solved in every individual element up to the large--
scale part of the solution function. Correspondingly, the residual of the large--scale part of the
solution function appearson the right hand side of the residual--freebubble equation representing
the ’driving force’ of this equation. This equation is subject to homogeneous Dirichlet boundary
conditions as aforementioned. The major distinction to what has been done in the previous sec-
tion is found in the fact that no Green’s functions are exploited for this solution procedure and
it is rather reverted to the orginal strong form of the underlying differential equation.

Before shortly describing the details of the solution strategy employing residual--free bubbles
for a convection--diffusion--reaction equation, a selection of the respective literature adressing
residual--free bubbles in general as well as for other types of equations authored by Brezzi, Far-
hat, Franca, Hughes, Russo and co--workers is named: Brezzi and Russo (1994), Brezzi et al.
(1997), Brezzi et al. (1998a), Brezzi et al. (1998b), Brezzi (2000), Franca and Farhat (1995) as
well as Franca et al. (1998a). In Brezzi et al. (2003), a new idea is developed for the case of a
dominating reactive term. The discussion in this paper is confined to the one--dimensional case
though. The reader should consult some of these publications for further elaboration.

The derivations of the preceding section may be adopted almost completely. The separation of
function spaces reads similar to (6.38)

Vφ≈ VφV′RFB= VφΩe
B(Ωe) ; e= 1, ..., nel (6.48)

where B(Ωe) is the infinite--dimensional bubble space in the element Ωe. It is a usual assumption
that B(Ωe)= H1

0(Ωe). The crucial difference refers to the small--scaleGreen’s function problem
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(6.46)--(6.47) nowbeing replaced by the underlying strong formof the small--scale equationpro-
jected onto the small--scale space which has to be solved in each individual element subject to

P′Lcdrφ′ = − P′Lcdrφ− f in Ωe (6.49)

φ′ = 0 on Γe (6.50)

At the end of the preceding section, the question of leaving out the projection operator P′ in the
element--based small--scale equations has already been raised. In order to answer this question
it has to be stated that one is required to avoid any linear dependencies between the large-- and
small--scale spaces, since they are separated by the direct sumdecomposition (6.3)--(6.4). Taking
into account the zero Dirichlet boundary conditions on element boundaries, P′may be left out
anyway in case of exclusive use of piecewise linear shape functions for the large--scale space,
e.g. for triangular as well as quadrilateral elements in the two--dimensional case. For quadrilate-
ral elements, this can, for instance, be extended to piecewise quadratic and cubic elements of se-
rendipity type. Since Lagrange elements of quadratic (cubic) and higher order for quadrilaterals
(triangles) as well as serendipity elements of quartic and higher order possess at least one bubble
function, they cannot be applied without potentially violating the direct sum decomposition
(6.3)--(6.4). The same applies to three--dimensional elements featuring at least one bubble func-
tion. In the following, the focus will be on the unprojected equation, namely

Lcdrφ′ = − Lcdrφ− f in Ωe (6.51)

in conjunction with (6.50) and replacing (6.49). This may be done, since the focus will be on
rectangular serendipity elements in the applications below and it is not intended to exceed cubic
polynomial shape functions. However, the necessity to switch over to (6.49) otherwise has to be
kept in mind.

If one were able to solve these element--based problems, the overall solution

φ′ = −
nel

e=1

LRFBcdr, Ωe
−1Lcdrφ− f (6.52)

would be encountered where the inverse of the differential operator LRFBcdr, Ωe
may, in general, vary

fromone element domain Ωe to another, and the superscript RFB shall symbolizehere andbelow
the zero Dirichlet boundary condition. (6.52) can now be integrated into the simplified variatio-
nal equation for the large scales (6.43) so as to get

Bcdrw,φ − 
nel

e=1

L*cdr w, LRFBcdr, Ωe
−1Lcdrφ− f

Ωe

= (w, f)Ω+ (w, h)Γh (6.53)

As already mentioned in the context of the element Green’s function problems, it will hardly be
possible to solve these element problems, but it may be tried to solve them by using a discretiza-
tion on a second level compared to the initial coarse grid. This ’modus operandi’ is named ’two--
level finite element method’ and will be presented in chapter 8.

Comparing (6.53) with (6.45) in conjunction with (6.42), the formal relationship between the
element Green’s function and the residual--free bubble may easily be recognized to correspond
with well--known facts from the theory of Green’s function (see e.g. Stakgold (1998)) reading
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LRFBcdr, Ωe
−1
(x0)=−M′

e= 
Ωe

g′ex, x0 dΩx (6.54)

This result has been pointed out by Brezzi et al. (1997) where it can already be learned from the
title of the publication.

Linear finite element methods using shape functions in the sense of (3.32) and (3.33) provide
the opportunity to solve directly for the shape function components of the small--scale solution
φ′, i.e. the expansion in any element e for the large--scale solution function is presumed to be

φe= 
ned

b=1
Nb φb (6.55)

and the corresponding small--scale solution function

φ′e= 
ned

b=1
N′b φb (6.56)

where ned denotes the number of degrees of freedom associated with element e. The crucial fact
to be observed is the difference of (6.55)--(6.56) with respect to (6.19)--(6.20). In (6.19)--(6.20),
different numbers of degrees of freedom for the large-- and the small--scale approximations have
been introduced. This describes an approach suited, for instance, for polynomial bubbles. In the
context of residual--free bubbles, only one (large--scale) number of degrees of freedom is enco-
untered indicated in (6.55)--(6.56) on the element level with ned. According to this, a pair of cor-
responding large-- and small--scale shape functions is found linked with one degree of freedom
in each case. The advantage of this may be seen by introducing (6.55)--(6.56) in (6.51) such that

Lcdr
ned

b=1
N′b φb=−⎪

⎧
⎩Lcdr
ned
b=1

Nb φb− f⎪⎫⎭ in Ωe (6.57)

Due to the linearity of thedifferential operator Lcdr, (6.57) can bedecomposed into its basic com-
ponents so to get


ned

b=1
LcdrN

′
b φb=−

ned

b=1
LcdrNb φb in Ωe (6.58)

The degrees of freedom φb can be omitted on both sides. As a result, ned equations for the con-
vection--diffusion-- reaction problem of the form

a⋅ ∇N′b− À∆N′b+ σ(mod)N
′
b=− a⋅ ∇Nb− À∆Nb+ σ(mod)Nb in Ωe (6.59)

have to be solved in each element e. Completing the solution, an additional small--scale shape
function N′f has to be introduced in order to pick up the effect of f on the right hand side of (6.57)
subject to

a⋅∇N′f− À∆N′f+ σ(mod)N
′
f = f in Ωe (6.60)

A number of nRFB= nel ned+ 1 entirely independent residual--free bubble equations have to
be solved in order to feed the final equation with the small--scale information before solving it.
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Alternatively, one may think of restricting the approximation of f to the large--scale space (see
Codina and Blasco (2002)) resulting in the possibility to omit (6.60) which reduces the overall
number of residual--free bubble equations to nRFB= nel ned. For example, a bilinear rectangle
gives rise to 5 or 4 equations per element, respectively.

6.3 Taking into account locally the effect of unresolved scales onto resolved
scales

6.3.1 Stabilized methods

The interrelation between element Green’s function, elementwise residual--free bubbles and sta-
bilized methods has been described e.g. in Hughes (1995) and Hughes et al. (1998) as well as
particularly the link between elementwise residual--free bubble and stabilized methods e.g. in
Franca and Farhat (1995) and Franca et al. (1998a). Further literature will be mentioned during
the course of this section. Despite this connection, it is intended to draw a clear line between sta-
bilizedmethods and the aforementioned local solution strategies, since stabilizedmethods in the
following form indeed only make available the effect of unresolved scales onto resolved scales
in a localizedmanner. Therefore, it will also be gone back to the terms ’resolved scales’ and ’un-
resolved scales’ in this section. Referring to the function space separation in (6.3)--(6.4), it may
be stated that this still holds, since no finite--dimensional approximation to S′φ and V′φ, respecti-
vely, will be introduced like in section 6.2. However, S′φ and V′φ are replaced by S

^

φ and V
^

φ, re-
spectively, due to the fact that (⋅)^ should indicate unresolved scales here and later in the context
of a separation of three scales. Hence, (6.3)--(6.4) now read

Sφ= Sφ S
^

φ (6.61)

Vφ= VφV
^

φ (6.62)

There is a vast number of literature on the theory and applications of stabilized finite element
methods in different fields in the meantime. A brief selection of publications entirely or partly
dedicated to the convection--diffusion--reaction equation will be given in the following and, the-
reafter, the attentionwill be concentratedon theversion intimately linkedwith the twoaforemen-
tioned approaches termed ’unusual stabilized finite element method’ (USFEM) in Franca and
Farhat (1995).

Before getting deeper into different forms of stabilized methods, the general formulation valid
for all of them should be stated reading

Bcdrw,φ + 
nel

e=1

Lstabcdr w, τeLcdrφ− f
Ωe

= (w, f)Ω+ (w, h)Γh ∀w∈ Vφ (6.63)

where the differential operator Lstabcdr acting on the weighting function w depends on the respec-
tive type of method. Some of the most important ones will be described succintly. The other as-
pect of (6.63) distinguishing it from (6.45) and (6.53), respectively, is the elementwise algebraic
parameter τe which may in some cases vary inside the element. However, the focus will be on
the usual way of assuming a constant τe in each element of the discretization. Instructions for
calculating τe will be given later.
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Overviews describing the evolution of stabilized finite element methodsmay be found in Brezzi
et al. (1996), Donea andHuerta (2003), Hughes et al. (1994b) andWall (1999). At the beginning
of the 1980’s, the triumphal procession of stabilizedmethods for convection--diffusion equations
started with the ’Streamline--Upwind/Petrov--Galerkin’ (SUPG) method developed by Hughes
and co--workers (see e.g. Brooks and Hughes (1982)), analyzed and used by Johnson and co--
workers under the name ’Streamline--Diffusion’ method (see e.g. Johnson et al. (1984), Johnson
and Saranen (1986) as well as Johnson (1987)). Here, the differential operator acting on the
weighting function wcorresponds to the convectivepart of the original operator Lstabcdr = Lc. The
use of the complete differential operator Lstabcdr = Lcdr is the feature of the ’Galerkin/Least--
Squares’ (GLS) method of Hughes et al. (1989). Franca et al. (1992) proposed at first to include
the negative adjoint differential operator Lstabcdr =− L*cdr which was later identified to corres-
pond with the element Green’s function method and the residual--free bubble method. At the
same time, the close relationship between stabilizedmethodsand bubblemethodswaselaborated
by Brezzi et al. (1992). This has been continued by Brezzi and co--workers, for example, in
Baiocchi et al. (1993) as well as inBrezzi andRusso (1994). Themethod employing the negative
adjoint differential operator has been termed as an ’unusual stabilized finite element method’
(USFEM) by Franca and co--workers in Franca and Farhat (1995), Franca et al. (1998a) as well
as Franca and Valentin (2000), in the latest with the inclusion of a reactive term.

A comparison of different stabilized finite element methods for the convection--diffusion--reac-
tion equation is provided by Codina (1998) and some further applications of the stabilization
technique in Codina (2000b). A special design of the stabilization parameter incorporating the
flow direction is proposed in Harari et al. (2001). Further recent approaches are the finite incre-
ment calculus (FIC) leading to very similar stabilization techniques as could be proven byOñate
and co--workers, for example, in Oñate et al. (1997) and Oñate (1998), and the nearly--optimal
Petrov--Galerkin (NOPG) method described e.g. in Barbone and Harari (2001) as well as Nesli-
turk and Harari (2003).

Extending the formal relationship between element Green’s function and the residual--free bub-
bles in (6.54) by taking into account the USFEM--version of (6.63), τe is obtained to be themean
value of the element Green’s function, i.e.

τe= 1
|Ωe|

Ωe


Ωe

g′ex, x0 dΩx dΩx0 (6.64)

as well as (formally) the mean value of the residual--free bubble, i.e.

τe= 1
|Ωe|

Ωe

LRFBcdr, Ωe
−1
(x0) dΩx0 (6.65)

by inserting (6.54) into (6.64). In order to restrict the discussion for brevity reasons, a few steps
in the derivation of (6.65) have been omitted, and it is refered to Hughes et al. (1998) for this.

At this point, the calculation of the stabilization parameter has to be specified. From the variety
of proposals in the literature, it will be focussed on three, listed here in chronologic order of their
appearance: the one of Codina (1998), the one of Franca andValentin (2000), and the one of Co-
dina in Codina and Blasco (2002) and Codina (2002a), respectively. Codina derived his version
in Codina (1998) from the maximum principle which reads
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τCo98e = 1
4À

h
2+ 2|a|

h
+ σ(mod)

(6.66)

Franca and Valentin (2000) introduced an improved parameter for their USFEM based on con-
vergence theory as follows:

τFVe = 1
2À

mk h
2 ξPe2 + σ(mod)ξPe1

(6.67)

where

ξ(x)= 1, 0≤ x< 1

x, x≥ 1 (6.68)

Pe1=
2À

mkσ(mod)h
2

(6.69)

Pe2=
mk|a|h
À (6.70)

and the parameter mk depending on the polynomial order of interpolation in the respective ele-
ment may be chosen as 1/3 for linear and bilinear as well as 1/12 for quadratic and biquadratic
elements. Confer Harari and Hughes (1992) for an exploration of the theory behind this. In
(6.67), switches between the different regimes are incorporated. Without these switches (6.66)
is similar to (6.67) up to the parameter mk for a diffusion--dominated regime. In Codina and Bla-
sco (2002) and Codina (2002a), a more general derivation based on a Fourier analysis with the
help of the mean value theorem is given in order to identify

τCo02e = 1

⎪⎡⎣
c1 À

h
2+ σ(mod)

2

+ c2 |a|h 
2

⎪⎤⎦

1
2

(6.71)

leaving out a precise definition of the constants c1 and c2 for the time being. As a first regulation,
the relationship between the two constants is given as follows:

c1≥ c22 (6.72)

The reader may easily confirm that both (6.66) and (6.67) implicitly satisfy this inequality.

Hauke andGarcia--Olivares (2001) derived a stabilization parameter τe from the already presen-
ted element Green’s function with the help of (6.64) and were able to show that it provides very
similar results for one--dimensional applications in comparison with (6.66) and (6.67). In Hauke
(2002), different stabilization parameters are analyzed for themultidimensional case, and thepa-
rameter of Franca andValentin (6.67) is recognized to be themost approriate with respect to cer-
tain requisites. In particular, going beyond the scope of the assumption of keeping the reaction
coefficient σpositive, Hauke (2002) also considered a production regime governed by anegative
σ. According to this results, the stabilizationparameter τewill be chosen subject to (6.67)whene-
ver there is a need to employ stabilizing terms.
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Concluding this section about stabilization methods as a way of ’solving’ for the small scales,
themost important point in the author’s view should be reiterated. Comparedwith all the alterna-
tive ways of solving for the small scales, may they be globally or locally approximated, this is
the only one precluding us from any opportunity to explicitly calculate the global or local distri-
bution of the small scales, at least in a post--processive manner. They are named ’unresolved’
in the context of stabilized methods thus. Placing emphasis on this point again, it does not make
any difference whether these small scales are confined within individual elements or globally
distributed over the whole domain. All the previous solution methods offer a more or less accu-
rate possibility of collecting the small scales. If one thinks of a variation of τe over the element
domain in the form τe= τex, x0 according to the element Green’s function in the sense of a
generalized stabilized method, some knowledge of the element Green’s function will have to be
presumed in general. Confer Oberai and Pinsky (1998) for an examplewith regard to the solution
of the Helmholtz equation. As aforementioned, this knowledge is hardly available and, moreo-
ver, the ’ring’ of solution methods would then be entered again.

6.3.2 Dissipative effect of unresolved scales: artificial diffusion methods

Although artificial diffusionmethods are, in general, not used for multidimensional applications
mainly due to the inherent crosswind diffusion of this approach, the reason for mentioning this
method here at all is twofold. On the one hand, this approachwill be used in the following three--
scale separation in order to account for the (then introduced) third level with more promising
prospects of success in this context. On the other hand, the similar approach in form of the sub-
grid viscosity concept has already been presented in section 5.2.3 as a well--established concept
in large eddy simulation of turbulent flows. The reason for mentioning artificial diffusion me-
thod here is justified by the analogy to the just discussed stabilized methods.

The introduction of an elementwise artifical diffusion Àarte results in the elementwise addition
of a diffusive term replacing the small--scale term in the large--scale equation (6.8) such that it
reads

Bcdrw,φ + 
nel

e=1

∇w, Àarte ∇φΩe
= (w, f)Ω+ (w, h)Γh ∀w∈ Vφ (6.73)

where a simplified formula may be used for the calculation of Àarte as follows:

Àarte = ⎪
⎪⎨
⎧

⎩

|a|h
2
Pee
3
, forPee< 3

|a|h
2
, for Pee≥ 3

(6.74)

with the definition of the element Peclet number

Pee= |a|h
2À

(6.75)

Itmay easily be observed that, for instance, the artificial diffusionobtained byusing the stabiliza-
tion parameter of Franca and Valentin (6.67) for a zero reactive term, i.e. σ(mod)= 0, subject
to
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Àstabe = τFVe (σ(mod)= 0) ⋅ |a|2= |a|2
2À

mkh
2 ξPe2 + 2À

mkh
2

(6.76)

in combination with (6.70) is (exactly for the diffusion--dominated regime and almost exactly
for the convection--dominated regime) equal to the artificial diffusion in (6.74) for linear and
bilinear elements. Therefore, themajor differences of the artificial diffusionmethod in compari-
son to the stabilizedmethods for the convection--diffusion--reaction equationmay be pointed out
in the following remarks:

• There is no adequate stabilization of the reactive term without taking into account
an additional term. (Since ’pure’ convection--diffusion equations will also be con-
sidered in the following, this is no reason for ceasing from paying attention to this
approach at all however.)

• Stabilized methods for linear and bilinear elements (SUPG, GLS and USFEM)
introduce artificial diffusion only in the streamline direction whereas artificial dif-
fusion will be introduced in all directions by the artificial diffusion method (This
is a well--known and crucial fact, confer e.g. Brooks andHughes (1982) for further
elaboration.)

• Stabilized methods provide a different weighting of the right hand side f (This
guarantees the method to be stable and accurate.)

• For higher--order elements, GLS andUSFEM introduce additional terms not pres-
ent in the artificial diffusion method. (This guarantees the method to be consistent
for higher--order elements.)

Despite all the drawbacks of the artificial diffusion method, it will be kept in mind due to the
reasons accomplished at the beginning of this section as well as its obvious simplicity.

6.4 Separation of three scales

The complete spectrum of scales is now separated into large (resolved) scales, small (resolved)
scales and unresolved scales. The idea of distinguishing three such scale ranges for the Navier--
Stokes equations with respect to turbulence modeling was introduced by Collis (2001) and furt-
her investigated for the specific example of a turbulent channel flow inRamakrishnan andCollis
(2002). This concept will be generalized here and applied to the convection--diffusion--reaction
equation. Furthermore, different strategies for treating the effect of the unresolved scales consti-
tuting the third level of the scale spectrum will be considered. To be sure, furthergoing separa-
tions bearing four, five or more levels are conceivable so that the advantage of being able to treat
every level differently with regard to themethods or modeling assumptions, respectively, would
be encountered. At first, however, it is not necessary to go beyond a three--scale separation.

The function space separation may be extended in (6.3)--(6.4) or in (6.35)--(6.36), respectively,
in order to get

Sφ= Sφ S′φ= Sφ S′φ, h′  S
^

φ (6.77)

Vφ= VφV′φ= VφV′φ, h′  V
^

φ (6.78)
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where the originally infinite--dimensional space S′φ is now separated into the already introduced
finite--dimensional approximation characterized by h′ and the necessarily infinite--dimensional
space S

^

φ representing the space of unresolved scales. The same applies to the weighting function
space Vφ. The extended equation system reads

JBcdrw,φ + Bcdrw,φ′ + Bcdrw,φ^ = (w, f)Ω+ (w, h)Γh ∀w∈ Vφ (6.79)

Bcdrw′,φ + Bcdrw′,φ′ + Bcdrw′,φ^ = (w′, f)Ω+ (w′, h)Γh ∀w′ ∈ V′φ, h′(6.80)

Bcdrw^ ,φ + Bcdrw^ ,φ′ + Bcdrw^ , φ^ = w^ , fΩ+ w^ , hΓh ∀w^ ∈ V
^

φ (6.81)

Now, it is assumed that

Bcdrw,φ^ ≈ 0 (6.82)

i.e. the projection of the unresolved scales onto the large--scale space is approximately zero. This
is a reasonable approximation as long as there is a clear scale separation between the large and
the unresolved scales. Alternatively expressed, it has to be ensured that the small--scale space is
large enough. To be sure, the large scales are still influenced by the unresolved scales. For this
purpose however, they need the small scales as a kind of ’medium’. Later on in the context of
the Navier--Stokes equations, this assumption will play amajor role for turbulent flows andmay
be proved to make sense. Accordingly, it may be thought of the opposite projection of (2.95)
likewise to be

Bcdrw^ ,φ ≈ 0 (6.83)

This leads to a simplified system of equations:

Bcdrw,φ + Bcdrw,φ′ = (w, f)Ω+ (w, h)Γh ∀w∈ Vφ (6.84)

Bcdrw′,φ + Bcdrw′,φ′ + Bcdrw′,φ^ = (w′, f)Ω+ (w′, h)Γh ∀w′ ∈ V′φ, h′(6.85)

Bcdrw^ , φ′ + Bcdrw^ ,φ^ = w^ , fΩ+ w^ , hΓh ∀w^ ∈ V
^

φ (6.86)

The equations may certainly be formulated for the unresolved scales similar to (6.26)--(6.28) as
well as the adjoint Green’s function problem (6.29)--(6.31) in global form or the respective loca-
lized problems (6.49)--(6.50) as well as (6.46)--(6.47). The (⋅)′--scales would just have to be re-
placed by the (⋅)^ --scales and the (⋅)--scales by the (⋅)′--scales in the equations, respectively. It
has to be kept in mind, however, that one is talking about unresolved scales. Consequently, it is
not intended to solve them. Only their effect onto the small scales is rather taken into account.
At any rate, the large--scale equation in case of amonolithic solution approach aswell as the final
enhanced (large--scale) equation resulting from the global or local Green’s function or the resi-
dual--free bubble approachwill not bemodified. In the case of the enhanced equations, themodi-
ficationdue to the incorporationof the effect of the unresolved scales enters this equation through
an altered small--scale integral operatorM′ in (6.34) orM′

e in (6.45) due to amutated (element)
Green’s function or an altered inverse differential operator in (6.53), respectively. In section 6.3,
one already got used to two potential ways of accounting for the effect of unresolved scales. They
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will be demonstrated using residual--free bubbles on the second level in the course of chapter 8.
The transfer to the global monolithic solution strategy is straightforward in that the third--level
terms just have to be added to the small--scale equation similar to what has been done in section
6.3.

At first, stabilized methods are presented with the aim of incorporating the complete effect of
the unresolved scales onto the small scales. Please keep inmind that this implies the introduction
of artificial diffusion only in the streamline direction as stated in the last section. The new enhan-
ced small--scale equation extending (6.9) and replacing (6.85) reads

Bcdrw′,φ + Bcdrw′,φ′ + 
nel

e=1

Lstabcdr w′, τ
′
eLcdrφ′ − f

Ωe

= (w′, f)Ω+ (w′, h)Γh ∀w′ ∈ V′φ, k−k (6.87)

where τ′emay differ from e.g. the definition in (6.67)--(6.70) in the parameter mkwhich should
be matched to the emerging polynomial orders or by using a modified h. Another opportunity
consists in the exclusive comprehension of the dissipative effect as in section 6.3.2. For this pur-
pose, the small--scale equation reads

Bcdrw′,φ + Bcdrw′,φ′ + 
nel

e=1

∇w′, À′ arte ∇φ′Ωe

(6.88)

= (w′, f)Ω+ (w′, h)Γh ∀w′ ∈ V′φ, k−k (6.89)

with the artificial diffusion À′ arte of (6.74)--(6.75) using a modified h in case the classical way
of artificial diffusionmethods is followed.Aside from this, thebasic ideaof adding such an artifi-
cial diffusion term for stability reasons on the second level of a two--level decomposition goes
back toGuermond, see e.g. Guermond (1999) andGuermond (2001). Youmay also consult Lay-
ton (2002) (further analyzed in Kaya and Layton (2003) as well as Kaya (2003)) for an intere-
sting, more general, variant of this idea. Accordingly, the guidelines of Guermond are followed
here for evaluating an artificial diffusion À′ Ge reading

À′ Ge = CGe h (6.90)

with an unspecified h (possibly replaced by the aforementionedmodified h) and a bounded con-
stant CGe having the dimension of a velocity for consistency of (6.90). Comparing (6.90) with
the definition of À′ arte in (6.74), it may be detected that CGe , for instance, amounts |a|∕2 in the
convection--dominated regime. The relative fuzziness of the constant for the time being is cer-
tainly the weak point of this ansatz.

Closing the discussion of these approaches, two important facts have to be remarked. For the
artificial diffusion approach, an additional consideration related to the reactive term is necessary,
confer section 6.3.2. Moreover, it remains an open question, if there is the necessity to add stabi-
lity, probably in the form of additional stabilizing terms, to the large--scale equation.

At the end of this section, an interesting alternative approach of Codina described in Codina
(2000c), Codina and Blasco (2002), Codina (2002a) as well as Codina (2002b) and well--suited
for using a stabilized method on the second level should be addressed. The basic idea explained
with the help of the residual--free bubble equation (6.51) is as follows. For this equation tobelong
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to the complete small--scale solution function space S′φ, something has to be addedwhichCodina
calls ’orthogonal subscales’ subject to

Lcdrφ′ = − Lcdrφ− f + wort in Ωe (6.91)

The crucial point now is how the function spaces are chosen. S′φ is considered to be taken as

S′φ= S
⊥
φ  Sφ (6.92)

where S
⊥
φ is the function space orthogonal to the large--scale space Sφwhich is not closed in Sφ.

The important assumption is

S′φ≈ S
⊥
φ (6.93)

i.e. the small scales are allowed to be non--conforming and, therefore, potentially going beyond
the limits of the basic function space Sφ defined in (3.16). Furthermore, the orthogonal subscales
are assumed to be orthogonal to the small scales such that

wort∈ S′φ
⊥
≈ S⊥φ 

⊥
≈ Sφ (6.94)

i.e. wort is a standard finite element function and numerically computable thus. In the end, using
a stabilized method on the second level, the basic elementwise approximation of the unresolved
scales in (6.63) as

φ′ ≈ − τeLcdrφ− f in Ωe (6.95)

will be enhanced by incorporating an approximation for wort in order to obtain

φ′ ≈ −τeLcdrφ− f + PτLcdrφ− f in Ωe (6.96)

where Pτ is the projection operator associated with the weighted inner product

(x, y)τ := 
nel

e=1
τe(x, y)Ωe

(6.97)

For further elaboration of this approach, the consultation of the quoted original publications of
Codina is advised.

6.5 Transient case and the concept of quasi--static small scales

Finally, the transition to the original, transient problem of the convection--diffusion--reaction
equation is made. This may be done in a straightforward manner. Thus, only crucial differences
and potential problems will be addressed in this section.

Although the focus is on semi--discretization in time below, a problempossibly arising in the case
of using fully discrete space--timemethodswill be adressed first. The (unprojected) elementwise
residual--free bubble equation reads

Lcdr, tφ′ = − Lcdr, tφ− f in Ωst
e (6.98)
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φ′ = 0 on Γste (6.99)

where the superscript st indicates space--time element domains and boundaries, respectively. If
it is intended to solvewhatmay becalled a ’consistent space--timebubble’, theproblemof ill--po-
sedness of (6.98)--(6.99) will have to be faced. In order to explain this more thoroughly, a split
of the space--time element boundary Γste is performed subject to

Γste = Γs−e  Γs+e  Γt−e  Γt+e (6.100)

where Γs−e denotes the spatial inflow boundary and Γs+e the spatial outflow boundary of the ele-
ment eaccording to the global definitions (2.88)--(2.89). In a formal manner, a temporal ’inflow’
boundary Γt−e as well as an ’outflow’ boundary Γt+e may likewise be defined where the ’flow’
direction is indicated by the positive direction of the time axis. It is a well--known fact that it is
not permitted to prescribe a Dirichlet boundary condition at an ’outflow’ boundary for the tem-
poral variable subject to a first--order differential operator in time here. Therefore, (6.98)--(6.99)
with Γste defined as in (6.100) is an ill--posed problem and cannot be solved. Hughes and Stewart
(1996) suggest to introduce an elliptic regularization in time, i.e. the differential operator is en-
larged such that

LÀt
cdr, t
= ∂∂t− Àt

∂2
∂t2
+ Lcdr=

∂
∂t− Àt

∂2
∂t2
+ a⋅ ∇− À∆+ σ(mod) (6.101)

where Àt indicates an artificial ’diffusion’ in time which helps to fulfill the Dirichlet boundary
condition on Γt+e . In order to get the result for the original equation (6.98)--(6.99), the limit
Àt→ 0 in (6.101) is enforced. InHughes and Stewart (1996), this is done for the elementGreen’s
function problem for the adjoint differential operator of (6.101) and the limit Àt→ 0 for the ob-
tained Green’s function is taken afterwards. Apart from this, it may be thought of the possibility
to solve (6.98)--(6.99) by leavingout theprescription of the boundary condition at Γt+e , i.e. (6.99)
is only valid for a reduced element boundary subject to

Γst, rede = Γs−e  Γs+e  Γt−e (6.102)

However, it is not intended topursue this topic further, since the focus of thiswork is on semi--dis-
cretemethods in time. Applying the generalized trapezoidal rule to the convection--diffusion--re-
action equation results in (3.37). The same what has been done in section 3.3.2 for the Navier--
Stokes equations may now be carried out for the convection--diffusion--reaction equation. By
rearranging and introducing a ’time--rhs’ fnt containing all known values of time level n as well
as a furthergoing modified reaction coefficient σ(mod), t, (3.37) looks like

a⋅ ∇φn+1− À∆φn+1+ σ(mod), tφ
n+1= fn+1+ fnt in Ω× (0, T) (6.103)

with

σ(mod), t= σ(mod)+
1
θδt

(6.104)

and

fnt =
φn

θδt
−

(1− θ)
θ
a⋅ ∇φn− À∆φn+ σ(mod)φ

n− fn (6.105)

showing an identical structure with respect to the stationary convection--diffusion--reaction
equation. The sameapplies to the semi--discrete (unprojected) residual--freebubble equation rea-
ding



90

a⋅ ∇φ′ n+1− À∆φ′ n+1+ σ(mod), tφ′
n+1

=− a⋅ ∇φn+1− À∆φ
n+1+ σ(mod), tφ

n+1− fn+1 + fnt in Ωe× (0, T) (6.106)

with the zero Dirichlet boundary condition

φ′ n+1= 0 on Γe× (0, T) (6.107)

and the initial condition

φ′0= 0 on Γe× {0} (6.108)

Please note that in (6.108) the initial condition (3.5) is assumed to be captured entirely by the
large--scale part of the solution completely similar to the treatment of Dirichlet boundary condi-
tions subject to (6.5). Contrary to the space--timemethod, it is not required to prescribe an illegal
condition at some temporal ’outflow’ boundary. (6.106) may subsequently be split analog to the
stationary case (6.55)--(6.60) in order to obtain finally

a⋅ ∇N′ n+1b − À∆N′ n+1b + σ(mod), t N
′ n+1
b

=− a⋅ ∇Nn+1b − À∆N
n+1
b + σ(mod), t N

n+1
b  (6.109)

and

a⋅ ∇N′ n+1f − À∆N′ n+1f + σ(mod), t N
′ n+1
f = fn+1+ fnt (6.110)

which have to be solved in each element ewith the appropriate zero Dirichlet boundary and in-
itial conditions. Differences to the stationary case (6.59)--(6.60) only arise due to the furthergo-
ing modified reaction coefficient (6.104) and the additional ’time--rhs’ (6.105) occuring in
(6.109)--(6.110).

Closing the discussion of the transient residual--free bubble equation, the concept of quasi--static
residual--freebubbles, in short quasi--static bubbles (QSB), is introduced. The basic idea hasbeen
pickedupbyCodina andBlasco (2002) for their stabilizedmethods including orthogonal subsca-
les for convection--diffusion--reaction equations. It will be presented here as a basic concept
being particularly attractive from the computational point of view, since one is no longer forced
to store the values of the previous time step for all small scales. In the context of the Navier--Sto-
kes equations, it is, on the one hand, refered to some analytical evidence for this approximation
being reasonable and, on the other hand, it is shown with the help of some numerical examples
in chapter 9 that it yields good results. Assuming the small scales quasi--static means assuming

φ′n+1≈ φ′n (6.111)

at any time level which allows to replace σ(mod), t again by σ(mod) in (6.106), (6.109) and (6.110)
on the left hand side. Furthermore, the ’time--rhs’ (6.105) has to be adapted to the quasi--static
case subject to (6.111). As a result, one arrives exactly at the left--hand--side structure of the sta-
tionary residual--free bubble equations (6.59)--(6.60) with slightly modified right hand sides.

At the end of this section, the consequences of the transient case for the approaches of section
6.3 have tobepointedout. Since the artificial diffusionmethod simply takes into account an addi-
tional diffusive term independent of time, there will be no change in the transient case. Please
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observe that the first remark at the end of section 6.3.2 still holds, even in amore important sense.
For the QSB--case, no more has to be said concerning this method than already done in section
6.3.2.

The final equation including stabilizing terms (6.63) now reads for the transient case

Bcdrw,φ + 
nel

e=1

Lstabcdr w, τeLcdr, tφ− f
Ωe

= (w, f)Ω+ (w, h)Γh ∀w∈ Vφ (6.112)

or is not modified at all for the QSB case, respectively. The definitions for the calculation of the
elementwise stability parameter in (6.66)--(6.72) will have to bemodified in replacing σ(mod) by
σ(mod), t, if the QSB assumption is not used. Concerning space--time methods, it has to be remar-
ked that the differential operator Lstabcdr acting on the weighting function w has to be replaced by
a differential operator including the time derivative, i.e. for SUPG Lstabcdr = Lcdr, t− Ld− Lr,
for GLS Lstabcdr = Lcdr, t and for USFEM

Lstabcdr =− ∂∂t
*
− L*cdr= ∂∂t− L*cdr (6.113)

confer e.g. Codina (1998). An inclusion of the time derivative in semi--discrete methods is cer-
tainly reasonable as well. This is carried out, for instance, by Huerta and Donea (2002) for hig-
her--order time--stepping schemes. Please observe that the time derivative has to be considered
as a reactive term and, thus, may simply be represented by using σ(mod), t instead of σ(mod). The
use of stabilizing terms without the time derivative acting on the weighting function w is com-
mon practice for semi--discrete methods in time however (see the remark at the end of section
5 in Huerta and Donea (2002)). Finally, it has to be mentioned that all the considerations for the
transient casemay be transfered in a straightforwardmanner to the separation of three scales pre-
sented in section 6.4.
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77(7 Variational multiscale method for the Navier--Stokes
equations

At the beginning of this chapter, the additional difficulties being encountered in the context of
the Navier--Stokes equations with respect to the preceding chapter dealing with the convection--
diffusion--reaction equation should be named briefly. First of all, the scalar quantity φ is replaced
by the vector--valued velocity u. Furthermore, an additional scalar variable comes into play, the
pressure p, going along with an additional equation in form of the continuity equation (2.42) or
the pressure Poisson equation (2.69), respectively. Last but not least, the convective term in the
momentum equation has become nonlinear raising substantial requirements for the solution pro-
cess.

It is concentrated here on the variationalmultiscale method, although there exist furthermethods
exploiting themultiscale structure of the problem. Just to name a few aiming at LES of turbulent
flows, it is refered to recent work of Dubois, Temam and co--workers using the nonlinear Galer-
kin method and the incremental unknowns technique (see e.g. Chen and Temam (1991), Debus-
sche et al. (1995), Dubois andBouchon (1998),Marion andTemam (1990), Temam (1991), and,
in particular, Dubois et al. (1998, 1999)) and the multilevel algorithm of Terracol et al. (2001,
2003). Further interesting approaches are the subgrid--scale estimation model of Domaradzki
and co--workers (see e.g. Domaradzki and Loh (1999), Domaradzki and Yee (2000), as well as
Domaradzki et al. (2002)) and the LocalGalerkin Approach (LGA) ofMcDonough and co--wor-
kers (see e.g. McDonough et al. (1984) as well asMcDonough and Bywater (1985)). Finally, the
Spectral VanishingViscosity (SVV)method used byKaramanos andKarniadakis (2000) and the
Reproducing Kernel Particle Method (RKPM) of Wagner and Liu (2000) are named. Without
naming the aim ’LES’ explicitly, the two--grid scheme of Girault and Lions (2001) and the two--
levelmethod of Layton (1993), which is, among others, analyzed in John (2001), should bemen-
tioned here nontheless. In most of these approaches, obvious similarities with the variational
multiscale method may be found.

7.1 Separation of two scales

7.1.1 Basic concept

Analog to the preceding chapter, two scale ranges for thevelocity andpressure solution functions
subject to

u= uh+ u′ , p= ph+ p′ (7.1)

as well as the respective weighting functions subject to

v= vh+ v′ , q= qh+ q′ (7.2)

are distinguished and a direct sum decomposition of the solution and weighting function spaces

Su p= Su p S′u p (7.3)



93

Vu p= Vu pV′u p (7.4)

with analog considerations as for (6.3)--(6.4) is performed. For convenience, uh, ph, wh and qh

are denoted u, p, w and q, respectively, below. The large--scale velocity u is required to fulfill
the essential Dirichlet boundary condition (3.8) exclusively, i.e.

u= g on Γg ∀ u∈ Su (7.5)

u′, w and w′ face zero Dirichlet boundary conditions. Exploiting the decomposition, two sub-
problems, namely a large-- and a small--scale equation, are achieved reading

BNS(v, q;u+ u′, p+ p′)= (v, f)Ω+ (v, h)Γh ∀{v, q}∈ Vu p (7.6)

BNS(v′, q′;u+ u′, p+ p′)= (v′, f)Ω+ (v′, h)Γh ∀{v′, q′}∈ V′u p (7.7)

Due to the nonlinearity of the Navier--Stokes equations, the identification of the large-- and the
small--scale part in (7.6) and (7.7) is somewhat challenging. Applying the procedure carried out
in (5.23)--(5.26) to both the large-- and the small--scale equation yields

BNS(v, q; u, p)+ B1NS(v, q;u, u′, p′)+ B2NS(v; u′)= (v, f)Ω+ (v, h)Γh (7.8)

BNS(v′, q′; u, p)+ B1NS(v′, q′;u, u′, p′)+ B2NS(v′; u′)= (v′, f)Ω+ (v′, h)Γh (7.9)

After all, it has to be dealt with a nonlinear system of two coupled variational equations (7.8)--
(7.9). In view of subsequent practical implementations, the analog system of equations after a
discretization process in time aswell as a linearization procedure according to section 3.3.2 reads

Bdt, lin
NS

(v, q; u, p)+ Bdt, lin
NS

(v, q;u′, p′)= v, un
δt

Ω
+ v, fn+θ

Ω
+ v, hn+θ

Γh
(7.10)

Bdt, lin
NS

(v′, q′; u, p)+ Bdt, lin
NS

(v′, q′;u′, p′)

= v′, un
δt

Ω
+ v′, fn+θ

Ω
+ v′, hn+θ

Γh
(7.11)

where the discrete--in--time (dt) and linearized bilinear form Bdt, lin
NS

(v, q;u, p) is obtained from
(3.51) after the application of the fixed point like iteration yielding e.g.

Bdt, lin
NS

(v, q; u, p)= v, un+1i+1
δt

Ω

+ v, un+θi ⋅ ∇un+θi+1 + βu
n+θ
i+1 ∇⋅ un+θi


Ω

− ∇⋅ v, pn+θi+1 Ω+ ε(v), 2νεun+θi+1 Ω− q,∇⋅ u
n+θ
i+1 Ω (7.12)

The derivation of Bdt, lin
NS

(v, q;u′, p′) appears to be straightforward with regard to (7.12). The li-
nearity of (7.10)--(7.11) allows to address the problem already carried into execution in the con-
text of the convection--diffusion--reaction equation at the endof section6.1: potential appearance
of Dirac delta functions at the element boundaries for C0--elements. Due to the presence of the
Dirac delta functions on the element boundary Γe giving rise to an additional boundary integral,
the integrated--by--parts term of the sample bilinear form Bdt, lin

NS
(v, q;u, p)Ωe

on one element do-
main Ωe looks like
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Bdt, lin
NS

(v, q;u, p)Ωe
= v, un+1

δt

Ωe

+ v,LstatM
un+θ, pn+θ

Ωe

− q,∇⋅ un+θ
Ωe

+ v, n⋅ − pn+θI+ 2νεun+θ
Γe

(7.13)

where the iteration counter has been omitted for convenience. n indicates the outward unit nor-
mal vector on the element boundary of Ωe. Integrating (7.13) by parts in the other direction by
’shifting’ derivative operators on the weighting functions v and q reveals

Bdt, lin
NS

(v, q;u, p)Ωe
= v, un+1

δt

Ωe

+ L* statM
[v, q], un+θ

Ωe

− ∇⋅ v, pn+θ
Ωe

+ n⋅ un+θi v− qI+ 2νε(v), un+θ
Γe

(7.14)

where un+θi denotes the velocity from the last iteration step for the current time step n+ 1. As
before, the jump operator [⋅]+−may be used for summing (7.14) over all elements

Bdt, lin
NS

(v, q;u, p)= v, un+1
δt

Ω′
+ L* statM

[v, q], un+θ
Ω′
− ∇⋅ v, pn+θ

Ω′

+ [n⋅ (− qI+ 2νε(v))]+−, u
n+θ

Γ′

+ n⋅ un+θi v− qI+ 2νε(v), un+θ
Γh

+ n⋅ (− qI+ 2νε(v)), un+θ
Γg

= v, un+1
δt

Ω
+ L* statM

[v, q], un+θ
Ω
− ∇⋅ v, pn+θ

Ω

+ n⋅ un+θi v− qI+ 2νε(v), un+θ
Γh

+ n⋅ (− qI+ 2νε(v)), un+θ
Γg

(7.15)

where the fifth line of (7.15) has to be understood as an integral on the global domain Ω in a
distributional sense and the sixth as well as the seventh line contains a Neumann and a Dirichlet
boundary term, respectively. The first (convective) part of the boundary term in the second line
of (7.14) drops out at the interelement boundaries in the summing--up of all elements due to the
continuity of the functions for the velocity approximationwhereas the second (pressure) partwill
only be kept in the case of using elementwise discontinuous pressure approximations, a strategy
not intended to be followed in the course of this work. Hence, this term will not be retained as
well in general. By doing the same in (7.13),

Bdt, lin
NS

(v, q;u, p)= v, un+1
δt

Ω′
+ v,LstatM

un+θ, pn+θ
Ω′
− q,∇⋅ un+θ

Ω′

+ v, n⋅ − pn+θI+ 2νεun+θ+
−

Γ′
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+ v, n⋅ − pn+θI+ 2νεun+θ
Γh

= v, un+1
δt

Ω
+ v,LstatM

un+θ, pn+θ
Ω
− q,∇⋅ un+θ

Ω

+ v, n⋅ − pn+θI+ 2νεun+θ
Γh

(7.16)

is obtained, where the Dirichlet boundary term can be omitted due to the zero boundary condi-
tions for the large-- and small--scale weighting functions. Furthermore, what has already been
stated for the pressure part in the interelement boundary integral in the wake of (7.15) applies
here in similar fashion.

Asa result, the final form of the large-- and small--scale equation in (7.10)--(7.11) after integrating
by parts Bdt, lin

NS
(v, q;u′, p′) as in (7.15) as well as Bdt, lin

NS
(v′, q′; u, p) and Bdt, lin

NS
(v′, q′;u′, p′) ac-

cording to (7.16) reads

Bdt, lin
NS

(v, q; u, p)+v, u′n+1
δt

Ω
+ L* statM

[v, q], u′n+θ
Ω
− ∇⋅ v, p′n+θ

Ω

+ n⋅ un+θi v− qI+ 2νε(v), u′n+θ
Γh

= v, un
δt

Ω
+ v, fn+θ

Ω
+ v, hn+θ

Γh
∀{v, q}∈ Vu p (7.17)

v′, un+1
δt

Ω

+ v′,LstatM
un+θ, pn+θ

Ω
− q′,∇⋅ un+θ

Ω

+ v′, n⋅ − pn+θI+ 2νεun+θ
Γh

+v′, u′n+1
δt

Ω
+ v′,LstatM

u′n+θ, p′n+θ
Ω
− q′,∇⋅ u′n+θ

Ω

+ v′, n⋅ − p′n+θI+ 2νεu′n+θ
Γh

= v′, un
δt

Ω
+ v′, fn+θ

Ω
+ v′, hn+θ

Γh
∀{v′, q′}∈ V′u p (7.18)

where the term in the seventh line of (7.15) drops out in the large--scale equation (7.17) due to
the zero Dirichlet boundary condition for u′n+θ. After all, a system of two coupled linear varia-
tional equations arisen from the primarily nonlinear Navier--Stokes equations through a lineari-
zation process may be stated.

7.1.2 Interpretation of the two--scale separation in the sense of a DNS/LES

At this stage, the results of the intuitive procedure in section 5.3.2 may now be interpreted in
retrospect with the framework of the variational multiscale method for a two--scale separation
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at hand. Equation (5.22) corresponds exactly to the large--scale equation (7.6) with theweighting
functions v and q being replaced by their large--scale part v and q, respectively. The small--scale
equation (7.7) has not been paid attention to in section 5.2.2 -- and it was indeed not necessary
to think of such a small--scale equation from the point of view of ’classical’ LES. Henceforth,
onemay recognize that this equation represents the ’natural counterpart’ of the large--scale equa-
tion, obtained as the result from the two--scale separation.Moreover, equations (5.26) and (5.31)
may be identified as the linearized version of the large--scale equation (7.8) by replacing the
weighting functions with their large--scale part, the last one with the additional assumption of
an orthonormal basis.

The DNS--equation (5.1) along with the assumption (5.4) arises from the large--scale equation
by assuming the projection of the small (or, in this case, the actually not resolved) scales to be
zero, i.e.

B1NS(v, q;u, u′, p′)+ B2NS(v;u′)= 0 (7.19)

in (5.26) or

C(v;u, u′)+ R(v; u′)= 0 (7.20)

for an orthonormal basis in (5.31), respectively. In order to complete the Leonard decomposition
already started in section 5.3.2, the two--scale separation enables the identification of the analog
of the Leonard stress within an LES based on a Galerkin projection. It reads

L(v′;u)=− v′, u⋅∇u+ βu(∇⋅u)Ω

= v, u⋅ ∇u+ βu(∇⋅ u)Ω− v, u⋅ ∇u+ βu(∇⋅ u)Ω (7.21)

confer Hughes et al. (2000a). The isolation of the Leonard stress tensor L may be performed in
the samewayas it has beendone in section 5.3.2 for the cross stress tensor and theReynolds stress
tensor. (7.21) actually appears within the small--scale equation. Therefore, it was not possible
to identify it before the introduction of the small--scale equation.

Fig. 7.1: Kolmogorov energy spectrum for 2--scale separation of VMM

E(À) ~ À–5∕3

ln À

lnE(À)

ln ÀLES ln ÀDNS

VMM--2--DNSVu p V′u p

Vu p V′u p VMM--2--LES
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Finally, the just accomplished interpretation of the two--scale separation is displayed with the
help of the Kolmogorov energy spectrum in Fig. 7.1. The situation is depicted in a symbolicway
by indicating the range of scales ’captured’ by the respective (weighting) function space. If the
large--scale space is extended beyond (or at least close enough to) the Kolmogorov scale, a DNS
is actually performed. Otherwise, unresolved scales appear within a 2--scale LES which have to
be modeled.

7.2 Solving for the small scales

With respect to the presentation of solution strategies for the convection--diffusion--reaction
equation, it is focussed here on two methods. On the one hand, the global strategy of applying
hierarchical shape functions to the coupled system of large-- and small--scale equation after tem-
poral discretization and linearization (7.10)--(7.11)will bedescribed. On the other hand, the fore-
most strategy of this work will be emphasized: the use of residual--free bubbles on individual
elements. Admittedly, searching for an analytically determined residual--free bubble is practi-
cally hopeless. However, this search for a solution will be executed with the aid of a discrete me-
thod in chapter 8.What will be left out becomes clear herewith: the use of Green’s function, may
it be in global or local form. To the author’s knowledge, it is definitely impossible to determine
anything which looks, at least approximately, like the Green’s function for themultidimensional
Navier--Stokes problem. Therefore, this is not a reasonable strategy to follow any longer.

7.2.1 Global monolithic solution using hierarchical shape functions

This global approach has been applied with success in the framework of a stabilized method to
incompressible and compressible laminar flows and for a DNS of a turbulent channel flow by
Whiting and Jansen in Jansen (2001a), Whiting (1999), Whiting et al. (2000), and Whiting and
Jansen (2001). Furthermore, Jansen and Tejada--Martinez have also recently proven the suitabi-
lity of the hierarchical approach for LES in Jansen (2001b) and Jansen and Tejada--Martinez
(2002). The hierarchical basis Jansen and co--workers use is provided by the mesh--entity based
construction of shape functions proposed by Shephard et al. (1997) relying, among others, on
special functions created by Carnevali et al. (1993).

Following the concept presented in section 6.2.1, the function space decomposition (6.17)--
(6.18) may be adjusted to this approach as

Su p= Su p S′u p≈ Su p, k S′u p, k−k (7.22)

Vu p= Vu pV′u p≈ Vu p, kV′u p, k−k (7.23)

where kand kare chosen according to (6.16). Similar to (6.19)--(6.20), the large-- and small--scale
solution and weighting function shape functions for the approximation of velocity and pressure
may be determined. The focus is on equal--order interpolations for velocity and pressure, i.e. the
large-- and small--scale number of degrees of freedom (ndofs and n

′
dofs) are equal for velocity and

pressure interpolation. Inserting the shape functions into (7.10)--(7.11), thematrix equivalent of
the Galerkin problem
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⎪⎪⎪⎪

⎡

⎣

K−−NS un+1i


θδtGT−−

K′−NS un+1i


θδtGT′−

θδtG−−

0
θδtG′−

0

K−′NS un+1i


θδtGT−′

K′′NSun+1i


θδtG′′

θδtG−′

0
θδtG′′

0

⎪⎪⎪⎪

⎤

⎦

⋅
⎪⎪⎪⎪

⎡

⎣

un+1i+1

pn+1i+1

u′n+1i+1

p′n+1i+1

⎪⎪⎪⎪

⎤

⎦

=

⎪⎪⎪⎪⎪⎪⎪

⎡

⎣

θδtF+ N− E
Mn+1+ TNS,M

θδt− E
Cn+1+ TNS, C

θδt(F′ + N′)n+1+ T′NS,M
T′NS, C

⎪⎪⎪⎪⎪⎪⎪

⎤

⎦

(7.24)

is obtained where KNSun+1i
 denotes the respective linearized submatrices for the convective,

viscous and reactive part of themomentum equation, G the gradient submatrices for the pressure
part of the momentum equation and GT the divergence submatrices for the continuity equation
on the left hand sides of (7.10)--(7.11). F and N designate the respective subvectors as well as
TNS the respective entries from the previous time step n on the right hand sides of (7.10)--(7.11).
E denotes the entries due to the Dirichlet boundary conditions subject to (7.5). All matrices and
vectors are defined according to section 3.3.4.

It is necessary to investigate the stability of this Galerkin approximation. The same problem
mentioned for (6.21) in the context of the convection--diffusion--reaction equation for convec-
tion--dominated flows emerges here as well. Furthermore, the potential stabilization of the trans-
ient term hasalready been adressed anddoes not loose its validity here.Additionally, theproblem
of pressure oscillations due to the non--fulfillment of the inf--sup condition with the chosen
equal--order interpolated elements comes into play, consult section 3.4.2. The Taylor--Hood ele-
ment has been introduced in this section as one sample element known to satisfy the inf--sup con-
dition. If one thinks of the hierarchical counterpart of this element, it looks as follows: linear
shape functions for velocity and pressure representing the large--scale approximation and qua-
dratic hierarchical shape functions for the velocity only. This hierarchical basis is identically
equal to the original Taylor--Hood elementwith the only exception that the quadratic hierarchical
shape functions have no direct relation to particular nodes as it is the case for the Lagrange--type
Taylor--Hood element. As aforementioned, this is a basic feature of hierarchical shape functions
and does not matter for the satisfaction of the inf--sup condition. Surely, the same is valid for the
3--D counterpart of the Taylor--Hoodelement and the relatedhierarchical basis.Using this simple
quadratic--linear hierarchical approximation, the matrix scheme (7.24) simplifies to

⎪⎪⎪
⎡

⎣

K−−NS un+1i


θδtGT−−

K′−NS un+1i


θδtG−−

0
θδtG′−

K−′NS un+1i


θδtGT−′

K′′NSun+1i

⎪⎪⎪
⎤

⎦
⋅ ⎪⎪
⎡

⎣

un+1i+1

pn+1i+1

u′n+1i+1

⎪⎪
⎤

⎦
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=
⎪⎪⎪⎪⎪

⎡

⎣

θδtF+ N− E
Mn+1+ TNS,M

θδt− E
Cn+1+ TNS, C

θδt(F′ + N′)n+1+ T′NS,M

⎪⎪⎪⎪⎪

⎤

⎦

(7.25)

It may be observed that there is no more small--scale approximation of the pressure at all, i.e.
p′ = 0. As amatter of course, thematrix scheme (7.25) is valid for any approximation enclosing
p′ = 0 beyond the specific example used here. Although it is not dared to carry out a static con-
densation procedure for (7.25) in reality, it is informative to look at the results to be encountered.
By solving the third line of (7.25) for u′n+1i+1 , one obtains

u′n+1i+1 = K′′NSun+1i
−1θδt(F′ + N′)n+1+ T′NS,M

− K′′NSun+1i
−1K′−NS un+1i

 un+1i+1 + θδtG′
− pn+1i+1  (7.26)

which by inserting in the first and second line of (7.25) results in the condensed matrix scheme
for the large--scale values un+1i+1 and pn+1i+1 reading

⎪
⎡
⎣
K*NSun+1i


GT *un+1i


G*un+1i


H*un+1i

⎪
⎤
⎦
⋅ ⎪⎡⎣

un+1i+1

pn+1i+1
⎪⎤⎦
= ⎪
⎡
⎣
R*Mun+1i


R*Cun+1i

⎪
⎤
⎦

(7.27)

where

K*NSun+1i
 = K−−NS un+1i

 − K−′NS un+1i
 K′′NSun+1i

−1 K′−NS un+1i
 (7.28)

G*un+1i
 = θδtG−− − K−′NS un+1i

 K′′NSun+1i
−1 θδtG′− (7.29)

GT *un+1i
 = θδtGT−− − θδtGT−′ K′′NSun+1i

−1 K′−NS un+1i
 (7.30)

H*un+1i
 = − θδtGT−′ K′′NSun+1i

−1 θδtG′− (7.31)

and

R*Mun+1i
 = θδtF+ N− E

Mn+1+ TNS,M

− K−′NS un+1i
 K′′NSun+1i

−1θδt(F′ + N′)n+1+ T′NS,M (7.32)

R*Cun+1i
 = θδt− E

Cn+1+ TNS, C

− θδtGT−′ K′′NSun+1i
−1θδt(F′ + N′)n+1+ T′NS,M (7.33)
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In reference to the following section, it is even more interesting to have a look at the correspon-
ding continuous--in--space (and still discrete--in--time) problem of (7.17)--(7.18) where (7.18)
may be rearranged as an Euler--Lagrange equation with the help of the projection operator P′
projecting onto the small--scale function space V′u such that

P′1
δt
u′ + ui⋅ ∇u′ + β∇⋅ uiu′ − ν∆u′

= − P′1
δt
u+ ui⋅ ∇u+ β∇⋅ uiu− ν∆u+∇p−f+ un

δt
 in Ω (7.34)

u′ = 0 on Γg (7.35)

n⋅ ν∇u′ = − (n⋅(− pI+ ν∇u)− h) on Γh (7.36)

Please observe five aspects related to (7.34)--(7.36):

• To simplify the notation, it is concentrated on a backward Euler scheme in time,
i.e. θ= 1, and the superscripts indicating the respective time step as well as the
subscripts denoting the respective iteration step (except the one designating the
’iterative’ velocity from the previous iteration step) are omitted here and below.
The extension to other variants of the generalized trapezoidal rule appears to be
a straightforward matter.

• The viscous term has been altered in (7.34) and (7.36)with respect to the preceding
equations in that by setting γ= 0 in (2.64) the conventional form has been
derived. Thiswill be a crucial prerequisite for the following dissection of the resid-
ual--free bubbles.

• According to the corresponding discrete example described before, there is no
small--scale pressure in (7.34)--(7.36).

• The right hand side of (7.34) and (7.36) is governed by the residual of the large
scales projected onto the small--scale space.

• Since one is usually not able to solve this problem (or the corresponding adjoint
Green’s function problem) on the global domain Ω, the theoretical considerations
are brought to a termination here. However, they will be of substantial value for
the following inspection of residual--free bubbles.

7.2.2 Local solution by residual--free bubbles

The projection operator P′ will be omitted in the following, since it is not intended to violate
the restrictions explained in section 6.2.4. Thus, the strong form of the small--scale equation
(7.18) in each element subject to

1
δt
u′ + ui⋅ ∇u′ + β∇⋅ uiu′ − ν∆u′ + ∇p′

= − 1
δt
u+ ui⋅ ∇u+ β∇⋅ uiu− ν∆u+∇p−f+ un

δt
 in Ωe (7.37)
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∇⋅ u′ = −∇⋅ u in Ωe (7.38)

u′ = 0 on Γe (7.39)

may be formulated.With regard to the global equations (7.34)--(7.36), there is only oneextension
in that the small--scale part of the pressure is included in (7.37)--(7.39). Please note the ususal
zero Dirichlet boundary conditions on all element borders. The assigned small--scale continuity
equation (7.38) may be replaced by the small--scale pressure Poisson equation (PPE)

∆p′ + ∇⋅ ui⋅ ∇u′ − ν∆u′

= −∇⋅ 1
δt
u+ ui⋅ ∇u+ βu∇⋅ ui − ν∆u+∇p−f+ un

δt


= −∇⋅ RNS,M
(u, p) in Ωe (7.40)

where the consistent PPE (2.69) of Gresho and Sani has been adapted for the small scales. The
right hand side of (7.40) has been extended by two terms obviously vanishing in the continuous
case due to the continuity condition. This extension clarifies what the right hand side of (7.40)
is made of: the negative divergence of the residual of the large--scale momentum equation.

At first, it is concentrated on the small--scale momentum equation (7.37). To the author’s know-
ledge, the first attempt of using residual--free bubbles for the stabilization of a linearized statio-
nary Navier--Stokes problem has to be credited to Russo (1996). The separation of function spa-
ces (merely carried out for the weighting function space here) reads

Vu p≈ Vu pV′u, RFB= Vu pΩe
(B(Ωe))

d ; e= 1, ..., nel (7.41)

with the usual assumption being (B(Ωe))
d= H1

0(Ωe)
d
. As may be observed by inspecting the

subscripts, the bubble space exclusively enhances the velocity approximation, i.e. p′ = 0. Re-
membering the insights into approaches to satisfy the inf--sup condition emphasizes the reasona-
bility of this concept. Therefore, (7.37)--(7.39) is now simplified to

1
δt
u′ + ui⋅ ∇u′ + β∇⋅ uiu′ − ν∆u′

= − 1
δt
u+ ui⋅ ∇u+ β∇⋅ uiu− ν∆u+∇p−f+ un

δt
 in Ωe (7.42)

u′ = 0 on Γe (7.43)

If one were able to solve these element--based problems, the overall solution

u′ = −
nel

e=1
LRFBM, Ωe

ui
−1Ldt, linM

ui[u, p]−f+ un
δt
 (7.44)

would be encountered where

LRFBM
ui = ui⋅ ∇− ν∆+1δt+ β∇⋅ ui (7.45)

The result (7.44) can now be integrated into the large--scale equation in the form (7.17) so as to
get
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Bdt, lin
NS

(v, q; u, p)−
nel

e=1
v, 1
δt
LRFBM, Ωe

ui
−1Ldt, linM

ui[u, p]−f+ un
δt


Ωe

−
nel

e=1
L* statM

ui[v, q], LRFBM, Ωe
ui

−1Ldt, linM
ui[u, p]−f+ un

δt


Ωe

= v, un
δt

Ω
+ (v, f)Ω+ (v, h)Γh ∀{v, q}∈ Vu p (7.46)

where some of the terms in (7.17) vanish due to the assumptions made.

Solving directly for the shape function components of the small--scale solution u′ in the sense
already described in chapter 6 is here possible as well, since the underlying problem has been
linearized before. It is somewhat more complicated in that it has to be dealt with an additional
variable, namely the pressure, on the right hand side in (7.42). The separation of the right hand
side described in Franca and Nesliturk (2001) as well as Nesliturk (1999) will be adopted. Star-
ting with the standard elementwise extension of the large--scale velocity and pressure

ue= 
ned

b=1


nsd

i=1
Nb u

i
b ei , pe= 

ned

b=1
Nb pb (7.47)

the extension of the small--scale velocity is assumed to be

u′e= 
ned

b=1


nsd

i=1
Ub u

i
b ei+

ned

b=1
pb

nsd

i=1
Pi
bei+

nsd

i=1
Fiei (7.48)

where nsd denotes the number of spatial directions and ei the unit vector in the spatial direction
i. Furthermore,Udenominates a ’velocity bubble function’, P a ’pressure bubble function’ and
F a ’RHS bubble function’. Thenotation and the choiceof the ansatzwill hopefully becomeclear
after introducing the equations which have to be solved in order to get these functions. Introdu-
cing the extensions in (7.42) and decomposing into the basic components in the fashion of
(6.57)--(6.60), ned equations have to be solved for the velocity bubble functions Ub subject to

ui⋅ ∇Ub− ν∆Ub+ 1δt+ β∇⋅ uiUb

=−ui⋅ ∇Nb− ν∆Nb+ 1δt+ β∇⋅ uiNb in Ωe (7.49)

nsd ned equations for the pressure bubble function P
i
b subject to

ui⋅ ∇Pi
b− ν∆P

i
b+ 1δt+ β∇⋅ uiPi

b=−
∂Nb
∂xi

in Ωe (7.50)

and nsd equations for the RHS bubble function F
i subject to

ui⋅ ∇Fi− ν∆Fi+ 1δt+ β∇⋅ uiFi= fi+
uni
δt

in Ωe (7.51)

where all nRFB= nel ned nsd+ 1+ nsd entirely independent residual--free bubble equations
are subject to zeroDirichlet boundary conditions on the complete element boundary Γe. Further-
more, a normalized (w.r.t. the right hand side) equation is introduced reading
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ui⋅ ∇B1− ν∆B1+ 1δt+ β∇⋅ uiB1= 1 in Ωe (7.52)

for anormalized bubble function B1 acting as a placeholder for all the equations in (7.49)--(7.51)
on the one hand and,more importantly, being the object of considerations in the later to bedescri-
bed dynamic modeling process for the subgrid viscosity on the other hand. Please note that in
the end a collection of ’pure’ scalar convection--diffusion--reaction equations governing the be-
haviour of the scalar quantity ’bubble function’ have been achieved. Hence, the ’circle of des-
cription’ which started with the model problem of convection--diffusion--reaction equations for
a scalar quantity φcan be closed now. Thus, additional reasoning is provided for the introduction
and investigation of the scalar convection--diffusion--reaction equation throughout this work.

Aside from this, one may think of some furthergoing simplifications. Firstly, the parameter β
may be set to zero and the convective iterative velocity ui canbe approximatedby the large--scale
part ui. Both assumptions offer some computational convenience. Secondly, one is able to refer
back to the concept of quasi--static bubbles (QSB)mentioned in section 6.5. A thorough analysis
ofDubois et al. (1999) revealed that the time variationsover one time stepof small--scale velocity
components inmultiscale decompositions for turbulent flowcalculations aremuch smallerwhen
compared to the large--scale velocity components. In consequence, they ’freeze’ the small--scale
components over some time during their simulations while they account for the exact temporal
integration of the large--scale components. Therefore, the approximation

u′n+1≈ u′n (7.53)

seems to be, at least partly, reasonable for such flow regimes.With the just explained simplifica-
tions (7.49)--(7.51) read

ui⋅ ∇Ub− ν∆Ub=−ui⋅ ∇Nb− ν∆Nb+ 1
δt
Nb in Ωe (7.54)

ui⋅ ∇Pi
b− ν∆P

i
b=−

∂Nb
∂xi

in Ωe (7.55)

ui⋅ ∇Fi− ν∆Fi= fi+
uni
δt

in Ωe (7.56)

representing now convection--diffusion equations for the scalar quantity ’bubble function’. In
this context, one may again think of restricting the approximation of the original right hand side
to the large--scale space (seeCodina andBlasco (2002)) resulting in the possibility to omit (7.51)
which reduces the overall number of residual--free bubble equations to nRFB= nel ned nsd+ 1.
If one were able to solve the previously described bubble equations analytically, the result might
be incorporated into the final matrix system, whichwill nowbe described, and everythingwould
be fine with regard to this aspect of the multi--level solution. However, since the achievement
of such an analytical solution is impossible in general, an appropriate discrete solution strategy
will be presented in the subsequent chapter.

Closing the treatment of the small--scale momentum equation, one more simplification is noted.
The decision to solve for shape function components enables to feed the resulting bubble func-
tions into the (not integrated--by--parts) large--scale equation (7.10) being the one and only equa-
tion to be solved globally. This leaves uswith amatrix scheme similar to (7.27), but now reading
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⎪⎡⎣
KBNSui

GT B

GBui

δtGT P⎪
⎤
⎦ ⋅ 

ui+1
pi+1
 = ⎪⎡⎣

RBMui

RBC
⎪
⎤
⎦

(7.57)

where the ’bubble--enhanced’ matrices read as

KBNSui = KNSui + KUNSui (7.58)

GBui = δtG+ KPNSui (7.59)

GT B= δtGT+ δtGTU (7.60)

and the ’bubble--enhanced’ right hand sides as

RBMui = δtF+ N− E
M +Mun− KFNSui (7.61)

RBC = δt− E
C − δtGT F (7.62)

In (7.57)--(7.62), the superscriptsU or P affixed to the various matrices denote the replacement
of the standard (large--scale) shape function Nb in the evaluation of the respective elementmatri-
ces (given in section 3.3.4) by the respective velocity bubble function Ub or the sum of the re-
spective pressure bubble function Pi

b in all spatial directions i. For instance, a sample component
of the element gradient matrix with pressure bubble functions replacing the standard (large--
scale) shape function Nb would be defined as

GP e
ab =− 

Ωe

∇⋅ Na
nsd

i=1
Pi
b dΩ (7.63)

The same occurs on the right hand side using the respective RHS bubble function Fi. Additional
details concerning the calculation of the components of thematrix (7.57)may be found in Franca
and Nesliturk (2001) or Nesliturk (1999), respectively.

In the last part of this section, it is returned to the small--scale continuity equation (7.38) left out
up to now. Please remember that this equation is actually not needed any more, since there is no
small--scale pressure in the small--scale momentum equation to be governed by the small--scale
continuity equation. As you will see below however, it may be helpful to revitalize some kind
of small--scale pressure being completely independent of the small--scale momentum equation.
To bemore precise, it will be concentrated on the small--scale PPE (7.40) and tried to find a solu-
tion. This should be helpful in fulfilling the continuity condition on the small--scale level, an is-
sue becoming more and more important with increasing Reynolds number, see e.g. Gresho and
Sani (1998), Tezduyar andOsawa (2000) orWall (1999). Therefore, it is supposed to be a crucial
ingredient of the solution strategy, since it is aimed at turbulent flows usually linked with high
Reynolds numbers.

The residual RNS,M
(u, p) on the right hand side of (7.40) is supposed to be divergence--free or,

otherwise, a potential component will be subsumed in amodified small--scale pressure such that

∆p′mod= ∆p′ + ∇⋅ RNS,M(u, p) (7.64)

respectively. By using relation (7.38), the following Poisson equation for the modified small--
scale pressure may be obtained from (7.40):
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∆p′mod=− ui⋅ ∇(∇⋅ u)− ν∆(∇⋅ u) = − ui⋅ ∇− ν∆ (∇⋅ u) in Ωe (7.65)

It is not advisable to solve this differential equation for the small--scale pressure on the element
level besides the burden of solving the momentum equation, let alone the difficult question con-
cerning useful pressure boundary conditions for (7.65) on the element boundaries. Here, it is ra-
ther intended to incorporate the effect of the small--scale pressure Poisson equation (and, thus,
the small--scale continuity equation) into the final (large--scale) equation byway of an additional
term in the fashion of a stabilizing term. This leads to an approximation for p′ of the form

p′ ≈ − τCe (∇⋅ u)=− τCeRNS, C(u) in Ωe (7.66)

with an algebraic stabilization parameter τCe and the residual of the large--scale continuity equa-
tionRNS, C

(u). Recently, Franca andOliveira (2003) have shown that the derivation of this stabi-
lizing term can be traced back to the potential introduction of something what they call ’pressure
bubble’. However, since stabilizing terms are the subject of the next section, this is postponed
until then and will be picked up at this point again.

The strategy is summed up now. Residual--free bubbles will be used to solve the small--scalemo-
mentum equation. Additionally, the effect of the small--scale continuity equation is incorporated
by taking it into account with the aid of a stabilizing term in the final (large--scale) equation. In
the end, one is confronted with what may be called a combined residual--free bubble/stabilizing
strategy. After all, the main assumption p′ = 0 in the small--scale momentum equation comes
down to the fact that the small--scale velocity is exclusively driven by the residual of the large--
scale momentum equation and not by the residual of the continuity equation, confer Codina
(2002a). A further interpretation is attempted in the next section.

7.2.3 Interpretation of the local strategy as a local pressure projection method

Starting point of these considerations is the small--scale equation (7.42) in temporally non--dis-
cretized form, i.e.

∂u′
∂t + ui⋅ ∇u′ − ν∆u′ = − ∂u∂t + ui⋅ ∇u− ν∆u+∇p− f = − F in Ωe(7.67)

where β= 0 is assumed for simplicity and the right hand side depending on the large scales is
summarized within F. (7.67) goes along with the zero Dirichlet boundary condition (7.43).

The classical way of performing a pressure projection method according to Chorin (1968) (see
also e.g. Gresho (1990) and Gresho and Chan (1990)) may be briefly stated using three steps.
Firstly, the momentum equation is solved without the pressure term for an intermediate velocity
uint subject to

∂uint
∂t + uint⋅ ∇uint− ν∆uint= f (7.68)

uint is not divergence--free in general. Thus, it has to be projected to the space of divergence--free
velocities. By using the Navier--Stokes equations system in the form

∂u
∂t +∇p=

∂uint
∂t (7.69)

∇⋅ u= 0 (7.70)
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a pressure Poisson equation reading

∆p=
∂uint
∂t (7.71)

may be achieved. (7.71) results from the application of the divergence operator to (7.69) and
using (7.70). The solution of (7.71) represents the second step. In a third step, the intermediate
velocity uint is ’updated’ in order to get a now divergence--free velocity u subject to

u= uint−
t

∇p dt (7.72)

Interpreting (7.67) in the sense of the pressure projection algorithm, it may be stated that (7.67)
is solved in the sense of (7.68) for a small--scale velocity u′ with F replacing f. This ’interme-
diate’ velocity is not divergence--free from the point of view of the pressure projection method.
At the same time, it is, however, the ’final’ small--scale velocity, since therewill benomore equa-
tions in the sense of (7.71) and (7.72) to be solved on the small--scale level. As aforementioned,
a small--scale pressure will merely be incorporated by a stabilizing term.

How does one achieve some justification for u′ actually being divergence--free? At least, it may
be proven that the small--scale velocity is divergence--free in an integral sense within individual
element domains Ωe. This may be done by investigating the zero Dirichlet boundary condition
(7.43) which allows to state the following (confer (2.51)):


Γe

n⋅ u′ dΓ= 0 (7.73)

i.e. there is no ’small--scale flow’ through the element boundaries. This has already been descri-
bed as being the crucial assumption of residual--free bubbles. Applying Gauss’ theorem (2.23)
to (7.73) yields the elementwise integrated small--scale continuity equation according to


Γe

n⋅ u′ dΓ= 
Ωe

∇⋅ u′ dΩ= 0 (7.74)

i.e. the small--scale velocity is divergence--free in an integral sense and, hence, the small--scale
component of the velocity is conservative within the element domain Ωe. This is an attribute
which cannot be extended to the large--scale part of the velocity within the Galerkin finite ele-
mentmethod in general. Please consult Hughes et al. (2000b) for a discussion of themissing con-
servation properties of the Galerkinmethod -- and also for some advice on how this situation can
be remedied. Anyway, nothing more can be said concerning local conservation properties of the
small--scale equation (7.67) within Ωe. This is certainly a point eagerly demanding some further
investigation.
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7.3 Taking into account locally the effect of unresolved scales onto resolved
scales

7.3.1 Stabilized methods

Nearly everything what has been said in section 6.3.1 may be transfered to this section in unalte-
red form. Please remember that the crucial effect of the unresolved scales onto the resolved scales
for the convection--diffusion--reaction equation consists in the introduction of an artificial diffu-
sion in the streamline direction -- the basic idea of SUPG. However, a second problem has to be
dealt with in the context of theNavier--Stokes equations: the fulfillment of the inf--sup condition,
either by satisfying it directly or by circumventing it. It may be observed that these two strategies
are close together.

An approach for solemnly attacking the last problem was demonstrated by Hughes et al. (1986)
for the Stokes equation where this is the only reason for introducing stabilizing terms. This me-
thod has been named ’Pressure Stabilizing Petrov--Galerkin’ (PSPG) afterwards and the simila-
rity to SUPG is obvious. Combined approaches of SUPG/PSPG are conceivable and have been
used, see e.g. Hansbo and Szepessy (1990), Tezduyar et al. (1992) aswell asTezduyar andOsawa
(2000). The nontrivial question of the necessary stabilization for elements fulfilling the inf--sup--
condition addressed in section 3.4.2 is discussed in Gelhard et al. (2003).

For equal--order interpolated elements violating the inf--sup condition, it is, however, more
straightforward to use the GLS-- andUSFEM--typemethods being already equippedwith every-
thing one needs to overcome both problems.Moreover, due to the inherent switches between dif-
ferently dominated regimes in the definition of the herein prefered stabilization parameter defi-
nition according to Franca and Valentin (6.67)--(6.70), this parameter may be applied for the
Navier--Stokes equations aswell.Generally, applicationsof stabilizedmethods ofGLS-- andUS-
FEM--type, respectively, to theNavier--Stokes equations are reported, for instance, in Franca and
Frey (1992) as well as Codina (2001). Barrenechea and Valentin (2002) have recently analyzed
the USFEM--typemethod for a generalized Stokes problemwith a dominating reactive term and
shown that it yields good results even in this case. Oñate (2000) has also applied a stabilized
method based on the finite increment calculus to the incompressible Navier--Stokes equations.
The temporal dependence of the stabilization is particularly investigated in Bochev et al. (2002)
for semi--discrete methods applied to the transient Stokes problem. In Jansen et al. (1999), a bet-
ter consistency for finite element methods with low--order functions is proposed and proven for
the Navier--Stokes equations.

Taking into account all these aspects, there is a sufficient ’instrumentation’ to stabilize the mo-
mentum equation. This means, however, that one is still left with an untreated continuity equa-
tion. In (7.66), there has already been a hint how such a stabilizing term may look like from the
point of view of a small--scale pressure. It will be stuck to this characteristic form and an appro-
priate definition merely has to be added for the respective stabilization parameter τCe .

At the beginning of it all, the separation of the function spaces as

Su p= Su p S
^
u p (7.75)

Vu p= Vu pV
^
u p (7.76)
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is introduced with the (⋅)^ --values again indicating unresolved scales in view of the subsequent
three--scale separation. The general formulation for the discrete in time (backward Euler) and
linearized Navier--Stokes equations looks like

Bdt, lin
NS

(v, q; u, p)+
nel

e=1
LstabM

ui[v, q], τMe uδt+ LstatM
ui[u, p]−f+ un

δt


Ωe

+
nel

e=1

∇⋅ v, τCe (∇⋅ u)Ωe

= v, un
δt

Ω
+ (v, f)Ω+ (v, h)Γh ∀{v, q}∈ Vu p (7.77)

where the differential operator LstabM acting on theweighting functions vand q for GLS is defined
as

LstabM
ui[v, q]= ui⋅ ∇v+ β∇⋅ uiv− ν∆v−∇q (7.78)

and for USFEM as

LstabM
ui[v, q]= ui⋅ ∇v− β∇⋅ uiv+ ν∆v−∇q (7.79)

where the time--dependent term may also be incorporated in order to get

LstabM
ui[v, q]= ui⋅ ∇v+ 1δt+ β∇⋅ uiv− ν∆v−∇q (7.80)

and

LstabM
ui[v, q]= ui⋅ ∇v− 1δt+ β∇⋅ uiv+ ν∆v−∇q (7.81)

respectively. See also the discussion at the end of section 6.5. Please note that the only fact distin-
guishing (7.78)--(7.81) from the basic definition of theGLS-- andUSFEM--type differential ope-
rators is basically due to the chosen negative sign in (3.20). τMe in (7.77) is still governed by
(6.67)--(6.70) with the appropriate velocity ui, the viscosity ν replacing the diffusion coefficient
À and the appropriate reaction coefficient

σ= 1
δt
+ β∇⋅ ui (7.82)

For τCe , the definition of Codina (2002a) is adopted reading

τCe = ν2+c2c1 |ui|h2
1
2

(7.83)

where acceptable choices for c1 and c2 are subject to (6.72).

7.3.2 Dissipative effect of unresolved scales: artificial and subgrid viscosity approach

Straightforward adoption of the artificial diffusion approach to the current problem results in an
artificial viscosity as follows:
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νarte = ⎪
⎪⎨
⎧

⎩

|ui|h
2

Re
3
, for Re< 3

|ui|h
2

, for Re≥ 3
(7.84)

with the element Reynolds number

Re=
|ui|h
2ν

(7.85)

In the following, the focus is, however, on an alternativemethod for introducing artificial visco-
sity which has been introduced in section 5.2.3 in the context of LES. Despite all its drawbacks,
it may be thought of using the Smagorinsky model (5.36) in elementwise form according to

νTe = CSh
2
|ε(u)| (7.86)

with the characteristic element length h acting as the analogon of the filter width. Whatever mo-
del is applied, (7.84) or (7.86), the final equation to be solved reads

Bdt, lin
NS

(v, q; u, p)+
nel

e=1

(∇v, νe∇u)Ωe

= v, un
δt

Ω
+ (v, f)Ω+ (v, h)Γh ∀{v, q}∈ Vu p (7.87)

Of course, (7.87) cannot act as a stand--alone method for getting a stable solution of the Navier--
Stokes equations. All four points at the end of section 6.3.2 apply here as well and, more impor-
tantly, there is nothing looking like an adequate pressure stabilization for equal--order interpola-
ted elements. Therefore, in case no elements passing the inf--sup condition are used, something
morehas to be added.However, the suitability of this approachwill hopefully become clearwhen
such dissipative models are applied ’one level lower’ within a three--scale separation. For a re-
cent numerical investigation considering the different amount of numerical viscosity introduced
by a stabilized method of SUPG--type and the Smagorinsky model in the context of a particular
flow example, namely the 2--D flow past a circular cylinder, it is refered to Akin et al. (2003).

7.4 Separation of three scales

7.4.1 Basic concept and provision for unresolved scales

According to what has been done in the context of the convection--diffusion--reaction equation
in section 6.4, the solution and weighting function spaces are separated as follows

Su p= Su p S′u p= Su p S′u p, h′  S
^
u p (7.88)

Vu p= Vu pV′u p= Vu pV′u p, h′  V
^
u p (7.89)
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Hence, it has to be dealt with large resolved scales, small resolved scales and unresolved scales.
The equation system for the discrete in time, linearized Navier--Stokes equations reads

Bdt, lin
NS
v, q; u+ u′ + u^, p+ p′ + p^

= v, un
δt

Ω
+ v, fn+θ

Ω
+ v, hn+θ

Γh
∀{v, q}∈ Vu p (7.90)

Bdt, lin
NS
v′, q′; u+ u′ + u^, p+ p′ + p^

= v′, un
δt

Ω
+ v′, fn+θ

Ω
+ v′, hn+θ

Γh
∀{v′, q′}∈ V′u p,h′ (7.91)

Bdt, lin
NS
v^, q^; u+ u′ + u^, p+ p′ + p^

= v^, un
δt

Ω
+ v^, fn+θ

Ω
+ v^, hn+θ

Γh
∀v^, q^ ∈ V

^
u p (7.92)

As in section 6.4, it is assumed that

Bdt, lin
NS
v, q; u^, p^ ≈ 0 (7.93)

which relies on a clear separation of the large--scale space and the space of unresolved scales.
As indicated by Collis (2001), this amounts to be the first modeling step. Likewise the opposite
projection is assumed to be

Bdt, lin
NS
v^, q^; u, p ≈ 0 (7.94)

leading to a simplified equation system by changing (7.90) to be

Bdt, lin
NS

(v, q;u+ u′, p+ p′)

= v, un
δt

Ω
+ v, fn+θ

Ω
+ v, hn+θ

Γh
∀{v, q}∈ Vu p (7.95)

and (7.92) to be

Bdt, lin
NS
v^, q^; u′ + u^, p′ + p^

= v^, un
δt

Ω
+ v^, fn+θ

Ω
+ v^, hn+θ

Γh
∀v^, q^ ∈ V

^
u p (7.96)

whereby (7.91) remains unchanged.

It is now appropriate to reiterate that it is not intended to resolve anything called unresolved a
priori. Taking into account the effect of the unresolved scales onto the small scales is the only
desire. Therefore, the three possibilities already introduced in section 6.4 are addressed. The
main focuswill be on the subgrid viscosity approach, since this is the usual and well--established
way of taking into account the effect of unresolved scales in ’classical LES’ -- and, last but not
least, themost straightforward approach. Thenotation is again simplifiedby focussingon aback-
ward Euler scheme in time, i.e. θ= 1, and omitting the superscript n+ 1.

Using stabilizing terms, for instance, for a global solution approach with hierarchical bases, a
new enhanced small--scale equation extending (7.11) and replacing (7.91) may be obtained as
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Bdt, lin
NS

(v′, q′;u+ u′, p+ p′)

+
nel

e=1
LstabM

ui[v′, q′], τ′Me u′δt+ LstatM
ui[u′, p′]−f+ un

δt


Ωe

+
nel

e=1

∇⋅ v′, τ′Ce (∇⋅ u′)Ωe

= v′, un
δt

Ω
+ (v′, f)Ω+ (v′, h)Γh ∀{v′, q′}∈ V′u p, k−k (7.97)

where τ′Me and τ′Ce differ from the original definition in the parameter mk, which should be mat-
ched to the emerging polynomial orders, or in a modified h.

Concerning the idea of using orthogonal subscales, the basic thoughts of section 6.4 are still
valid. For their application to the Navier--Stokes equations, please consult Codina (2002a).

Only accounting for the dissipative effect of the unresolved scales onto the resolved scaleswill
be the result of using a subgrid viscosity approach -- the foremost choice here due to its simplicity
and its establishment in the ’classical’ theory of LES. The small--scale equation then reads

Bdt, lin
NS

(v′, q′;u+ u′, p+ p′)+
nel

e=1

∇v′, ν′e∇u′Ωe

= v′, un
δt

Ω
+ (v′, f)Ω+ (v′, h)Γh ∀{v′, q′}∈ V′u p, k−k (7.98)

where the elementwise subgrid viscosity ν′emay be represented by three alternative model for-
mulations. The subgrid viscosity due to Guermond reads

ν′ Ge = CGe he in Ωe (7.99)

with a so far unspecified he and a bounded constant CGe having the dimension of a velocity for
consistency of (7.99). Comparing (7.99) to the original proposal of Prandtl (4.20), a striking affi-
nity may be observed. The constant CGe is definitely the weak point of Guermond’smodel aswill
be for the following approaches. Alternatively, the definition of artificial viscosity in
(7.84)--(7.85) either in original form applied to individual elements or modified by the introduc-
tion of a here nondimensional constant as

ν′ arte = Carte |ui|he in Ωe (7.100)

may be usedwhere the only difference to (7.99) lies in the additional introduction of the velocity.
Herewith, Prandtl’s basic ansatz has been revitalized almost completely. The Smagorinsky mo-
del for an elementwise evaluation yields

ν′ Te = CSehe
2
|Áui| in Ωe (7.101)

where the Smagorinsky constant CSe is also nondimensional. Using (7.99)--(7.101) to relate C
G
e

to Carte and CSe results in

CGe = Carte |ui|= CSe
2
he|Áui| in Ωe (7.102)
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Finally, it has to bementioned thatHughes and co--workers achieved very good results for homo-
geneous isotropic turbulence in Hughes et al. (2001a) and channel flow in Hughes et al. (2001b)
using the Smagorinsky model in the framework of the variational multiscale method. Thus, the
behaviour of even such simple models like (7.99)--(7.101) is very much improved by fitting it
in this multiscale method.

7.4.2 Interpretation of the three--scale separation in the sense of a DNS/LES

The three--scale separation represents a consequential extension of the two--scale separation.
Thus, this section takes up the thoughts of section7.1.2 and extends themconsequentially. InFig.
7.2, the Kolmogorov energy spectrum is displayed for the situation of a three--scale separation.
For ease of comparison, the two--scale separation illustrated in Fig 7.1 is figured again.

Fig. 7.2: Kolmogorov energy spectrum for 2-- and 3--scale separation of VMM
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It is observable that there are twoways of performing aDNSor aLES, respectively. ADNSmay
result from completely resolving all scales necessary therefore by the large--scale space. Alterna-
tively, the samemay be done by distributing these scales among a large-- and a small--scale space.
Whereas this distinction may be more or less of academic nature for a DNS, it is supposed to be
a crucial decision for a LES. In contrast to a two--scale LES, a three--scale LES provides onewith
the opportunity of letting the subgrid--scalemodel act (directly) only onto the small--scale space.
Thismay be observed by analyzing the equations (7.95)--(7.98). It has been dissected byHughes
and co--workers in Hughes et al. (2000a, 20001a, 2001b) that the crucial advantage of a LES ba-
sed on the variational multiscale method is caused by the fact that the dissipativemodel acts (di-
rectly) only onto the small scales. Hence, the large scales are treated in a DNS--like manner gua-
ranteeing consistency, if adequate resolution is already achieved by the large--scale space. This
last case represents a natural switch to a ’VMM--2--DNS’, confer Fig. 7.2. It has to remarked that
the idea of restricting the modeling efforts to the small scales may also be transfered back to the
’classical’ procedure, for example, in the context of the dynamic modeling procedure of Ger-
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mano et al. (1991). First ideas in this direction have been presented in Vreman (2003) recently.
Finally, it is refered to the end of section 8.2 where this discussion is renewed. In particular, a
principal comparison to the dynamic modeling procedure of Germano et al. (1991) will be car-
ried out there and some remarks concerning the choice of the absolute and relative size of the
large-- and small--scale space are given.

7.5 Closure: three--scale separation based on residual--free bubbles and
the subgrid viscosity approach

Closing the description of the variational multiscale method for the Navier--Stokes equations,
the, for the time being, ’static’ three--level approach to be applied to a practical implementation
below is pointed out. The steps of this development starting with a two--level finite element me-
thod in Wall et al. (2001) and, by including a third level, arriving at a three--level finite element
methodwith dynamicmodeling of the effect of the unresolved scales in Gravemeier et al. (2002)
and Gravemeier et al. (2003b) have been presented. A detailed overview is provided in Grave-
meier et al. (2003a) and some remarks comparing thismethodwith approachesof ’classical’ LES
have been made in Gravemeier et al. (2003c).

The variational large--scale equation (including theweak formof the large--scalemomentum and
the large--scale continuity equation) will be treated by a standard Galerkin method. The small--
scalemomentum equation or their basic constituents in formof bubble shape functions, respecti-
vely,will be solved in their basic formwithvarying right hand sides (7.49)--(7.51) as convection--
diffusion--reaction equations. The bubble shape functions enter the final (large--scale) equation
by way of the static condensation procedure. Please note that there is no small--scale pressure
in the small--scalemomentum equation. Therefore, the resulting (large--scale) equation is expec-
ted to be solved in a completely stable way. However, the effect of a small--scale pressure will
be integrated in the final (large--scale) equation by a stabilizing term like the first term in the se-
cond line of (7.77) with (7.83) representing the small--scale continuity equation. Regarding the
positive effect of such a term (sometimes called ’bulk viscosity’ term) particularly in the range
of high Reynolds numbers, please consult e.g. Wall (1999). Finally, the effect of the unresolved
scales onto the small scales will be reproduced by a subgrid viscosity approach in the form of
(7.99), (7.100) or (7.101). For the time being, it is stuck to a somehow determined constant in
either of the formulations. In the following chapter, a dynamic algorithm for determing the sub-
grid viscositywithout any underlyingmodeling assumptionwill be proposed. The slightlymodi-
fied normalized bubble equation representing (7.49)--(7.51) again as a place holder here and in
the following chapters now reads

ui⋅ ∇B1− ν+ ν′e∆B1+ 1δt+ β∇⋅ uiB1= 1 in Ωe (7.103)

or in simplified form for the quasi--static case as a convection--diffusion equation

ui⋅ ∇B1− ν+ ν′e∆B1= 1 in Ωe (7.104)

The convection--diffusion equation (7.104) may be expected to be sufficiently stabilized by the
subgrid viscosity. In (7.103), it has to be accounted for a potentially dominating reactive term,
particularly due to a small time step δt, by making additional measures.



114

88(8 Practical Implementation: a two-- and a three--level
finite element method

8.1 A two--level finite element method based on the RFB approach

8.1.1 Finite element method on the second level using an elementwise submesh

The idea of using a two--level finite element method for the practical computation of residual--
freebubble functions can be traced back to Franca andMacedo (1998), whoproposed thismetho-
dology for theHelmholtz equation. In the same year, Franca et al. (1998b) published the applica-
tion of this approach to convection--diffusion equations. Afterwards, Nesliturk and Franca also
dealtwith the stationary incompressibleNavier--Stokes equations in Franca andNesliturk (2001)
as well as Nesliturk (1999). In Gravemeier et al. (2003a), this basic method has been extended
in order to use it for the instationary incompressibleNavier--Stokes equations being semi--discre-
tized in time. At the same time, this approach exhibits its validity for any kind of convection--dif-
fusion--reaction equation.

Starting point and likewise support for the solution of the large--scale equation of the problem
is the basic discretization subject to (3.28)--(3.29). On every individual element domain Ωe, a
submesh will be introduced, see Fig. 8.1.

Fig. 8.1: (a) Mesh (first level); (b) submesh (SM -- second level); (c) approximated RFB
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This discretization on a second level or, more precise, the number of nel discretizations on a se-
cond level will now be the support for the solution of the small--scale equations. They are for-
mally identical up to the right hand sides for the convection--diffusion--reaction equation and the
Navier--Stokes equations as can be observed by comparing the left hand sides of (6.59)--(6.60)
and (7.49)--(7.51). In the following, the discussion is restricted to the normalized equation
(7.103) without the addition of a subgrid viscosity or in simplified form as a convection--diffu-
sion equation for the case of quasi--static bubbles (7.104). Please note that omitting the subgrid
viscosity ν′e in (7.103) or (7.104), respectively amounts to eliminating the effect of the unresol-
ved scales onto the small scales and, consequently, going back from a three-- to a two--level ap-
proach.

Since one is normally unable to find an analytical solution to these equations, the task is clear:
Find an approximate residual--free bubble function BSM

1 in every element of the original discreti-
zation with the aid of the elementwise submeshes which then replaces the actually sought--after
exact residual--free bubble function B1. The variational form of (7.103) (omitting ν′e) with the
submesh weighting functions wSM reads
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wSM, ui⋅ ∇BSM
1 + 1δt+ β∇⋅ uiBSM

1 
Ωe

+ ∇wSM, ν∇BSM
1

Ωe
= wSM, 1

Ωe
(8.1)

The standard finite element polynomial expansions are introduced as

BSM
1 = 

nSM
dofs

B=1
NSMB bSMB , wSM= 

nSM
dofs

A=1
NSMA wSMA (8.2)

where NSMdenotes the shape functions belonging to the submesh and bSMB thedegrees of freedom
(equivalent to the nodal values for standard Lagrangean bases) of the bubble function. After all,
the matrix problem

KSM bSM= FSM (8.3)

is obtained where one sample component of the element matrices reads

Ke, SM
ab
= 

ΩSM
e

NSMa ui⋅∇NSMb + 1δt+ β∇⋅uiNSMb dΩ+ ν 
ΩSM
e

∇NSMa ⋅∇NSMb dΩ(8.4)

and

Fe, SMa = 
ΩSM
e

NSMa 1dΩ (8.5)

with a chosen number of nSMel element domains ΩSM
e for the submesh on the respective original

element domain Ωe. After solving (8.3) for the respective equations of (7.49)--(7.51), the exact
residual--free bubble functions may then be replaced by the approximate versions in the expan-
sion (7.48) for the Navier--Stokes equations.

Before proceeding to the generation of the submeshes, the choice of elements has to be adressed.
As could have already been gathered from previous remarks and the illustration in Fig. 8.1, the
use of quadrilateral elements is advocated predominantly in this work. Although the focus is on
this type of element in the numerical simulations below, submesh generators for triangular ele-
ments, which have proven to be slightly more complicated in their development, have been im-
plemented as well. Aside from someminor problems with the stability of bilinear quadrilaterals
under certain circumstances, which seem to be only of technical type according to Brezzi et al.
(1998a) (further analyzed in Franca and Tobiska (2002)) though, there is basically no difference
in selecting quadrilaterals or triangles for the later algorithm.Therefore, the choice of quadrilate-
ral elements is merely the subjective answer to an optional question.

8.1.2 Uniform and non--uniform Shishkin--type submesh generator

Basically, uniform elementwise submeshes are chosen. This selection goes along with the com-
putational convenience of creating the submeshes once for all during the preprocessing stage.
For convection--dominated flow regimes in particular, it is possibly adjuvant to create non--uni-
form submeshes with the refinement directed towards the outflow boundaries of the elements.
Thin boundary layerswill have to be resolved at the outflowboundaries wherefore a refined sub-
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mesh in the vicinity of these boundariesmay be helpful. The major drawback lies in the additio-
nal computational effort. Due to the dependence on the velocity distribution, the submesh crea-
tion step will possibly have to be repeated at least every time step in rapidly changing flow
regimes.

Franca and Hwang (2002) proposed a polynomial--based refinement near the outflow bounda-
ries. A quadratic aswell as a cubic version have been implemented and tested. However, aShish-
kin--type refinement at the outflow boundaries is proposed here in lieu of these polynomial refi-
nements. See e.g. Hegarty et al. (1995) for the general concept of Shishkin--type meshes. This
strategy has the advantage of depending the refinement on the element Reynolds number of the
problem (7.103) or (7.104), respectively.

The stabilizing character of Shishkin--typemeshes in the case of convection--diffusion equations
iswell--known. Therefore, in case of quasi--static bubble equations like (7.104), the use of Shish-
kin--type submeshesmight be sufficient to stabilize the small--scale equation (and, thus, incorpo-
rate the effects of the unresolved scales redundantizing a third level from the point of view of
an adequate stabilization). It has to be remarked, however, that the efficient application of refined
submeshes in this sense is limited. For very high element Reynolds numbers, extremely thin out-
flow boundary layers are encountered refusing a reasonable application of this stabilization stra-
tegy.

The basic situation for aone--dimensional element establishing also the similar situation for two--
and three--dimensional elements in every coordinate direction is depicted in Fig. 8.2(a).

Fig. 8.2: (a) Shishkin--type mesh creation (1--D); (b) velocity vectors at center (2--D)
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The convective velocity u is assumed to go from left to right defining the right end of the element
as the outflow boundary here. A number of nSMnod submesh nodes is chosen. The distance δ bet-
ween the ’middle node’ and the outflow boundary is defined as

δ= minhξ1
2
, νu lnnSMnod (8.6)

The remaining nodes will be uniformly distributed on both sides of the ’middle node’. In Fig.
8.2(a) this is shown for nSMnod= 5. In two dimensions, the velocity vector at the element center
will be determined and projected onto the two element--based coordinate directions ur and us as
the relevant velocities replacing u in (8.6), see Fig. 8.2(b). The similar situation in three dimen-
sions for a hexahedral element generates the additional velocity ut in the third direction.

Algorithm8.1 displays the general prodecure for generating a submesh for an individual element
of the basic discretization. The submesh creation takes place on the parent (computational) do-
main resulting froma transformationof theoriginal (physical) element domain.Confer e.g.Hug-
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hes (2000) for further details of this transformation. All steps of the algorithm in bold font are
merely necessary for the Shishkin--type non-- uniform submesh generator. Please note that the
evaluation of the velocity vector at the element center replaces the computationally more expen-
sive determination of the outflow boundaries in the polynomial refinement strategy of Franca
andHwang (2002). The evaluationof the submesh ID-- and IEN--arrays is onlynecessary for one,
usually the first, element during the preprocessing stage both for the uniform and for the non--
uniform submesh generator. It has to be reiterated that the generation of a uniform submesh has
to be done only once during the preprocessing stagewhereas the non--uniformgenerator, in gene-
ral, has to be called at least every time step if not actually every iteration step.

(i) Input data: number of submesh elements in all coordinate directions and their
polynomial order, coordinates of nodes of (large--scale) element on physical and
computational domain

(ii) Determine velocity vector at element center

(iii) Determine unit vectors in r-- and s-- (and t--)direction

(iv) Determine projection of velocity vector onto unit vectors

(v) Calculate distance of middle node from the outflow boundary according to (8.6)

(vi) Determine the number of nodes and the length(s) of the submesh elements in all
coordinate directions

(vii) Initialize the counter for the number of equations and the number of nodes to zero,
respectively

(viii) Loop over nodes in first coordinate direction

(ix) Loop over nodes in second coordinate direction
(There has to be a third loop in the 3--D case)
Increase counter for number of nodes by one

(x) Calculate coordinates of node on parent (computational) domain

(xi) Calculate (large--scale) shape function values for node in order to determine
coordinates on global (physical) domain using the global (physical)
coordinates of nodes of (large--scale) element

(xii) Determine value of node for submesh ID--array (zero for boundary node)
(only necessary during the submesh creation for the first (large--scale)
element)
Increase counter for number of equations by one for no--boundary node

(xiii) Loop over all submesh elements

(xiv) Determine entries of IEN--array for submesh element
(only necessary during the submesh creation for the first (large--scale) element)

Algorithm 8.1 Uniform and non--uniform submesh generator (bold font: only non-uniform)
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8.1.3 Computational algorithm for the two--level finite element method

The description of the practical implementation of the two--level finite element method is con--
cluded by providing the reader with an algorithmic outline of themajor steps for the calculation.
This rough schedule is given by algorithm 8.2.

(i) Read (or compute) initial large--scale velocity field u0 and, if necessary, large--scale
pressure field p0 (small--scale values starting with zero for time--dependent residual--
free bubbles)
Initialize time counter n= 0

(ii) Generate uniform submesh

(iii) Time loop ( tn+1= tn+ δt)
Initialize iteration counter i= 0

(iv) Calculate and assemble right hand sides due to body forces, Neumann boundary
conditions and values from previous time step (→ F, N and Mun in (7.61)) as
well as Dirichlet boundary conditions (→ E

M
in (7.61) and E

C
in (7.62))

(v) Iteration loop ( i← i+ 1)

(vi) Loop over all large--scale elements

(vii) If necessary: non--uniform submesh generator

(viii) Loop over all small--scale elements of submesh

(ix) Calculate and assemble LHS for small--scale equations (→
(7.103) or (7.104), in variational form according to (8.1))

(x) Calculate and assemble nRFBe = ned nsd+ 1+ nsd RHS for
small--scale equations (→ (7.49)--(7.51) or (7.54)--(7.56),
respectively)

(xi) Solve small--scale equations→ result: nRFBe = ned nsd+ 1+ nsd
approximate bubble functions for current large--scale element

(xii) Loop over all small--scale elements of submesh

(xiii) Calculate and assemble bubble function LHS (→KUNSui in
(7.58), KPNSui in (7.59), GTU in (7.60) and GT P in (7.57))

(xiv) Calculate and assemble velocity--dependent part of large--scale
LHS, if there is no large--scale approximation for the iterative
convective velocity ui (→ KNSui in (7.58))

(xv) Calculate and assemble bubble function RHS (→ KFNSui in
(7.61) and GT F in (7.62))

(xvi) Calculate and assemble velocity--dependent part of large--scale LHS
in case of large--scale approximation for the iterative convective
velocity ui (→ KNSui in (7.58))
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(xvii)Calculate and assemble velocity--independent part of large--scale LHS
(→ G in (7.59) and GT in (7.60); add stabilizing term representing
small--scale continuity equation (’bulk viscosity’ term) to (7.58))

(xviii) Solve the resulting global system (→ (7.57))

(xix) Check convergence: if not converged, go to (v)

(xx) Check time: if end of simulation not reached, go to (iii)

Algorithm 8.2 Two--level finite element method for Navier--Stokes equations

8.2 Introducing a third level

The objects of investigation in this section are still the normalized residual--free bubble equations
(7.103) and (7.104). The primary focus, however, is on the quasi--static case (7.104) which reads
in variational form analog to (8.1)

wSM, ui⋅ ∇BSM
1

Ωe

+ ∇wSM, ν+ ν′e∇BSM
1

Ωe

= wSM, 1
Ωe

(8.7)

The corresponding variational equation for (7.103) is (8.1) with the subgrid viscosity ν′e added
in the same way as in (8.7). At this point, an important statement has to be made. Heretofore,
please imagine equation (8.7) without the subgrid viscosity ν′e. If onewere able to solve this basic
equation, at least up to the necessary resolution limit for a complete incorporation of all existing
scales in the sense of aDNS, a fully satisfying solution for the small scales up to the assumptions,
in particular the crucial one that the scales crossing the element boundaries are not taken into
account, would be achieved. As attractive this thought may be as unlikely is it, in general, due
to limited computer power. However, obtaining at least a good approximation of B1 would be
the second best choice and,more important, the onewhich can be afforded in general. To be sure,
the quality of the approximation as a whole depends on the quality of the approximation of ν′e
in the original equation.

8.2.1 ’Static’ modeling of unresolved scales

A ’static’ way of modeling the subgrid viscosity is provided, for instance, by the three model
formulations (7.99)--(7.101). All of them are handicaped by the obvious drawback of relying on
an a priori unknown constant. Here, the only alternative of static modeling without any constant
consists in the application of the calculation based on the element Reynolds number in
(7.84)--(7.85) to the artificial viscosity approach. This procedure will be used for one example
in section 9. For this, the matrix on the left hand side of (8.3) defined in (8.4) has to be enhanced
by adding the subgrid viscosity ν′e to the viscous term.

Secondly, the alternative representation of the effect of the unresolved scales in the small--scale
equation by using stabilizing terms in lieu of the subgrid viscosity may be revived. Thus, an
alternative version of a three--levelmethodwith a ’static’ third level is encountered. For instance,
a stabilizing term in the USFEM--version may be added to the quasi--static analog of the matrix
equation (8.3) such that
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KSM+ KSM, stab bSM= FSM+ FSM, stab (8.8)

where

Ke, SM, stab
ab

= 
ΩSM
e

ui⋅ ∇NSMa + ν∆NSMa  τ′e ui⋅ ∇NSMb − ν∆NSMb  dΩ (8.9)

and

Fe, SM, staba = 
ΩSM
e

ui⋅ ∇NSMa + ν∆NSMa  τ′e (1)dΩ (8.10)

The stabilization parameter due to Franca and Valentin (6.67)--(6.70) is used with the respective
reaction coefficient. The characteristic length of the submesh h′ replaces h.

8.2.2 Dynamic modeling of unresolved scales

Basic concept

Brezzi et al. (2000) suggest a dynamic tune--up for ν′e fromwhich a reasonablygood value should
arise. They assumeGuermond’s approach (7.99) to be thebasis of the dynamic algorithm. In con-
trast toBrezzi et al. (2000), it will be shown that there is no need for anymodel assumption, since
one is able to calculate the subgrid viscosity directly (in an approximate manner at least). For
this purpose, a sub--submesh (SSM) has to be chosen being slightly finer than the original sub-
mesh (SM) on which the variational equation (8.7) has to be solved as well. Comparing these
two solutions, the desired ’good’ value for ν′ewill be achieved. However, for this dynamic tune--
up to beworkable in that an explicit value can be obtained in the end, a criterion has to be establis-
hed.Motivated by insights from the theory of stabilizedmethods, Brezzi and co--workers require
the average integral of B1 on the large--scale element domain Ωe (see (6.65)) to be equal to the
corresponding value of the adequately resolved bubble for ν′e= 0 in (8.7) such that

1
|Ωe|

Ωe

B1(ν
′
e= 0) dΩe≈ 1

|Ωe|

Ωe

BSM
1 (ν′e) dΩe≈ 1

|Ωe|

Ωe

BSSM
1 (ν′e) dΩe (8.11)

where the solution on the sub--submesh is indicated by the superscript SSM. Criterion (8.11) go-
verns an iterative algorithm amounting to be some kind of extrapolation with the target of this
extrapolation (hopefully) being the goal: a ’good’ approximation of the analytical residual--free
bubble B1 for ν

′
e= 0. Variations of the criterion (8.11) potentially better suited for turbulent

flow applications are certainly conceivable and it is intended to pursue them in future.

Using the expansion of BSM
1 in (8.2), the applicability will be extended as compared to Brezzi

et al. (2000) where they have merely used an approximation with one degree of freedom on the
submesh. This approximation works quite well for convection--diffusion equations, as Brezzi
and co--workers were able to prove. However, transfering this strategy to the Navier--Stokes
equations does not work any more, at least for quadrilateral elements which are favored herein.
This failure is related to the equations for the ’pressure bubble functions’ (7.50) or (7.55), respec-
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tively. Observing the right hand side of (7.50) and (7.55), one may see that it changes in every
coordinate direction. Using one degree of freedom, for instance, in the center of the element per-
mits no distinction between the derivatives in the coordinate directions, i.e. the directional infor-
mation is lost. The two--dimensional situation for one of the shape functions of a bilinear quadri-
lateral element is displayed in Fig. 8.3.

Fig. 8.3: Shape function derivatives for node n: (a) parent domain; (b) ξ--der.; (c) η--der.
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However, in order to provide a simpler insight into the following equations, they are formulated
for one degree of freedom and extended to more than one afterwards. Thus, inserting (8.2) with
one degree of freedom (see Fig. 8.4) in (7.104) yields

bSM1 NSM1 , ui⋅ ∇NSM1 Ωe

+ ∇NSM1 , ν+ ν′e∇NSM1 Ωe

 = NSM1 , 1
Ωe

(8.12)

Fig. 8.4: 2x2 submesh: (a) shape function; (b) ξ--derivative; (c) η--derivative
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Sufficiently small variations of the velocity field within the large--scale element are assumed.
Realizing that the convective term has little effect in (8.12) due to its skew--symmetric character
in this case and the zero Dirichlet boundary conditions on the large--scale element boundaries,
(8.12) can be simplified to

bSM1 ∇NSM1 , ν+ ν′e∇NSM1 Ωe

= NSM1 , 1
Ωe

(8.13)

A few words concerning the preceding assumption are necessary. This supposition is probably
reasonable, if, for instance, the convective iterative velocity ui is replaced by the large--scale part
ui as in (7.54)--(7.56). This path will be followed in the numerical examples of laminar flow si-
tuations in this study. The fact that this is about to change drastically as soon as turbulent flow
regimes are entered has to be emphasized. In this regime, the replacement can be performed no
longer and, even more important, the variations of the velocity also within one large--scale ele-
ment domain become crucial. It is stuck to this procedure here keeping in mind, however, that
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it will likely be required to deviate from it for applications in turbulence. The average integral
of BSM

1 may be obtained from (8.13) as

1
|Ωe|

Ωe

BSM
1 dΩe= 1

|Ωe|

⎪⎪
⎧

⎩

Ωe

NSM
1

dΩe⎪⎪
⎫

⎭

2

ν+ ν′e 
Ωe

∇NSM
1
2 dΩe

(8.14)

Inserting the solution of the calculation on the sub--submesh according to the approximation
(8.11) on the left hand side of (8.14) yields, after someanalysis, an equation for the subgrid visco-
sity reading

ν′e=

⎪⎪
⎧

⎩

Ωe

NSM
1

dΩe⎪⎪
⎫

⎭

2


Ωe

∇NSM
1
2 dΩe 

Ωe

BSSM
1

dΩe

– ν=
f nSM

el, sd
,Ωe


Ωe

BSSM
1

dΩe

– ν (8.15)

Aside from the physical viscosity, two ingredients for the calculation of the subgrid viscosity
remain in the end. The integral of the bubble function BSSM

1 is obtained by first solving (8.7) for
the bubble function on the sub--submesh and then integrating this function over the element do-
main. Regarding the subgrid viscosity used for the solution, this will be done in iterativemanner
below. The function f nSMel, sd ,Ωe only depends on the number of submesh elements in every
spatial dimension and the geometry of the large--scale element domain. The discussion is confi-
ned to uniform submeshes with equal numbers of elements in every spatial dimension for this
dynamic algorithm. Fig. 8.4 depicts the shape function and the shape function derivatives for the
one--degree--of--freedom approximation.

Starting point of the elementwise iteration is an initial guess for the subgrid viscosity ν′e,0. The
core equation of the iteration amounts to be

ν′e,i+1=
f nSM

el, sd
,Ωe


Ωe

BSSM
1
ν′e,i dΩe

− ν (8.16)

The iteration will be completed, if the convergence criterion

ν′e,i+1− ν′e,i ≤ TOL= ν
10

(8.17)

is satisfied. The toleranceTOL has been chosen in accordancewithBrezzi et al. (2000) to enforce
a calculation of ν′ewithin an accuracy of one order of magnitude less than the physical viscosity
ν. In case of very low physical viscosity (a usual condition for turbulent flows), one might be
forced to raise the tolerance level slightly in order to confine the computational effort.
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Extension to the Navier--Stokes equations

Paving the ground for approximations of more than one degree of freedom, the following new
definition of f nSMel, sd ,Ωe in (8.15) and (8.16) is considered:

f nSMel, sd ,Ωe = 
nSM
dofs

B=1⎪⎪⎪⎪

⎪⎪⎪⎪
⎨

⎧

⎩

⎪⎪
⎧

⎩

Ωe

NSM
B

dΩe⎪⎪
⎫

⎭

2


Ωe

∇NSM
B
2 dΩe⎪⎪⎪⎪

⎪⎪⎪⎪
⎬

⎫

⎭

(8.18)

The underlying assumption of (8.18) is that the off--diagonal entries in thematrix resulting from
(8.7) are neglected justified by the predominance of the diagonal entries with respect to the off--
diagonal entries. This enables the decoupled calculation of the bSSMB and, thus, the derivation of
the same formula (8.15) with themodified f nSMel, sd ,Ωe in (8.18). Fig. 8.5 displays the situation
for 3x3 submesh elements showing the sumof the shape functions and the sum of the shape func-
tion derivatives. A general formula for f nSMel, sd ,Ωe can be derived in the case of rectangular
elements reading

f nSMel, sd ,Ωe =
⎪⎡⎣
nSMel, sd−1

nSM
el, sd

2ab⎪⎤⎦
2

4
3
nSM

el, sd
− 12a2+b2ab


= 3

4

nSM
el, sd
− 12

nSM
el, sd
4
 a3b3

a2+ b2
 (8.19)

with a and b denoting the side lengths of the rectangle simplifying to

f nSMel, sd ,Ωe = 3
8

nSM
el, sd
− 12

nSM
el, sd
4

|Ωe|2 (8.20)

in the square case. The reader may wish to verify formulas (8.19) and (8.20), for instance, for
the 3x3 submesh in Fig. 8.5. Since ν′e is proportional to f nSMel, sd ,Ωe, itmay beproven that equa-
tion (8.15) for the calculation of the subgrid viscosity shows the right behaviour: if |Ωe|→ 0,
then ν′e→ 0, and if nSMel, sd→∞, then likewise ν

′
e→ 0. This is exactly the behaviour such an

equation is supposed to show.

Fig. 8.5: 3x3 submesh: (a) sum of shape functions; (b) sum of ξ--der.; (c) sum of η--der.
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It is obvious that assumption (8.18) is a crude one, but after all it is one that works without being
forced to bring in immense additional effort for the computation for the third level. Furthermore,
please keep in mind that this dynamic algorithm is expected to replace a model based on an a
priori fixed constant. For adjudicating what is ’crude’ andwhat is ’fine’ in turbulencemodeling,
one has to bear in mind this starting position. Aside from this, more sophisticated extensions to
the multi--degree--of--freedom case are yet to be considered. One idea in this context may refer
to the technique ofmass lumping, see e.g. Hughes (2000), section7.3.2. Thisprocedure of diago-
nalizing matrices by various approaches has been used for mass matrices in solid and structural
mechanics as well as heat conduction successfully. Here, the viscous matrix (and the convective
as well as the reactive matrix in case they are taken into account additionally) would have to be
attacked by this technique. To the author’s knowledge, this has not been done for these types of
matrices as yet.Moreover, useful adaptions of this dynamic algorithm for higher--order elements
have to be considered.

This section is concluded by having a look at the computational algorithm for the dynamicmode-
ling herein after referred to as algorithm 8.3. Algorithm 8.3may be incorporated into Algorithm
8.2 for the two--level finite element method between step (vi) and (vii) in order to get the final
three--level finite element method. Moreover, step (ii) in algorithm 8.2 has to be extended by ge-
nerating an additional sub--submesh wherefore the same submesh generator (see algorithm 8.1)
with a larger number of submesh elements may be used.

(i) Initial guess for the subgrid viscosity ν′e,0 as well as calculation of tolerance TOL (→
(8.17)) and function f (→ (8.18))
Initialize iteration counter i= 0

(ii) Iteration loop ( i← i+ 1)

(iii) Loop over all elements of sub--submesh

(iv) Calculate and assemble LHS for small--scale equation (→ (8.7))

(v) Calculate and assemble normalized RHS for small--scale equation (→ (8.7))

(vi) Solve small--scale equation→ result: approximate normalized bubble function
for current large--scale element based on sub--submesh BSSM

1

(vii) Calculate integral of BSSM
1 on current large--scale element domain

(viii) Determine updated value of subgrid viscosity ν′e,i+1 (→ (8.16))

(ix) Check convergence (→ (8.17)): if not converged, go to (ii)

(x) Apply converged value of subgrid viscosity to solution process for small--scale
equation

Algorithm 8.3 Dynamic modeling of subgrid viscosity

Afinal remark has to bemade concerning the equation for thedetermination of the subgrid visco-
sity (8.16). It is easy to observe that it allows for negative values of the subgrid viscosity. The
permission for negative values might be interpreted as a form of modeling the backward energy
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cascade mechanism in turbulent flows described in section 5.2.3. This is a positive feature also
attributed to the dynamic model of Germano et al. (1991). The sum of the physical and the sub-
grid viscosity is strictly positive in (8.16) however. This is in linewith experience fromnumerical
tests of the dynamic model mentioned in section 5.2.3, which have shown that negative values
of the overall viscosity are potentially destructive for the stability of the simulation. After all,
the artificial condition (5.40) with ν′e replacing νT is already inherent in the just presented dyna-
mic modeling process.

Comparison to the dynamic modeling procedure of Germano et al. (1991) and remarks on
space selection

Fig. 8.6: Comparing dynamic procedure of Germano et al. (1991) to proposed procedure

E(À) ~ À–5∕3

ln À

lnE(À)

ln ÀDPGln À^DPG

Dynamic Procedure of
Germano et al. (1991)

Dynamic VMM--3--LES

lrs srs urs

unmodeled
RFB +
model estimate

exploit

model

lrs: large resolved scales
srs: small resolved scales
urs: unresolved scales

ln ÀVMM ln À′VMM

In Fig. 8.6, a principal comparison is drawn between the dynamic modeling procedure of Ger-
mano et al. (1991) (DPG) described in section 5.2.3 and the ’VMM--3--LES’ with the dynamic
modeling procedure just described. Besides the fact that the subgrid--scale model acts on the
complete range of scales in ’classical’ LES (which is certainly not a specific feature of the dyna-
mic modeling procedure), the crucial difference to be pointed out in Fig. 8.6 refers to the range
of scales exploited to fix the undetermined constant in the respectivemodel. In the dynamicmo-
deling procedure, the small resolved scales are exploited and the constant is calculated based on
the Germano identity. In the ’VMM--3--LES’ with the respective dynamic modeling procedure
of thiswork, the unresolved scales are, admittedly in a crudemanner yet, estimated and the resul-
ting model is than applied to the small resolved scales. Furthermore, the approximation of the
small resolved scales with the help of the localized residual--free bubble strategy has to be em-
phasized again.

As pointed out in section 5.2.3, the underlying idea (and certainly the reason for the success) of
the dynamic modeling procedure of Germano et al. (1991) has to be found in the hypothesis of
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the similarity between the unresolved scales and the small resolved scales. It is, however, assu-
redly unquestionable that no scales aremore similar to the unresolved scales than the unresolved
scales themselves. Thus, a dynamicmodeling procedure estimating the unresolved scales seems
to be promising in the author’s point of view, although the actual estimation still occurs in a crude
approach.

A final remark in this context surely has to be devoted to the important question of how large
the size of the space containing the large as well as the small resolved scales has to be chosen
absolutely and in comparisonwith eachother. The combined extensionof both spaces is certainly
restricted by the amount of computational effort which can be afforded overall. This essential
restriction for the size of both spaces in combination still leaves room for deciding on the relative
extension of the spaces though. A first basic requirement for the choice of the ’cutoff level’ of
the large--scale space surely demands it to cover, at least, the range of energy--containingmodes,
i.e., alternatively expressed, its location is pressuposed to be within the inertial subrange. This
basic requirement has already been taken into account in the various embodiments of theKolmo-
gorov energy spectrum in this work starting with Fig. 4.3. Beyond this rather trivial aspect, Sa-
gaut (2002), for instance, mentions that numerical tests for the dynamic modeling procedure of
Germano et al. (1991) have revealed an optimal value for the ’cutoff level’ associated with the
test filter to be about twice as large as the one associated with the basic filter. This may also be
accepted as a first hint for an adequate choice of the respective relation of large-- and small--scale
within the variational multiscale method. It is also refered to the related discussion in Hughes
et al. (2000a).

It is without doubt that the just addressed choices strongly affect the impact of a potential sub-
grid--scalemodel. On the one hand, the combined size of large-- and small--scale space influences
the overall impact. For an extensive (large plus small) resolution, there are few unresolved scales
left to be modeled. The overall impact of the subgrid--scalemodel will become crucial however,
if the (large plus small) resolution is rather poor. This perception is certainly valid for all ways
of performing LES in principle. On the other hand, the relative size of large-- and small--scale
space influences the specific impact with respect to the variational multiscale method. A domi-
nant large--scale space in comparison with the small--scale space leaves themajority of the scales
completely unmodeled. This results in a pure DNS eventually for the extreme case that all scales
(with no unresolved scales left) are actually contained in the large--scale space. In opposition to
this, a diminutive large--scale space tends towards the classical approach of LES again, since the
subgrid--scale model is associated with a substantial margin of the resolved scales. Here, the ex-
treme case with all scales (still leaving unresolved scales however) contained in the small--scale
space indeed has to be viewed as being the classical LES procedure again. For further discussion
of this, it is refered to Collis (2001).

Concluding this discussion, it may simply be reiterated that the absolute aswell as relative choice
of the respective spaces influences the overall procedure considerably. In fact, its actual selection
is an important parameter of themethod. Aside from this, it is undoubtful that the scope of discre-
tion for the particularmethod based on residual--free bubbles is explicitly limited. The restriction
of the small--scale solutions to individual element domains of the basic discretization basically
seems to demand a dominant large--scale space in return. Nevertheless, the numerical examples
of turbulent flow situations to be described in chapter 10 are executed with rather coarse large--
scale spaces, in order to gain some impression concerning the performance of this particularme-
thodunder these less comfortable circumstances. After all, this is also the only aspect the author’s
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availability of computational resources allows to pursue. The investigation of dominant large--
scale spaces inescapably associated with extremely fine basic discretizations poses a challenge
being far beyond the author’s prospects at this stage.

8.3 Future topics

8.3.1 Advanced boundary conditions for the residual--free bubble equations

May we believe in paradise?

In the first two sections of this chapter, efforts have been focussed on getting an approximate
solution for the residual--free bubble equation (7.103) or (7.104), respectively, as close to the
analytical solution as possible. With the help of the dynamic subgrid viscosity approach, there
may be hope that one will in fact succeed in achieving this goal. In order to pursue this computa-
tionally attractive strategy of localization for the small--scale solution and static condensation
subsequently, a potentially high prize had to be paid however. Artificial zero Dirichlet boundary
conditions for the small--scale part of the solution on Γe have to be accepted being undoubtedly
incorrect in general. It is intended to go beyond this ’zero--strategy’ now.

At first, let us think of the ’ideal’ residual--free bubble equation in every element for just a mo-
ment, i.e. the one with the correct Dirichlet and/or Neumann boundary conditions on Γe. This
would in fact be a situation of paramount attraction -- ’paradise’ for the three--level approach
from the point of view of the second level. The correct boundary conditions will not be accessi-
ble, however, and even a slight deviation from them will potentially leave us behind with an ill--
posed problem, let alone that the right problem is not solved anymore. Due to its great attraction,
this ’ideal’ solution is worth being kept in mind for the future yet.

A further idea in this context concerns the use of non--conforming bubbles. Farhat et al. (2001)
(see also Farhat et al. (2003)) have done this by introducing interelement Lagrange multipliers
and developing herewith a discontinuous enrichment method. Their enrichment contains free--
space solutions of the underlying homogeneous differential equation that are not represented by
the basic polynomial approximation. For the main goal, the Navier--Stokes equations the search
for such free--space solutions is certainly kindof ambitious andmostly impossible. TheLagrange
multipliers represent themeans for approximating the flow over the element boundaries Γe and,
thus, what has to be considered as the correct Neumann boundary conditions for the enrichment.
Consequently, some approximate boundary conditions are obtained, but it has to bepaid for them
in that additional degrees of freedom related to theLagrangemultipliers appear in the final equa-
tion system. The elementwise solution process of the residual--free bubble equation is replaced
by an actual elementwise static condensation process. Comparing this approach to the residual--
freebubble approach, itmaybe stated that better boundary conditions (which in fact never appear
as boundary conditions in the method) have to be expected. Furthermore, the user gets rid of the
elementwise solutions. For this purpose, it has to be paidwith an elementwise static condensation
(with potentially expensive matrix inversions), a larger final equation system and the necessity
to provide a framework for dealing computationally with the Lagrange multipliers.

The idea to be pointed out briefly in the following section is somewhat different to the ones ad-
dressed before. Here, the element edges in the 2--D case (and, likewise, the element faces and
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edges in the 3--D case) will be occupied by additional functions. Brezzi (2002) already suggested
the addition of, at least some (in fact not too many), edge functions with special shape. This
should be done in an iterative manner using information from previous solution steps. Themain
drawback is that, similar to the discontinuous enrichment method, all these additional functions
will appear in the final equation system, since they do not go away during the static condensation
process. In this context, it is further refered toBrezzi andMarini (2002) providing the readerwith
a very general framework related to augmented spaces and two--level methods.

Due to the aforementioned drawback of a larger equation system, the attention is now turned to
a different approach ensuring the final equation system to remain of the same size. Such an idea
was already pursued by Hughes et al. (1998). They add residual--free edge functions in 2--D as
a furthergoing means to resolve the remaining residual on the elements. It is straightforward to
think of a 3--D counterpart including also residual--free face functions. The problem of all these
edge functions being globally coupled is overcome by concentrating on one respective edge
which is linked to two elements. This is certainly a severe approximation, but they hope to get
some improvement with respect to the exclusive use of residual--free bubbles. However, this ap-
proach seems to be uninviting for the ultimate goal, the numerical simulation of turbulent flows
usually linkedwith very small physical viscosities. As youmay observe by inspecting (6.13) and
(7.16), the jump terms on the element boundaries which have been omitted in the wake of the
residual--free bubble approximation are both diffusiveor viscous terms, respectively. For theNa-
vier--Stokes equations, this is only the case for continuous pressure interpolations as a matter of
course. This means that by approaching very small diffusion or viscosity, respectively, the in-
fluence of these terms vanishes more and more. Therefore, it makes no sense to put extra effort
in taking into account these edge functions unless a diffusion--dominated problem has to be sol-
ved. For exactly this kind of problem, namely the Stokes problem, the benefit of these edge--
functions (here on a macro--element) was demonstrated by Franca and Russo (1996). The idea
of using such macro--elements for improving the solution quality was picked up by Sangalli
(2003) for elliptic problems with rapidly varying coefficients recently.

Finally, it is concentrated on the approach which was recently proposed by Franca et al. (2002,
2003). They call the resulting functions multiscale functions which are based on additional resi-
dual--free functions on the element edges (or element faces and edges in 3--D) determined in a
different procedure in comparison to the one just mentioned. The main drawback lies in the ne-
cessity to solve for these additional functions separately as will be seen below. The stimulation
for the formulation of the edge functions in the 2--D case goes back to Hou and co--workers who
have applied this to elliptic problems e.g. in Hou and Wu (1997) as well as Hou et al. (1999).
The concept is outlined in the following. The basic idea of Franca et al. (2002, 2003) will be ex-
tended to convection--diffusion--reaction equations aswell as to the3--D case in a straightforward
manner. This procedure has been implemented and the respective algorithms will be given be-
low. However, it has not been tested for numerical examples yet. Hence, nothing can be said ab-
out its actual performance. According to this, the description of this procedure has been subsu-
med under the label ’future topics’. Some early results of Franca et al. (2002, 2003) have shown
a superior performance of this procedure with respect to stabilized methods and approaches ba-
sed on residual--free bubbles with zero Dirichlet boundary conditions for reaction--dominated
diffusion--reaction problems. However, there remain serious doubts in the author’s point of view
that this superior performance can be transfered in an equivalent form to convection--dominated
convection--diffusion--reaction problems.
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Lower--dimensional residual--free functions

The goal is still the solution of the ’normalized’ small--scale bubble equation (7.103) or (7.104),
respectively. Now, the concept of Franca and co--workers extending the basic residual--free bub-
ble procedure by residual--free edge functions is followed. Refering to the residual--free bubble
approach for convection--diffusion--reaction equations, it is stuck to the separation of the weigh-
ting function space in (6.48), but a different separation for the solution function space is defined
as

Sφ≈ Sφ S′MF= SφΩe
E(Ωe) ; e= 1, ..., nel (8.21)

where E(Ωe) is the new infinite--dimensional multiscale function space in the element Ωe. Due
to the fact that the definition of theweighting function space has been kept alive, the elementwise
projected equation (6.49)--(6.50) and, likewise, the elementwise strong form (6.51) are still va-
lid. Thus, it is allowed to walk along the same path already followed before with the multiscale
functions now taking the place formerly held by the bubble functions.

The idea is illustrated for the 2--D case adding some comments to the more involved 3--D case.
The small--scale equation (6.51) with zero Dirichlet boundary condition (6.50) now reads

Lcdrφ
′
e=− Lcdrφ− f in Ωe (8.22)

L1−Dcdr φ
′
e= R− Lcdrφ− f on Γe (8.23)

φ′e= 0 on ∂Γe (8.24)

where φ′e denotes the new enriched small--scale function, ∂Γe in fact the nodes of the element
domain Ωe, R the trace operator acting on the right hand side here and

L1−Dcdr φ= L1−Dc φ+ L1−Dd φ+ L1−Dr φ= ar∂rφ− À∂rrφ+ σ(mod)φ (8.25)

represents for the convection--diffusion--reaction equation the lower--(here one--)dimensional
differential operator. r indicates the direction aligned with the respective edge of the element at
this juncture and, thus, ar the projection of the convective velocity vector a onto this direction.
At this point, the strategy becomes clear. Starting with condition (8.24) assuming that the small--
scale value at the element nodes is zero representing the necessary boundary conditions, (8.23)
is solved on every edge of Ωe. Please note that this amounts to be the solution of an ordinary
differential equation on each edge. The solution of (8.23) provides us with the sought--after
boundary conditions for the elementwise problem (8.22). With the aid of the zero conditions on
the nodes of the element being the harborage of the only (large--scale) nodal function values, it
is still allowed to apply the static condensation procedure.

In the 3--D case, this approach is substantially extended. Starting with zero Dirichlet boundary
conditions at each node of the element, 1--D ordinary differential equations have to be solved on
every edge of the element. This gives rise to boundary conditions for 2--D partial differential
equations restricted to the respective faces of the element which have to be solved afterwards.
Not until then, the actual 3--D elementwise problem (8.22) may be tackled. Perhaps, this short
outline of the 3--D case already gives an impression of the effort being necessary for doing this
in practice. Moreover, the extension to higher--order Lagrange elements seems to be difficult,
let alone the extension to higher--order hierarchical elements (values no longer nodal--based!),
which seems to be an undissolved mystery to the author for the time being.
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Nevertheless, this promising approach will be specified for 2--D applications of the Navier--Sto-
kes equations. For this purpose, the enhanced versions of (7.103) and (7.104) omitting the zero--
condition at the nodes read

ui⋅ ∇B1− (ν+ ν′e)∆B1+ 1δt+ β∇⋅ uiB1= 1 in Ωe (8.26)

ui, r ∂rB1− (ν+ ν′e)∂rrB1+
1
δt
B1= 1 on Γe (8.27)

and

ui⋅ ∇B1− (ν+ ν′e)∆B1= 1 in Ωe (8.28)

ui, r ∂rB1− (ν+ ν′e)∂rrB1= 1 on Γe (8.29)

where the normalized right hand side has to be replaced by the trace operators applied to the right
hand sides of (7.49)--(7.51) or (7.54)--(7.56) for the actual solution of the 1--D equations (8.27)
or (8.29), respectively. Of course, there is no term in the 1--D equation (8.27) being adequate to
the term in (8.26) containing the divergence of the velocity vector u.

Computational algorithms

The reader is now provided with the algorithms for this approach as well. Within the preproces-
sing stage, algorithm 8.1 for the (uniform) submesh generation in 2--D shall be replaced by algo-
rithm 8.4, if residual--free edge functions are included in the calculation. Themain algorithm8.5
for the computation of the residual--free edge functions may be integrated into the overall solu-
tion algorithm 8.2 for the Navier--Stokes equations between step (vii) and step (viii). If the dyna-
mic algorithm for the evaluation of the subgrid viscosity is used additionally, algorithm 8.4 will
have to be placed into algorithm 8.3 between step (ii) and step (iii). Please note that in the subse-
quent calculations of the bubble functions Dirichlet boundary values representing the resulting
approximate residual--free edge functions have to be considered in the assembly of the right hand
sides.

(i) Input data: number of submesh elements in all coordinate directions and their
polynomial order, coordinates of nodes of (large--scale) element on physical and
computational domain

(ii) Determine the number of nodes and the length of the submesh elements in all
coordinate directions

(iii) Loop over edges of large--scale element

(iv) Determine values of nodes for submesh edge ID--array (zero for boundary node)
(only necessary during the submesh creation for the first (large--scale) element)

(v) Initialize the counter for the number of equations and the number of nodes to zero,
respectively, as well as the counter for the number of supported equations to the overall
number of equations

(vi) Loop over nodes in first coordinate direction
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(vii) Loop over nodes in second coordinate direction
Increase counter for number of nodes by one

(viii) Calculate coordinates of node on parent (computational) domain

(ix) Calculate (large--scale) shape function values for node in order to determine
coordinates on global (physical) domain using the global (physical)
coordinates of nodes of (large--scale) element

(x) Determine value of node for submesh ID--array: zero for node of large--scale
element; otherwise, distinguish supported and non--supported node
(only necessary during the submesh creation for the first (large--scale)
element)
Increase counter for number of equations by one for non--supp. node
Increase counter for number of supported equations by one for supp. node

(xi) Determine edge--element--correlation array identifying for every edge--related
node number the respective submesh node number
(only necessary during the submesh creation for the first (large--scale)
element)

(xii) Loop over all edge--submesh elements

(xiii) Determine entries of IEN--array for edge--submesh element
(only necessary during the submesh creation for the first (large--scale) element)

(xiv) Loop over all submesh elements

(xv) Determine entries of IEN--array for submesh element
(only necessary during the submesh creation for the first (large--scale) element)

Algorithm 8.4 Uniform submesh generator including edge--submeshes

(xvi) Loop over all edges of large--scale element

(xvii)Loop over all elements of edge--submesh

(xviii) Calculate and assemble LHS for s.--s. edge equation (→ (8.27) or (8.29))

(xix) Calculate and assemble nRFBe = ned nsd+ 1 RHS for s.--s. edge equation
(→ trace operator acting on RHS of (7.49)--(7.51) or (7.54)-- (7.56), resp.)

(xx) Solve small--scale edge equation and evaluate for the nRFBe = ned nsd+ 1+ nsd RHS
→ result: approximate residual--free edge functions for current edge of large--s. element

(xxi) Copy solution in array for boundary values for following computation of bubble
function in current large--scale element

Algorithm 8.5 Computation of residual--free edge functions
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8.3.2 Alternative strategies

In this last section of chapter 8, two alternative strategies will be presented. Besides the favoured
local strategy of this work based on the use of residual--free bubbles and the also introduced glo-
bal concept based on the use of hierarchical bases (sections 6.2.1 and 7.2.1), two alternative ap-
proaches are proposed here, which may in future serve as a way to implement the variational
multiscalemethod practically into a finite elementmethod. On the one hand, another type of hie-
rarchical bases is exemplified and, on the other hand, the (at this time highly adored) concept
of discontinuousGalerkinmethods (DGM) is brought into play. Aswill be seen below, bothme-
thods, however, suffer from the same drawback having forced the author to refrain from a practi-
cal implementation up to now.

Hierarchical finite element method based on the partition of unity method (PUM)

The hierarchical bases to be presented briefly in the follwing predicate on the idea of the partition
of unitymethod (PUM) presented inMelenk andBabuska (1996) aswell asBabuska andMelenk
(1997). Taylor et al. (1998) developed a finite element method based on this general framework.
The key point is the structure of the finite element function which Taylor et al. (1998) propose
to look like

φh= 
ndofs

B=1
NkB φB+ PkBbB = 

ndofs

B=1
NkBφB+ NkBP

k
BbB (8.30)

compared to the usual finite element functions (3.32), for instance, for the scalar quantity φ sub-
ject to a convection--diffusion--reaction equation. The superscript kdenotes the polynomial order
of the basic element interpolation. The first term on the right hand side of (8.30) constitutes the
large--scale approximation being completely similar to (6.19) within the basic hierarchical con-
cept. The second term on the right hand side of (8.30) represents the small--scale approximation,
which is an additional polynomial term of one order higher associated with the (large--scale) de-
grees of freedom (usually nodes in this concept exclusively) being the only number of degrees
of freedom eventually. The readermay ascertain a striking affinitywith the residual--freebubbles
concept in this respect. The chosen polynomial orders may vary from one degree of freedom to
the other in this approach. Two forms of the additional polynomials in the 1--D case reading in
row vector representation as

PkB(x)= x− xB
k+1 x− xB

k+2
... (8.31)

and

PkB(x)= xk+1− xk+1B
 xk+2− xk+2B

 ... (8.32)

respectively, were proposed by Taylor et al. (1998). The quadratic polynomial addition in the
2--D case, for example, according to form (8.31) looks like

PkB(x)= x1− x1B
2 x1− x1Bx2− x2B x2− x2B

2 (8.33)

According to this, the column vector of the respective parameters reads
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bB=⎪⎪
⎡

⎣

bx1x1
B

bx1x2
B

bx2x2
B

⎪⎪
⎤

⎦
(8.34)

The drawback of this approach and, likewise, the reason for not applying it yet lies in the notedly
increased number of functions for higher--order approximations with respect to the basic hierar-
chical concept. Analyzing the number of functions for linear to quartic interpolated triangles and
quadrilaterals in 2--D, i.e. based on the highest polynomial order appearing, the results for the
basic hierarchical concept (HBFEM) and the just presented concept (PUFEM) reported in Table
8.1 are obtained. The enormous increase related to the PUFEM--concept for higher polynomial
ordersmay easily be observed. In the context of theNavier--Stokes equations, this problembeco-
mes considerably worse, since it has to be dealt with ’scalar’ velocity variables in every coordi-
nate direction, i.e. up to 3, and the additional scalar pressure variable. Hence, the trouble will
be quadrupled. After all, this drawback has to be judged as a vital handicap for the time being,
since the limitation of the already huge number of degrees of freedom for the problems of this
work forms a crucial objective. Nevertheless, this concept should be kept in mind in the author’s
point of view.

HBFEM--tri. PUFEM--tri. HBFEM--quad. PUFEM--quad.

linear 3 3 4 4

quadratic 6 12 8 16

cubic 10 21 12 28

quartic 15 30 17 40

Table 8.1 Number of degrees of freedom related to hierarchical concepts for 2--D elements

Discontinuous (in space) Galerkin methods (DGM)

It is definitely impossible to present the complete concept of discontinuous Galerkin methods
in a short section. Consequently, it is refrained from trying out to do this here and, thus, it is focus-
sed on the basic idea, some references providing the details as well as the two major advantages
and the crucial drawback of these methods for the underlying problems. The basic idea of these
methods consists in a somewhat more ’autonomous’ treatment of each element of the discretiza-
tion. More precisely spoken, a polynomial approximation within each element is enforced, but
these approximations are allowed to be discontinuous between adjoining elements. The resulting
gap between values on either side of an element boundary is tried to be ’closed’ by enforcing
continuity weakly in the discontinuous Galerkin formulation.

Concerning the details of discontinuous Galerkin methods, it is refered to the respective litera-
ture. In particular, the compilation of Cockburn et al. (2000) containing, amongothers, a descrip-
tion concerning the history and state of the art of thesemethods is surelyworthmentioning. Besi-
des this, it is refered to e.g. Baumann and Oden (1999a, 1999b) for work related to convection--
diffusion problems as well as the Euler and Navier--Stokes equations and Engel et al. (2002) for
an exhaustive comparison of continuous and discontinuous Galerkin methods combined with
stabilizedmethods. Concerning the last reference, the reader should not be distracted by the title
of the publication related mainly to problems being actually far besides the problems of this
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work. The comparing part of this paper relates to convection--diffusion problems as well. First
steps towards an application of discontinuous Galerkin methods for the numerical simulation of
turbulencewithin the framework of thevariationalmultiscalemethod have recently beenpresen-
ted in Collis (2002) as well as Collis et al. (2003).

Two major advantages may be ascribed to the discontinuous Galerkin method in the context of
fluid mechanics. On the one hand, potential velocity oscillations described in section 3.4.1 may
be precluded by avoiding to prescribe Dirichlet boundary conditions at the outflow boundary.
Nevertheless, instabilities can be exhibited for certain problems requiring, for instance, the intro-
duction of stabilizing techniques in order to overcome these shortcomings, confer e.g. Engel et
al. (2002). On the other hand, the discontinuous Galerkin method provides a formulation being
conservative within each element. This aspect of local conservation is emphasized in Hughes et
al. (2000a) to be an attribute for methods used for LES. However, the continuous Galerkin me-
thodmay also be qualified in a straightforwardmanner to be an elementwise conserving scheme.
This can be done by adding a postprocessing procedure proposed in Hughes et al. (2000b) or
Hughes (2000), p. 107, respectively. In section 7.2.3, it has already been indicated that the treat-
ment of the small scales in the primarymethod of thisworkguarantees elementwise conservation
due to chosen approach based on residual--free bubbles. Within a thought experiment, one may
slightly alter the presented three--level method by just using a discontinuous Galerkin method
on the first level in lieu of the continuous Galerkin method without any further changes on the
second and third level. This small change would guarantee the method to be completely conser-
ving in an elementwise form.As already indicated, the same goalmay alsobe achieved in an even
simpler approach byadding the aforementioned postprocessingprocedure to the presented conti-
nuous method.

The serious drawback is the same as before in the context of the hierarchical bases related to the
partition of unity method. The number of degrees of freedom is substantially increased, since
every element ’meeting’ at a certain node of the discretization brings in its particular degree of
freedom due to the concept. An analysis similar to what has been done in Table 8.1 was perfor-
med in Engel et al. (2002) for 1--D, 2--D and 3--D elements. The crucial difference with respect
to the PUFEM--concept is that here the ratio relating the number of degrees of freedom for the
discontinuous Galerkin method to the one for the continuous Galerkin method reading e.g. for
2--D quadrialaterals

ndofs(DGM)

ndofs(CGM) = k+ 1
k
2 (8.35)

aims at unit value for increasing polynomial order k. For the practical polynomial orders indica-
ted in Table 8.1, however, (8.35) results in a ratio of 4, 2.25, 1.78 and 1.56 for linear, quadratic,
cubic and quartic interpolations, respectively. For themostly used linear and quadratic interpola-
tions, these ratios are even worse than the ones for the PUFEM--concept (1 and 2, respectively),
confer Table 8.1. For linear interpolations, the discontinuous Galerkin may simply be categori-
zed as being ’horrible’ from the point of view of required effort to the author’s mind.
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99(9 Numerical examples of laminar flow situations

This chapter presents numerical simulations of laminar flow situations using the two-- and three--
level finite element methods as well as the stabilized method of USFEM--type described above.
Additionally, some hints will be given for the interpretation of the results of one of these exam-
ples with regard to turbulent flow simulations. The only restriction to be dealt with in the follo-
wing examples consists in focussing on the preferred choice of quadrilateral elements. Apart
from this, the influence of a variety of parameters on the results will be tested. For the submesh
of the two--levelmethod, a uniform 4x4--element discretization in 2--D anda uniform4x4x4--ele-
ment discretization in 3--D is usually chosen, respectively. For the three--levelmethod, the afore-
mentioned submesh discretization is usually employed on the sub--submesh level and a 3x3--(or
3x3x3--)element discretization is used for the submesh level. Five flow situations have been se-
lected covering a variety of demands on the numerical methods. Some remarks concerning the
computational tools used for these sample calculations are provided in appendix C.

First of all, the 2--D stationary problem of an impinging fluid flow is demonstrated, for which
a closed--form analytical solution is known. The second example is the famous lid--driven cavity.
In this 2--D flow situation, a stationary solution is searched for achieved by using a stationary
solver for lower Reynolds numbers and an instationary solver for higher Reynolds numbers. The
description of this lid--driven cavity flowwill be augmented by adding some remarkswith regard
to turbulent regimes. The geometric situation of the cavity is also the origin of the third example
where an oscillating lid is introduced distinguishing it from the former classical version of the
lid--driven cavity. This example should serve as a challenging instationary flowproblem. A clas-
sical instationary example is represented by the 2--D flow past a circular cylinder constituting
the fourth numerical test here. It is concluded with a 3--D example, the so--called Beltrami flow.
This example combines three attractive featureswhich cannnot bemet elsewhere in this unifica-
tion according to Ethier and Steinman (1994). It describes a fully three--dimensional instationary
flow situation, all terms in the Navier--Stokes equations play a crucial role, i.e. no degeneration
in the sense that one or more terms are identically zero, and a closed--form analytical solution
exists.

9.1 Impinging fluid flow (2--D)

This problem consists of a jet impinging upon a wall with a controlled body force on a domain
Ω= [0, 1]× [0, 1] and can be found e.g. inHendriana andBathe (2000). The situation isdepic-
ted in Fig. 9.1(a). A slip boundary condition is assumed on the surface of the left wall.

The body force functions are

f1= 5x1x
8
2+ 10x1x

3
2+ 60νx1x

2
2 (9.1)

f2= 0 (9.2)

where the kinematic viscosity ν is assumed to be equal to the dynamic viscosity m, i.e. the fluid
density is Ã= 1. The analytical solution of the problem then reads

u1=−5x1x42 (9.3)
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u2=−
1
2
+ x52 (9.4)

p= 1
2
x52−

1
2
x102 + 5νx42 (9.5)

Two quite different flow regimes are considered, a diffusion--dominated flow with ν= 10 and
a convection--dominated flowwith ν= 0.001. TheReynolds number based on the chosenvisco-
sity, the length of the domain and the maximum velocity is Re= 0.5025 and Re= 5025, re-
spectively. Uniform discretizations with 4x4, 8x8 and 16x16 elements are used. The results in
terms of the velocity vectors and the pressure distribution for the diffusion--dominated as well
as the convection--dominated flow obtained by using the finest mesh with 16x16 hierarchical
quadratic elements are displayed in Fig. 9.1(b) and Fig. 9.2, respectively.

Fig. 9.1: Impinging fluid flow:(a) geometry, boundary conditions and body force; (b)
velocity vectors on colored velocity distribution obtained by using 16x16
hierarchical quadratic elements
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The purpose of this numerical example is manifold. First of all, it is intended to test the perfor-
mance of higher--order elements, namely quadratic and cubic elements. Deviating from the pre-
ponderant use of higher--order elements based on Lagrange shape functions, higher--order ele-
ments based on hierarchical shape functions are prefered in this example as described in the
preceding chapters. Aside from the type of elements used, this numerical example seems to be
’well--suited’ for testing higher--order elements, since the use of linear elements leads to bad re-
sults for the pressure in a diffusion--dominated flow regime, confer Fig. 9.3. In Fig. 9.3(a) (cor-
responding to Fig. 9.2(a)), the situation is depicted for the stabilized method with linear ele-
ments. Of course, using the two-- and three--level method bears exactly the same phenomenom.
This wrong behaviour of the pressure results from the inability of linear elements to represent
the viscous part of the stabilizing term in the sense of PSPG. In the end, the effectmay be blamed
to be a virtual natural boundary condition for the pressure enforced in a weak sense. For elabora-
tion of this topic, please consult e.g. Wall (1999). Besides this particular problem for flow situa-
tions with high viscosities, the pressure solution using linear elements in case of low viscosities
(see Fig. 9.3(b)) is obviously also a good deal worse than the one in Fig. 9.2(c) obtained with
hierarchical quadratic elements.
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Fig. 9.2: Pressure solution obtained by using 16x16 hierarchical quadratic elements: (a)
pressure isolines on colored pressure distribution for diffusion--dominated flow;
(b) pressure distribution along x2 --axis for diffusion--dominated flow; (c)
pressure isolines on colored pressure distribution for convection--dominated
flow; (d) pressure distribution along x2 --axis for convection--dominated flow
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Despite the spoilt pressure results, the solutions obtained with the help of linear elements are inc-
luded in the convergence diagrams (see Figs. 9.4--9.6). Themain focus is on quadratic and cubic
elements, however. The error of the velocity solution is measured using the L2--norm subject to

eu0 =
‖ u− uh ‖0
‖ u ‖0

=
⎪⎪⎪⎪⎪⎪

⎧

⎩


Ω

u− uh2 dΩ


Ω

u2 dΩ

⎪⎪⎪⎪⎪⎪

⎫

⎭

1
2

(9.6)

the error of the velocity solution using the H1--norm subject to
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Fig. 9.3: Pressure isolines and colored pressure distribution on 16x16 mesh with linear
elements: (a) diffusion-- dominated flow; (b) convection--dominated flow

(a) (b)

eu1 =
‖ u− uh ‖1
‖ u ‖1

=
⎪⎪⎪⎪⎪⎪

⎧

⎩


Ω

u− uh2+ ∇u−∇uh2 dΩ


Ω

u2+ (∇u)2 dΩ

⎪⎪⎪⎪⎪⎪

⎫

⎭

1
2

(9.7)

and the error of the pressure solution in the L2--norm subject to

ep
0
=
‖ p− ph ‖0
‖ p ‖0

=
⎪⎪⎪⎪⎪⎪

⎧

⎩


Ω

p− ph2 dΩ


Ω

p2 dΩ

⎪⎪⎪⎪⎪⎪

⎫

⎭

1
2

(9.8)

For the stabilized methods, uh= u and ph= p, since there are no explicit small--scale parts of
the velocity and the pressure. For the two-- and three--level methods, the small--scale part of the
velocity is incorporated into the error calculation for the velocity by using uh= u+ u′h′where
the small--scale part depends on the characteristic length h′of the chosen submeshdiscretization.
For this example, a ’static’ version of the three--levelmethod according to section8.2.1 is applied
by adding an artificial viscosity to the second level. Since it is not possible to use the dynamic
algorithmof section8.2.2 for higher--order elements as yet, the ’static’way ofmodeling theunre-
solved scales is currently the only opportunity for treating all element types (linear and higher--
order) alike in the context of a three--level method.
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Fig. 9.4: Velocity error for diffusion--dominated flow: (a) L2--norm; (b) H1--norm

1
h

eu0

203

linear

quadr.

cubic

slope 2

slope 3

slope 4

1
h

eu1

203

linear

quadr.

cubic

slope 1

slope 2

slope 3

(a) (b)

100 100

10−1
10−1

10−2

10−210−3

10−310−4

10−4
10−5

10−5
10−6

10−7

two--level
method

USFEM

theoretical
slope

Fig. 9.5: Velocity error for convection--dominated flow: (a) L2--norm; (b) H1--norm
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Fig. 9.6: Pressure error in L2--norm: (a) diffusion--dom. flow; (b) convection--dom. flow
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Fig. 9.4 and Fig. 9.5 display the velocity error in the L2--norm and in the H1--norm. For the diffu-
sion--dominated flow (Fig. 9.4), the convergence rates which have to be expected from theoreti-
cal error analysis are accurately matched by both the two--level method and the stabilized me-
thod. The two--level method exhibits a slightly smaller error in this context. The use of the
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three--level method is certainly useless for a diffusion--dominated flow, since no gain can be ex-
pectedwith regard to the two--levelmethodhere. This changes drasticallywithin the convection--
dominated flow, see Fig. 9.5. The actual error can be reduced significantly by using the three--le-
vel method. Particularly, the two--level method is no longer able to guarantee an acceptable error
in the H1--norm. This deficiency is amplified for higher--order elements. This point is picked up
again after discussing the pressure error. Apart from this, the stabilizedmethod of USFEM--type
works fine most of the time for both regimes as anticipated, and the three--level method shows
superior performance especially for the hierarchical cubic element.

The convergence rate of the pressure error for the diffusion--dominated casematches the theore-
tically expected value of suboptimal rate analyzed by Hughes et al. (1986) for the Stokes equa-
tion (the rate for the linear elements being even higher, however), see Fig. 9.6(a). In Fig. 9.6(b),
it may be observed that in the convection--dominated regime the error converges at about one
order higher, i.e. actually at an optimal rate. Furthermore, it may be gathered from both diagrams
in Fig. 9.6 that there is virtually no difference between the pressure results using any of the me-
thods.

Fig. 9.7: Exemplary velocity bubble function for element in the upper right corner of 8x8
linear elements: (a) element identification; (b) two--level method for diffusion--
dominated flow (factor 1000); (c) two--level method for convection--dominated
flow (factor 1); (d) three--level method with artificial subgrid viscosity for
convection--dominated flow (factor 10)
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The reason for the failure of the two--level method in solving the velocity for convection--domi-
nated flows (see Fig. 9.5(b)) is clearly due to the fact that the chosen 4x4 submesh is not able
to resolve all the small scales beyond the basic discretization level. This can be observed in Fig.
9.7 showing an exemplary approximated residual--free (velocity) bubble for thediffusion--domi-
nated case as well as for the convection--dominated case with and without the introduction of a
third level. Please note the respective amplification factors within the illustration, in order to ca-
tegorize accurately the respective bubble functions. It is obvious that the bubble function resul-
ting from the application of the two--level method in the convection--dominated case is not stable
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(see Fig. 9.7(c)). This problem is overcome by the introduction of the third level in form of an
artificial viscosity on the second level (see Fig. 9.7(d)).

Finally, the influence exerted by changes of various parameters for the two-- and three--levelme-
thod has been investigated. To be sure, this represents nothing more than a spot check. It may,
however, give some hints or confirm some speculations. The results for the diffusion--dominated
regime are summarized in Table 9.1 as well as the results for the convection--dominated regime
in Table 9.2. Expectedly, the inclusion of the small--scale continuity equation is as irrelevant for
the solution of a diffusion--dominated flow as the use of a Shishkin--type non--uniform submesh.
Some improvement may be reached by using a more refined submesh either by increasing the
number of elements or enhancing the polynomial order of the existing elements. For a convec-
tion--dominated flow, there is in fact a significant impact which has to be credited to the small--
scale continuity equation. As already anticipated during the course of section 8.1.2, neither the
use of a Shishkin--type submesh nor the refinement of the submesh is helpful in improving the
solution quality due to the very thin boundary layers which have to be resolved within the ele-
ments. Some gain in solution quality is merely achieved by the use of the three--level finite ele-
ment method with an artificial subgrid viscosity.

standard case with 4x4 subm. 1.0475 e--02 2.8195 e--04 5.7233 e--03

change of parameters L2--error pressure L2--error velocity H1--error velocity

without s.--s. continuity equat. 1.0475 e--02 2.8195 e--04 5.7233 e--03

4x4 Shishkin--type submesh 1.0475 e--02 2.8195 e--04 5.7233 e--03

8x8 submesh 5.9532 e--03 2.2538 e--04 4.4482 e--03

4x4 quadratic submesh 4.9094 e--03 2.0863 e--04 4.1095 e--03

Table 9.1 Error investigation for parameter changes for two--level method with 8x8 hierar-
chical quadratic elements and 4x4 submesh -- diffusion--dominated flow

two--level with 4x4 submesh 4.2724 e--02 4.9094 e--03 8.0184 e--02

change of parameters L2--error pressure L2--error velocity H1--error velocity

without s.--s. continuity equat. 7.8976 e--02 9.4986 e--03 9.7626 e--02

4x4 Shishkin--type submesh 4.2037 e--02 6.3121 e--03 7.6307 e--02

8x8 submesh 3.6441 e--02 4.2804 e--03 7.4143 e--02

8x8 Shishkin--type submesh 4.3320 e--02 4.9786 e--03 7.8460 e--02

4x4 quadratic submesh 3.3957 e--02 3.9835 e--03 9.1148 e--02

4x4 + artif. viscosity (three--l.) 2.5325 e--02 3.6829 e--03 1.5475 e--02

4x4 + USFEM (three--level) 4.1586 e--02 4.6269 e--03 3.6964 e--02

Table 9.2 Error investigation for parameter changes for two--level method with 8x8 hierar-
chical quadratic elements and 4x4 submesh -- convection--dominated flow
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9.2 Lid--driven cavity flow (2--D)

9.2.1 Description and results for flow example

This standard benchmark problem is considered on a domain Ω= [0, 1]× [0, 1] where a hori-
zontal velocity of unit value was prescribed along the lid at x2= 1. The situation is depicted in
Fig. 9.8(a). The pressure is prescribed to be zero at the midpoint of the cavity bottom in order
to fix the constant the pressure is determined up to through the formulation. The more challen-
ging non--leaky boundary conditions are assumed, i.e. the left and the right wall were closed up
to the lid. The prescribed velocity distribution is confined by the so--called ’ramp condition’ per-
mitting the velocity to go down from unit value at the next to last corner node to zero at the last
corner node. As a result of the prescribed flow at the top of the cavity, a recirculation region is
set up bearing a primary vortex in the middle of the cavity. Depending on the Reynolds number
(and this is actually the interesting and important phenomenom), a number of further secondary
vortices in the corners of the cavitymay be observed. The highest number of vortices to be achie-
ved in case of a Reynolds number up to 10000 is six with one additional vortex in the lower right
corner being hardly observable. See Fig. 9.8(b) for a sketchof thesevortices. Due to the character
of the cavity problem, it is a well--suited test for the introduction of artificial numerical viscosity
and the accurate prediction of vortex development.

Fig. 9.8: Lid--driven cavity flow: (a) geometry and boundary conditions; (b) sketch of
vortices; (c) mesh 32x32
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Within the sample calculations, a wide range of Reynolds numbers, namely 400, 1000, 5000 and
10000, is covered. With increasing Reynolds number, the basic discretization is refined leaving
the submesh parameters constant yet. Startingwith a 32x32mesh for Reynolds numbers 400 and
1000, a 50x50 mesh for Reynolds number 5000 and two discretizations (64x64 and 80x80) for
Reynolds number 10000are used.All of thesemeshes consist of linear elements and are similarly
refined towards the walls with a proportion of 1:5 for the largest element in the middle and the
smallest element at the wall. This is equally done in both spatial directions (see Fig. 9.8(c)). The
calculations for Reynolds numbers 400 and 1000 are performed using a stationary solver whe-
reby an instationary solver served for the solution of the problems with higher Reynolds num-
bers. The achievement of a stationary solution is stated, if the normalized velocity and pressure
deviations within one time step are lower than a chosen tolerance of 10−6. To compare some
of the results, those of Ghia et al. (1982), which have become a standard reference in the mean-



143

time, are considered. They have been obtained from a very fine grid of 129x129 and 257x257,
respectively, applying a second--order accurate finite difference method.

Deviating from the frequent practice of comparing the velocity profiles of Ghia et al. (1982), the
focus is on two other interesting aspects of the cavity flow, the pressure and the vortex formation.
First of all, the pressure results are analyzed. In Fig. 9.9, the pressure isolines obtained by using
the USFEM as well as the two-- and the dynamic three--level method of chapter 8 are depicted
for every Reynolds number. The minimum and maximum values are extracted in Table 9.3. It
may be observed that the two--level method mostly introduces less numerical viscosity allowing
the extreme pressure values in the top left (negative) and right (positive) corner to develop wi-
thout excessive damping. This phenomenom has also been observed by Franca and Nesliturk
(2001) as well as Nesliturk (1999) and can be confirmed here.

two--level method three--level meth. USFEM

Re=400, mesh 32x32 --1.7686 / 2.9723 --1.1974 / 2.4579 --0.5004 / 1.6748

Re=1000, mesh 32x32 --0.6070 / 1.7204 --0.3839 / 1.5537 --0.1916 / 1.1138

Re=5000, mesh 50x50 --0.1297 / 1.1504 --0.1095 / 1.1732 --0.1107 / 0.9174

Re=10000, mesh 64x64 --0.0730 / 1.0465 --0.0904 / 1.1278 --0.0975 / 0.8774

Re=10000, mesh 80x80 --0.1156 / 1.1336 --0.3153 / 1.2038 --0.1170 / 0.9377

Table 9.3 Minimum and maximum values of pressure for various Reynolds numbers and
discretization

The most interesting feature is the genesis of a varying number of vortices inside the cavity. Fig.
9.10 shows the streamlines displayed on the colored vorticity distribution for Reynolds numbers
1000, 5000 and 10000. Please compare them with the sketch in Fig. 9.8(b). A nice quantitative
comparison consists in determing the location of the respective vortex centers. This is executed
in Table 9.4 for the stabilizedmethod, the two--level and the three--levelmethod. For comparison
reasons, the aforementioned data from Ghia et al. (1982) as well as results fromWall (1999) ob-
tained unexceptionally on the very fine 80x80mesh with a GLS--type stabilization are included.
The stabilizedmethod inWall (1999) differs from theUSFEM--type stabilizedmethod used here
merely in partial sign changes within the differential operator acting on the weighting function
which have already been mentioned in section 7.3.1. Moreover, there are slight differences in
the definition of the stability parameters. The (hardly recognizable) seventh vortex in the lower
right corner is omitted, although it is resolved by everymethodwith the help of a 80x80 discreti-
zation. As a measure for the accuracy of the respective methods, the total deviation including
all resolved vortices as well as the deviation per resolved vortex with regard to the data of Ghia
et al. (1982) is determined in Table 9.5. Please note the high accuracy of the two-- and three--level
method in predicting the correct vortex centers in spite of the partly verymuch coarser basic dis-
cretizations with respect to Wall (1999). Both methods give better predictions than the USFEM
throughout using the same basic discretization. Furthermore, it can be observed that there is in
fact no gain in this case using the three--level method.
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Fig. 9.9: Pressure isolines (50 lines between minimum and maximum value) on colored
pressure distribution: left: two--level method; middle: three--level method; right:
USFEM; from top to bottom: Re=400 with 32x32 mesh, Re=1000 with 32x32
mesh, Re=5000 with 50x50 mesh, Re=10000 with 80x80 mesh
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Fig. 9.10: Streamlines on colored vorticity distribution (ranging from --5 (blue) to +5
(red)) obtained by using the two--level method: left: Re=1000 with 32x32 mesh;
middle: Re=5000 with 50x50 mesh; right: Re=10000 with 80x80 mesh

Vortex 1 Vortex 2 Vortex 3 Vortex 4 Vortex 5 Vortex 6

Re = 1000

two--level
32x32

0.5312 /
0.5664

0.8638 /
0.1112

0.0838 /
0.0776

three--level
32x32

0.5310 /
0.5668

0.8631 /
0.1113

0.0835 /
0.0774

USFEM
32x32

0.5317 /
0.5680

0.8623 /
0.1107

0.0803 /
0.0768

Wall (99)
80x80

0.5308 /
0.5660

0.8643 /
0.1115

0.0832 /
0.0775

0.9941 /
0.0066

Ghia et al.
(1982)

0.5313 /
0.5625

0.8594 /
0.1094

0.0859 /
0.0781

0.9922 /
0.0078

Re = 5000

two--level
50x50

0.5154 /
0.5358

0.7941 /
0.0683

0.0725 /
0.1387

0.0618 /
0.9087

0.9748 /
0.0209

three--level
50x50

0.5152 /
0.5360

0.7923 /
0.0683

0.0724 /
0.1385

0.0618 /
0.9083

0.9725 /
0.0222

USFEM
50x50

0.5156 /
0.5373

0.7922 /
0.0683

0.0705 /
0.1407

0.0613 /
0.9068

0.9659 /
0.0281

Wall (99)
80x80

0.5148 /
0.5362

0.7959 /
0.0706

0.0728 /
0.1365

0.0624 /
0.9076

0.9728 /
0.0223

0.0070 /
0.0073

Ghia et al.
(1982)

0.5117 /
0.5352

0.8086 /
0.0742

0.0703 /
0.1367

0.0625 /
0.9102

0.9805 /
0.0195

0.0117 /
0.0078
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Re = 10000

two--level
64x64

0.5126 /
0.5299

0.7688 /
0.0546

0.0571 /
0.1702

0.0671 /
0.9115

0.9302 /
0.0736

0.0168 /
0.0203

two--level
80x80

0.5119 /
0.5306

0.7608 /
0.0549

0.0582 /
0.1651

0.0697 /
0.9102

0.9293 /
0.0717

0.0164 /
0.0188

three--level
64x64

0.5124 /
0.5301

0.7660 /
0.0543

0.0570 /
0.1702

0.0672 /
0.9111

0.9287 /
0.0765

0.0170 /
0.0206

three--level
80x80

0.5117 /
0.5308

0.7572 /
0.0545

0.0582 /
0.1646

0.0700 /
0.9099

0.9279 /
0.0732

0.0165 /
0.0189

USFEM
64x64

0.5127 /
0.5314

0.7662 /
0.0555

0.0557 /
0.1727

0.0665 /
0.9112

0.9266 /
0.0837

0.0170 /
0.0201

USFEM
80x80

0.5118 /
0.5317

0.7558 /
0.0547

0.0573 /
0.1660

0.0692 /
0.9099

0.9244 /
0.0802

0.0163 /
0.0184

Wall (99)
80x80

0.5064 /
0.5284

0.7548 /
0.0555

0.0578 /
0.1659

0.0709 /
0.9092

0.9266 /
0.0791

0.0138 /
0.0163

Ghia et al.
(1982)

0.5117 /
0.5333

0.7656 /
0.0586

0.0586 /
0.1641

0.0703 /
0.9141

0.9336 /
0.0625

0.0156 /
0.0195

Table 9.4 Locations of vortex centers (coordinate x1 / coordinate x2)

number of re-
solved vortices

total deviation
[10--3]

dev. per resolved
vortex [10--3]

Re = 1000

two--level meth., mesh 32x32 3 10.8 3.6

three--level meth., mesh 32x32 3 11.6 3.9

USFEM, mesh 32x32 3 14.4 4.8

Wall (99) -- GLS, mesh 80x80 4 18.2 4.6

Re = 5000

two--level meth., mesh 50x50 5 29.9 6.0

three--level meth., mesh 50x50 5 34.7 6.9

USFEM, mesh 50x50 5 46.4 9.3

Wall (99) -- GLS, mesh 80x80 6 34.5 5.8

Re = 10000

two--level meth., mesh 64x64 6 32.1 5.4

three--level meth., mesh 64x64 6 34.8 5.8

USFEM, mesh 64x64 6 43.0 7.2

two--level meth., mesh 80x80 6(7) 25.0 4.2

three--level meth., mesh 80x80 6(7) 29.9 5.0
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USFEM, mesh 80x80 6(7) 40.0 6.7

Wall (99) -- GLS, mesh 80x80 6(7) 47.0 7.8

Table 9.5 Deviation of locations of vortex centers with respect to data of Ghia et al. (1982)

Closing this example, the reader should beprovidedwith a visual impression of howmuch ’stabi-
lization’ is introduced by a stabilized method and by the residual--free bubble based multilevel
methods presented here. It has been observed by several authors that residual--free bubble me-
thods introduce less ’stabilization’ (at least for triangular elements in the convection--dominated
case), see e.g. Brezzi and Russo (1994), Nesliturk (1999) and Russo (1996). First considerations
for quadrilateral elementsmay be found inBrezzi et al. (1998). Here, the situation is investigated
with bilinear quadrilateral elements in case of a moderate overall Reynolds number of 400. For
the depiction in Fig. 9.11, the element integrals of bubble functions governed by (7.49)--(7.51)
havebeen calculated for every element of the 32x32mesh in this case. The absolute value of them
is merely considered and the corresponding integral in the sense of (6.65) within the stabilized
method ofUSFEM--type paying no attention to the respective signs anddisplay themas a column
on the respective element. The presentation is restricted to one sample velocity bubble function,
U2, and one sample pressure bubble function, P

1
4. The remaining velocity and pressure bubble

functions provide a quite similar impression, however. It is clearly visible by inspecting Fig. 9.11
that the residual--free bubblemethod indeed introduces less ’stabilization’ with both the velocity
and the pressure bubble function in comparison to the corresponding terms of theUSFEM in this
sample case.

Fig. 9.11: Two sample element integrals of velocity and pressure bubble functions and
corresponding element integrals in stabilized method for Re=400 on 32x32
mesh: left: ’stabilizing integral’; right: ’bubble integral’

U2


P1
4


− τMe ui ⋅ ∇N2


− τMe ∂N4
∂x1

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9.2.2 Interpretation of the results with regard to turbulent flow simulations

For the 3--D counterpart of the 2--D lid--driven cavity flow presented in the preceding section,
the occurence of Taylor--Görtler--type vortices formed as a result of the curvature of the streamli-
nes due to the first vortex were observed experimentally. According to this, the 3--D version of
the lid--driven cavity flow will be investigated in the context of the numerical simulation of tur-
bulent flow situations in section 10.2. The 3--D lid--driven cavity problem has also recently been
picked up by Iliescu et al. (2003). They report the temporal evolution of the total kinetic energy
for a calculation at a Reynolds number of 10000 applying 8x8x8 elementswith biquadratic velo-
city interpolation and discontinuous bilinear pressure interpolation. This element is known to
fulfill the inf--sup condition and, moreover, considered to be themost stable and best performing
element for finite element discretizations of the Navier--Stokes equations fulfilling the inf--sup
condition according to e.g. Fortin (1993) as well as Gresho and Sani (1998). More importantly
for the context of this section, Iliescu et al. (2003) spend most of their numerical investigations
on the 2--D case studied in the previous section. Their primary goal in this numerical study is
aimed at the anlysis of two necessary conditions required for a reasonable LES. Firstly, the LES
should replicate laminar flows and, secondly, the total kinetic energy should be bounded for high
Reynolds number flows. Obviously, the violation of one of the two conditions leads inescapably
to the conclusion that the applied method exhibits serious deficiencies.

Iliescu et al. (2003) take three subgrid--scale models into account, namely the simple Smago-
rinsky model (see section 5.2.3), a traditional Taylor LES model of Clark et al. (1979) and two
variantsof anewrational LESmodel developed inGaldi andLayton (2000). Discretizationswith
16x16, 32x32 and 64x64 elements with equidistant meshes applying the aformentioned biqua-
dratic/discontinuous--bilinear type of element were used. These discretizations are comparable
(exactly from thepoint of viewof velocity and roughly from the point of viewof pressuredegrees
of freedom) to32x32--, 64x64-- and 128x128--element discretizations of the equal--order interpo-
lated linear type used above. Calculations are reported for Reynolds numbers of 400 and 10000
both also used in the calculations at hand. Besides the perception that there are no problems rela-
ted to the total kinetic energy for Re= 400 as expected, it is shown that the Taylor LES model
produces an energy blow--up in finite time for Re= 10000. This correspondswith results repor-
ted, for instance, by Cantekin et al. (1994). Thus, thismodel is considered by Iliescu et al. (2003)
as not being suited to model turbulent flows. The other models did not cause an energy blow--up
and exhibited reasonable resultswith theSmagorinskymodel (Smagorinsky constant CS= 0.1)
being notedly more diffusive as expected. Based on these considerations, the following three fi-
nal statements concerning the results of the previous section with regard to turbulent flow cal-
culations can be made:

• The first basic requirement that any method used for turbulent flow calculations
must replicate laminar flow situations as well can be ascertained for the two-- and
three--level method as well as the stabilized method for this flow example (and, as
you will see, for all other examples of this chapter).

• The second basic requirement that the total kinetic energy must remain bounded
during the complete simulation time can also be established for all methods, since
no energy blow--up in any calculation up to the highest Reynolds number of 10000
chosen here.
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• Beyond these basic requirements, the two-- and three--level method, in particular,
have demonstrated their ability to predict specific flow phenomena like the spa-
tially correct occurence of vortices in this example.

9.3 Cavity flow with oscillating lid (2--D)

The situation of the preceding example depicted in Fig. 9.8(a) is preserved. Instead of the con-
stant velocity u1= 1, a time--dependent function is now prescribed for the development of the
velocity at x2= 1 reading

u1(t) = 1− cos2πt
T
 ; 0≤ t≤ T

2
(9.9)

u1(t) = 2 cos2π
T
t− T

2
 ; T

2
< t≤ T (9.10)

with a period of T= 7.5 time units. The calculation is run for 4 periods, i.e. an overall duration
of 30 time units. A time step of δt= 0.1 has been chosen and two iterations within each time
step have been performed. Furthermore, the non--leaky boundary conditions from the preceding
example are withdrawn by leaving open the range x2= [0.9375, 1] of both side walls for the
velocity u1. Flow situations with Reynolds numbers 1000 and 10000 are considered applying
the 32x32 discretization and the 64x64 discretization from the previous example, respectively.
Additionally, a very coarse mesh of 16x16 linear elements is investigated for the problem with
the lower Reynolds number as well. Fig. 9.12 may help to exhibit the flow situation at different
points in time by showing the velocity vectors depicted on the colored velocity distribution.

The interesting aspect to be observed is the temporal evolution of the velocities u1 and u2 aswell
as the pressure p. Thus, four representative nodes have been chosen within the cavity. The re-
spective nodes are displayed in Fig. 9.13with the coordinates and the gathered values. The nodes
for gathering data in case of the higher Reynolds number certainly have to be located closer to
the lid, since the sphere of influence of the prescribed velocity inside the cavity is substantially
smaller due to the lower viscosity. Within the generalized trapezoidal rule, two different values
for the parameter θ are tested in order to check the performance of the two--levelmethod in com-
binationwith a semi--discrete time--stepping algorithm. Particularly, the backward Eulermethod
(BE -- θ= 1) and theCrank--Nicolsonmethod (CN -- θ= 1∕2), the two prominent representati-
ves of implicit methods within the generalized trapezoidal rule, are employed. The use of the
three--level method provides no gain in this example similar to the previous one. For reasons of
clarity, the results for the three--level method are omitted in the following diagrams, since they
are virtually indistinguishable from the corresponding two--level results.
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Fig. 9.12: Cavity flow with oscillating top (Re = 1000) over one time period: velocity
vectors on colored vorticity distribution (ranging from --5 (blue) to +5 (red))
obtained by using the two--level method on a 32x32 mesh for (a) T = 7.5; (b) T
= 10.0; (c) T = 12.5; (d) T = 15.0

(a) (b)

(c) (d)

Fig. 9.13: Identification of nodes: node (coordinate x1/coordinate x2; Reynolds number:
gathered variable(s))

x2

x1

node 1

(0.69/0.69; 1000: u1)

node 2

node 3 node 4
(0.05/0.98; 10000: u1, p)

(0.98/0.90; 10000: u2)

(0.31/0.86; 1000: u2, p)
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Fig. 9.14 shows the temporal evolution for a Reynolds number of 1000 obtained on a 32x32
mesh. Onemay observe the obvious impact of the chosen time--stepping scheme. The results ob-
tained by the stabilized method of USFEM--type and the two--level method with the assumption
of quasi--static bubbles using a backwardEuler scheme in both cases can hardly bedistinguished.
Without the quasi--static bubbles, the backward Euler scheme is less diffusive. This is explicitly
recognizable due to the higher amplitudes in the oscillation. This process is considerably ampli-
fied for the Crank--Nicolson scheme.

Fig. 9.14: Temporal evolution of velocity and pressure for Re = 1000 on 32x32 mesh: (a)
u1 at node 1; (b) u2 at node 2; (c) p at node 2
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In Fig. 9.15, the situation for a Reynolds number of 10000 surveyed on a 64x64 discretization
is depicted. Here, equal tendencies in comparison to the previous case with the lower Reynolds
number may be noted.

Fig. 9.15: Temporal evolution of velocity and pressure for Re = 10000 on 64x64 mesh: (a)
u1 at node 3; (b) u2 at node 4; (c) p at node 3
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In Fig. 9.16 finally, one velocity result for the same flow using the coarser 16x16 mesh is repor-
ted. For orientation to some degree, the corresponding results from Fig. 9.14 are also displayed
in the background. The amplitudes are even higher for the backward Euler and theCrank--Nicol-
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son scheme. The stabilized method and the two--level method with quasi--static bubbles remain
nearly identically.Among others, this example shows that the assumptionof quasi--static bubbles
provokes another diffusive effect independent of the time--stepping scheme.

Fig. 9.16: Temporal evolution of u1 at node 1 for Re = 1000 on 16x16 mesh; results from
32x32 mesh displayed in the background with pallid color
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9.4 Flow past a circular cylinder (2--D)

The next example describes a widely solved benchmark problem. Apart from the specific object
(a cylinder here) being passed, it is of basic engineering interest, since the flow past some solid
body is one of the major areas of engineering applications. By choosing a Reynolds number of
100 based on the cylinder diameter and the inflow velocity, a range of Reynolds numbers is ent-
eredwhere the occurence of the famousKarman vortex streetmaybe expected. This vortex shed-
ding phenomenom consists of an alternate separation of a vortex at both the upper and the lower
side of the cylinder. This takes place with a certain frequency. Limit ranges depending on the
Reynolds number and governing the occurence of different flow characteristics can be found,
for example, in Schlichting (1979). Experimental investigations concerning this flow have been
reported, for instance, byNorberg (1994) andWilliamson (1996). The numerical solution of this
problem was, among others, the subject of benchmarking efforts in Schäfer and Turek (1996).
Furthermore, Brooks and Hughes (1982) have used this example for the validation of their
SUPG--method in the context of the Navier--Stokes equations.

The flow situation is depicted in Fig. 9.17(a). The inflow velocity is predefined as uin1 = 1, the
cylinder diameter as D= 0.16 and the kinematic viscosity as ν= 0.0016 for unit density, in
order to achieve a Reynolds number of 100. Two basic discretizations have been chosen which
are refered to as ’coarse’ and ’fine’ in the following. The coarse mesh comprised 2986 bilinear
quadrilateral elements (3091 nodes) whereas the fine mesh contained 7298 elements (7461 no-
des) both being refined while approaching the cylinder. The fine mesh is shown in Fig. 9.17(b).
The time step is chosen to be 0.032 time units and the calculation is run for 1000 time steps resul-
ting in an overall simulation time of 32 time units. Within each time step, only a single iteration
is performed. The simulation is started with a zero initial velocity field and the inflow velocity
is allowed to evolve to full extent within one time unit governed by a trigonometrical function
keeping it constant afterwards.
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Fig. 9.17: Flow past a circular cylinder: (a) geometry and boundary conditions plus
identification of nodes (node (coordinate x1/coordinate x2)); (b) fine mesh
(7298 elements)

1.00 3.00

D= 0.16uin1
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1.00

1.00
(1.05)

node 1
(0.05/--0.06)

node 2 (0.49/--0.18)

(a)

(b)

The major quantitative point of interest is the so--called Strouhal number St here defined as

St=
uin
1
D
t0

(9.11)

which can be used as some kind of quantification for the periodic solution of the vortex street.
t0 denotes the period of one oscillation. The temporal evolution of the pressure is gathered in
Figs. 9.18--9.20 at two points, one directly located on the surface of the cylinder and the other
somewhat further away in the wake of the cylinder (see Fig. 9.17(a)). On the one hand, these
graphsmay report basic differences between the results obtained byusing variantsof thegeneral-
ized trapezoidal rule. On the other hand, the Strouhal numbers for these test calculations can be
determined and compared among themselves as well as with results from selected literature.
Since spurious oscillations from one time step to the next are obtained for the Crank--Nicolson
method (θ= 1∕2), it is followed the suggestion of Heywood and Rannacher (1990), mentioned
in section 3.3.2, to slightly shift the CN--scheme in form of an increase of the parameter, in order
to avoid such spurious oscillations. After all, θ= 0.6 is chosen to be the parameter of the second
scheme besides the backward Euler (BE) algorithm.

For reasons of brevity, pictures of the various stages of the flow development are left out. Howe-
ver, the flow past a cylinder is a well documented example from the standpoint of visualization.
Pictures stemming from numerical simulations of this setup may be found, for instance, in the
literature quoted in this section. Moreover, the album of van Dyke (1982) provides us with nice
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photographs of experiments for this flow situation, among others. Because of this comprehen-
sive selection of visual impressions, it is focussed on the, admittedly less spectacular, data below.

Four results for each case are reported in Figs. 9.18--9.20, respectively: the backward Euler
scheme and the scheme with θ= 0.6 for both the stabilized method of USFEM--type and the
two--level method. Fig. 9.18 depicts the temporal evolution of the pressure at nodes 1 and 2 for
the coarse mesh. It may be observed that for the θ= 0.6--scheme the stabilized method reaches
the state of vortex shedding at about 6 to 7 time units and, thus, considerably earlier than the two--
level method where this takes place at about 23 time units after the start of the simulation. This
is contrary for the backward Euler algorithm. As anticipated, backwardEuler schemes introduce
considerablymore numerical viscosity preventing the vortex shedding frombeing started. At the
end of the diagram in Fig. 9.18, one may (hardly) see, however, that the oscillations are about
to start for the two--level method at around 31 time units whereas the stabilized method remains
without oscillations throughout the simulation time of 32 time units. Test calculations reaching
beyond this global simulation time limit reveal that the stabilized method admits the start of the
vortex shedding at about 36 time units and even a backward--Euler--based calculation with the
quasi--static bubble assumption allows for this phenomenomat ca. 49 time units. Fig. 9.19 shows
the same flow situation calculated with the fine mesh. Here, the starting points in time for the
two--level method with backward Euler and the θ= 0.6--scheme are both moved forward by
about 3 to 4 time units and also the BE--stabilized method initiates oscillations within the depic-
ted simulation time.

Fig. 9.18: Temporal evolution of p at nodes 1 and 2 (Re = 100) for coarse mesh
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After all, the underlying conditions of perfect geometric symmetry basically provide no support
for the timely evolution of the vortex street. For instance, Brooks and Hughes (1982) tried to
hasten the vortex shedding by adding a perturbation in form of small forces added to the nodes
of the boundary layer at the cylinder. This showed but little noticeable effect. Here, a somewhat
different perturbation is introduced by cancelling the symmetry of the domain, i.e. in particular
enlarging the lower part of the domain with regard to the cylinder location (see Fig. 9.17(a)). As
a result, all methods are now forced to start oscillating at about the same time asmay be observed
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in Fig. 9.20. Henceforth, the expected consequence has to be noticed conspicuously that the
backward Euler schememerely admits substantially smaller amplitudes, regardless of the speci-
fic method used.

Fig. 9.19: Temporal evolution of p at nodes 1 and 2 (Re = 100) for fine mesh
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Fig. 9.20: Temporal evolution of p at nodes 1 and 2 (Re = 100) for coarse mesh on an
unsymmetric domain
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Evaluating the respective Strouhal numbers reveals identical values for the stabilized method
and the two-- levelmethod. To give some orientation concerning ’correct’ values for the Strouhal
number, it is refered to the empirical formula of Norberg (1994) derived from the results of a
multitude of experiments which reads
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St= A
Re
+ B+ CRe (9.12)

with the empirical constants A=− 3.458, B= 0.1835 and C= 1.51× 10−4 (valid in the
Reynolds number range from around 47 up to around 165). For the problemwith Reynolds num-
ber 100, the formula yields 0.164 as the ’correct’ Strouhal number. This value is matched more
or less exactly bybothmethods onboth discretizations for themodifiedCrank--Nicolson scheme.
Using the backward Euler scheme yields a Strouhal number of approximately 0.147. The addi-
tional assumption of quasi--static bubble functions lowers the number to about 0.138 notedly po-
inting out the problem with the introduction of too much numerical viscosity in the course of
these variants thus. A few exemplary values for Strouhal numbers obtained by other authorswith
comparable finite element methods are: 0.167 by Brooks and Hughes (1982) with a stabilized
method of SUPG--type and a predictor--multicorrector algorithm in time, 0.164 by Wall (1999)
with a stabilized method of GLS--type and θ= 0.6 on the fine mesh described above, 0.174 by
Codina (2002a) with an algebraic subgrid scale (ASGS) method which is similar to the GLS--
type method as well as 0.175 with the method of orthogonal subscales (adumbrated in sections
6.4 and 7.4.1, respectively). Codina (2002a) employed a Crank--Nicolson scheme in time. The
results of Brooks and Hughes (1982) are gained on a good deal smaller domain with regard to
the cylinder diameter. The domain in Codina (2002a) is even smaller. The crucial aspect in this
context references to the distance between the cylinder center and the lateral boundary which is
about 6.25 D in the example of this work. Brooks and Hughes (1982) have chosen 4.50 D and
Codina (2002) 4.00 D. Thus, an unequal influence of the lateral boundaries on the results has
obviously to be expected within the various domains, which may serve as one explanation for
the differences between the results on varying domains. Behr et al. (1995) have shown that 8.00
D should be guaranteed at least, in order to minimize the impact of the lateral boundaries on the
prediction of the global parameters like, for instance, the Strouhal number. For the three--dimen-
sional version of the flowpast a cylinder, Lei et al. (2001) have shown the effect of this geometri-
cal distance on the simulation.

9.5 Beltrami flow (3--D)

The special features have already been indicated in the introduction of this chapter making this
flow example a unique one. It was developed by Ethier and Steinman (1994) for benchmarking
purposes, although it is unlikely to be physically realized eventually. Possibly more familiar to
the reader is the 2--D counterpart of this flow, theTaylor problem (see Taylor (1923)), whichwas
used by Kim and Moin (1985) for 2--D calculations.

The problem is solved on a domain Ω= [− 1, 1]× [− 1, 1]× [− 1, 1]. The exact solutions
for the velocity and the pressure read as follows:

u1=− aeax1 sinax2 dx3 + eax3 cosax1 dx2 e−νd2t (9.13)

u2=− aeax2 sinax3 dx1 + eax1 cosax2 dx3 e−νd2t (9.14)

u3=− aeax3 sinax1 dx2 + eax2 cosax3 dx1 e−νd2t (9.15)

p=− a2
2
[e2ax1+ e2ax2+ e2ax3+ 2 sinax1 dx2 cosax3 dx1ea(x2+x3)
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+ 2 sinax2 dx3 cosax1 dx2ea(x3+x1)

+ 2 sinax3 dx1 cosax2 dx3ea(x1+x2)]e−2νd
2t (9.16)

where a and d are open parameters separating a family of solutions. Theywill be fixed according
to Ethier and Steinman (1994)with the values a= π∕4 and d= π∕2. The characteristic feature
of this flow is a series of counter--rotating vortices intersecting one another at oblique angles.
The time--dependent terms in (9.13)--(9.16) indicate the exponential decay in time of the initial
flow configuration.

Similar to the first example, two quite different flow regimes are considered, a diffusion--domi-
nated flow with ν= 1 and a convection--dominated flow with ν= 0.001. The Reynolds num-
ber based on the chosen viscosity, the length of the domain and the maximum velocity is
Re= 6.62 and Re= 6620, respectively. Uniform discretizations with 4x4x4, 8x8x8 and
16x16x16 elements are used. Due to the negative imbalance between the substantial computatio-
nal demands of higher--order elements in 3--D and the limited computational resources being at
the author’s disposal at the time of calculating this flow example, linear elements are merely ap-
plied. Fig. 9.21 presents the fully three--dimensional situation by displaying the initial pressure
distribution. Furthermore, the 8x8x8 discretization is included. Fig. 9.22 depicts the initial state
regarding the velocity vectors on various velocity distributions in the three orthogonal cutting
planes x1= 0, x2= 0 and x3= 0. The initial state is the same for both the diffusion-- and the
convection--dominated flow regime, since the viscosity has no effect for t= 0. The reader may
confirm this by studying (9.13)--(9.16).

Fig. 9.21: Beltrami flow: colored initial pressure distribution with mesh 8x8x8
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A backward Euler time scheme is used for the calculation. For the two-- and three--level method,
the bubble functionswere assumed to be quasi--static. In addition, the dynamic algorithmdescri-
bed in section 8.2.2 is employed for obtaining the dissipative effect of the unresolved scales wit-
hin the three--level method. The simulation is started with the initial field governed by (9.13)--
(9.16). Thereafter, Dirichlet boundary conditions likewise based on (9.13)--(9.16) are applied on
all boundaries. The calculation is run 16 time steps with δt= 0.00625 and then stopped at
t= 0.1, in order to quantify the current errors in the velocity and pressure calculation. The error
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measures in (9.6)--(9.8) still keep their validity including the subsequent remark concerning the
incorporation of the small--scale velocity.

Fig. 9.22: Velocity vectors on colored velocity distribution (initial state for velocity): (a)
u1 in plane x1 = 0; (b) u2 in plane x2 = 0; (c) u3 in plane x3 = 0
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Fig. 9.23 and Fig. 9.24 depict the velocity error in the L2--normand in the H1--norm, respectively.
For the diffusion--dominated flow, the convergence rateswhich have to be expected from theore-
tical error analysis are accurately matched by all methods, and, moreover, they can not be distin-
guished from one another in terms of the absolute error. This is obviously quite different for the
convection--dominated flow. The stabilized method and the three--level method still work fine,
although the absolute velocity error in the H1--norm for the three--level method is not as good
as for the stabilized method. However, this tendency could be observed for linear elements in
the 2--D example of impinging fluid flow as well and may supposably blamed to the negative
effect of the stringent zero Dirichlet boundary conditions (being even stronger in 3--D) within
the residual--free bubblemethod especiallywith regard to the H1--error. This performance is, ho-
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wever, then reversed for higher--order elements in favor of the three--level method there. Similar
behaviour might be expected in 3--D. The crucial surveillance is that the two--level method is no
longer able to guarantee an acceptable error in both the L2--norm and the H1--norm. Tendencies
already observed in 2--D are particularly amplified concerning the error in the H1--norm. As in
2--D, the crucial deficiency described in the 2--D--case (confer also the illustration in Fig. 9.7)
is removed with the discretization becoming finer.

Fig. 9.23: Velocity error for diffusion--dominated flow: (a) L2--norm; (b) H1--norm
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Fig. 9.24: Velocity error for convection--dominated flow: (a) L2--norm; (b) H1--norm
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In Fig. 9.25, the pressure error is reported including in both diagrams lines displaying the slopes
of suboptimal (slope 1) and optimal (slope 2) rate. It may be observed that all three methods
match the optimal rate in both the diffusion-- and the convection--dominated case. The stabilized
method shows but a slight deviation from this behaviour in the diffusion--dominated flow regime
in negative direction as well as the two-- and three--level method in positive direction.
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Fig. 9.25: Pressure error in L2--norm: (a) diffusion--dom. flow; (b) convection--dom. flow

1
h

ep
0

203

slope 2

1
h

ep
0

203

slope 2

(a) (b)

100 100

10−1 10−1

10−2 10−2

10−3 10−3

two--level
method

USFEM

slope

three--level
method

slope 1 slope 1



162

1010 Numerical examples of turbulent flow situations

10.1 The choice of turbulent flow examples

Turbulent flow examplesmay be distinguished in viewof the number of directions of inhomoge-
neity according to Sagaut (2002), chapter 13. Fig. 10.1 depicts the classification in general.

Fig. 10.1: General classification of turbulent flows
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The computer resources needed for an adequate resolution usually increasewith every additional
direction of inhomogeneity. On the one hand, completely homogeneous turbulence, either iso-
tropic or anisotropic, is not of major interest for the long--term goals of this work. On the other
hand, interesting 3--D flows being completely inhomogeneous surely pose a challenge which
cannot be taken with the computer resources available to the author currently. Due to the inten-
tion of providing a proper DNS data basis (or, more precisely spoken, a data basis being as close
to DNS as possible), even flows with two directions of inhomogeneity will not be within reach.
Just to give two examples, the flow over a backward facing step and the flow past a square--sec-
tion or circular cylinder are certainly two of themost important examples of wall--bounded flows
fitting into this category. A DNS of a flow over a backward facing step has been performed by
Le et al. (1997). For this purpose, an overall number of about 9.5 million computational cells
resulting in about 38.5million degrees of freedomhave been applied. This is far beyond the avai-
lable capacity, even if it is aimed at a slightly coarser resolution. The same has to be stated for
the case of the flow past a square--section cylinder after studying, for instance, the results of a
workshop considering LES for this type of flow summarized in Rodi et al. (1997).

As a result of these preliminary considerations, the focus has to be on flows possessing one direc-
tion of inhomogeneity. According to this, the numerical realization of a non--wall--bounded flow
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in formof a completely two--dimensional planemixing layer is performed belonging to thegroup
of flowswith one direction of inhomogeneity. In particular, theopportunity to go back to apurely
two--dimensional calculation allows the numerical simulation up to a certain level of resolution
with the available computer resources. This flow example is described in detail in section 10.3.

Previously, the 3--D lid--driven cavity is investigated as already announced in the wake of the
description of the 2--D lid--driven cavity in section 9.2. This represents an example for turbulent
recirculating flows. Although this is a flow being bounded by walls in all coordinate directions,
numerical realizations with discretizations of relatively low and moderate refinement have been
performed and yielded good results in comparison to experimental data.

10.2 Lid--driven cavity flow (3--D)

10.2.1 Some reports of earlier experimental and numerical investigations

The turbulent recirculating flow in a 3--D lid--driven cavity will now be presented. As already
indicated in section 9.2.2, this flow exhibits the occurence of Taylor--Görtler--type vortices for-
med as a result of the curvature of the streamlines due to the first vortex. Please consult, for in-
stance, Schlichting (1979) for a description of these particular vortices. Experimental data are
reported for flows with Reynolds numbers 3200, 5000, 7500 and 10000 inside cavities with va-
rying spanwise aspect ratio (SAR) in Prasad and Koseff (1989). The SAR is defined to be the
ratio of the length of the cavity in x3--direction and the length of the cavity in x1--direction. Kim
andMoin (1985) picked up an earlier report of an experimental study byKoseff and co--workers
and tried to verify the appearance of these vortices in a numerical simulation using a fractional--
stepmethod. Theywere able to showweak vortical structures for a calculation at Reynolds num-
ber 1000.

Zang et al. (1992) and Zang et al. (1993) performed an LES in a finite volume method using the
dynamic procedure of Germano et al. (1991), which they named DSM, and a dynamic mixed
model (DMM), where they, additionally, took into account the scale similarity model of Bardina
for this. The last combined structural/functional model has already been mentioned as an attrac-
tive modeling approach in section 5.3.3. In Zang et al. (1993), three cases are reported: a flow
at a Reynolds number 3200 and SAR of the cavity being 1.0 on a 32x32x32 grid as well as flows
at Reynolds number 7500 and 10000, respectively, with SAR of the cavity being 0.5 on a
64x64x32 grid. The grid points are clustered near thewalls in x1--direction and x2--directionwith
minimumgrid length in these directions being 0.01 for Reynolds numbers 3200 and 7500 aswell
as 0.005 for Reynolds number 10000. Based on experimental experience in Prasad and Koseff
(1989), they describe the flow at Reynolds number 3200 to be essentially laminar, although an
inherent unsteadiness may occur. For Reynolds number 7500, a transitional stage is reached,
since the flow becomes unstable near the downstream eddy at Reynolds numbers higher than ab-
out 6000. With even higher Reynolds number at about 10000, the flow becomes fully turbulent.
Thus, laminar, transitional, and turbulent regimes have been covered by the choice of these three
cases in Zang et al. (1993).

Further numerical results are reported, for instance, in Ding and Tsang (2001) as well as Iliescu
et al. (2003). With an LES based on a least--squares finite element method, Ding and Tsang
(2001) simulate a flow at Reynolds number 3200 inside a cavity with SAR 1.0 and compare the
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velocity profiles to the experimental data of Prasad andKoseff (1989). They use a relatively fine
discretization of 60x60x60 trilinear hexaeder elements withminimum element size being 0.005.
As already mentioned in section 9.2.2, Iliescu et al. (2003) report the temporal evolution of the
total kinetic energy for a calculation at a Reynolds number of 10000 in a cavity with SAR 1.0
applying 8x8x8 elements with biquadratic velocity interpolation and discontinuous bilinear
pressure interpolation. From the point of view of velocity degrees of freedom, this discretization
is equivalent to 16x16x16 trilinear hexaeder elements. The number of pressure degrees of free-
dom, however, is less than half with respect to themesh employing 16x16x16 trilinear hexaeder
elements.

10.2.2 Setup for numerical simulations

Following the guidelines of Zang et al. (1993), the three Reynolds numbers 3200, 7500, and
10000 will be studied here as well. However, all three flows will be considered in a cavity with
SAR 1.0, i.e. the 2--D cavity displayed in Fig. 9.8(a) will be stretched to unit length in the third
coordinate direction. The no--slip boundary conditions for the velocity in x2--direction will be
transfered to the velocity in x3--direction in a straightforwardmanner, and the pressure prescrip-
tion will be put on at the same node as in the 2--D case. A relatively coarse basic discretization
with 16x16x16 trilinear hexaeder elements is chosen for all flow situations exhibiting linear refi-
nement towards thewalls in x1--direction and x2--directionwithminimumelement length of 0.02
in these directions. For the second and third level in the two-- and three--level method, respecti-
vely, the same types of sub-- and sub--submeshes already described in the introductory party of
chapter 9 are applied. This overall choice of coarse discretizations on all three levels goes along
with the predominant goal of investigating the performance of the consideredmethodswith rela-
tively coarse resolution provided by the chosen meshes.

Analog to what is done in Zang et al. (1993) and Iliescu et al. (2003), an impulsive start is perfor-
med, i.e. the initial condition is a zero velocity field. The Crank--Nicolson scheme, i.e. θ= 0.5,
is used for the temporal discretization with a time step δt= 0.1. A time scale Tcav is defined in
Zang et al. (1993) to be the estimated time for a particle at the edge of the top boundary layer
to travel back to its starting position in the cavity. This time scale is roughly estimated to be about
10 time units for the current calculations. Initially, the simulation is run for five time scales Tcav,
i.e. 50 time units or 500 time steps. Within this time period, the flow is expected to develop to
full extent including a subsequent relaxation time. Afterwards, statistics are collected for another
five time scales Tcav.

10.2.3 Results

All results are compared to the experimental data of Prasad and Koseff (1989). Unfortunately,
the experimental data for the flow at Reynolds number 7500 has only been evaluated for half of
the cavity. The numerical simulations in Zang et al. (1993) have merely been performed for a
cavity SAR of 0.5 for Reynolds numbers 7500 and 10000. Thus, a direct comparison with this
numerical data is not feasible. Themean velocities u1 and u2 as a discrete time average accor-
ding to (A.2) (see appendix A) are analyzed on the centerlines of themidplane at x3= 0.5. Furt-
hermore, the root--mean--square values (square--root of the variance subject to (A.15)) for the
velocities u1 and u2 aswell as the component u~1u~2of theReynolds stress tensor (4.12) are char-
ted. The rms--values and theReynolds stress components aremultiplied by the amplification fac-
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tors 10 and 500, respectively, in order to guarantee a reasonable visual impression of these values
within the respective graphs. Additionally, the temporal evolution of the total kinetic energy sub-
ject to

Ekinuh = 1
2

Ω

uh⋅ uh dΩ (10.1)

is depicted. Various methods are investigated. Firstly, a stabilized method of USFEM--type is
applied. Secondly, the Smagorinsky model in the elementwise form (7.86) is employed on a
PSPG finite elementmethod. The Smagorinsky constant is fixed to be CS= 0.1 and the element
length h is defined to be cubic root of the element volume, i.e. for the discretization at hand
h= 1∕16. Thirdly, the two--level method and the three--level method with dynamic as well as
’static’modeling are utilized. For Reynolds numbers 3200 and 7500, the dynamicmodeling pro-
cedure is applied, and the Smagorinskymodel againwith CS= 0.1 as a ’static’ way ofmodeling
is applied for the flow at Reynolds number 10000. This last case may clearly exhibit differences
between the application of the Smagorinsky model on level 2 and the application one level ’lo-
wer’ on level 3.

Fig. 10.2 displays the temporal evolution of the total kinetic energy for all three cases. The intro-
duction of various amounts of numerical viscosity bears an interesting consequence for the re-
sults in this example. It is physicallywell--known that thehigher thephysical viscosity of the flow
the larger is the zone of influence of the prescribed velocity at the top boundary of cavity. Simply
spoken, the higher the physical viscosity the larger the extensions of the layers at the respective
boundaries of the cavity towards the center of the cavity. Here, this leads to the fact that the me-
thod which is supposed to introduce the highest amount of numerical viscosity also exhibits the
highest values of the total kinetic energy throughout the simulation. This is to be observed for
all three Reynolds numbers in Fig. 10.2. The three--level method and the USFEMbear about the
same amount of numerical viscosity for Reynolds numbers 7500 and 10000 with the USFEM
being more viscous in the case with the lowest Reynolds number 3200. The two--level method
introduces the least numerical viscosity for every case under consideration. The discrepancy in
this respect becomes quite substantial for higher Reynolds numbers.

Sample calculations variegating the Smagorinsky constant to higher and lower values have yiel-
ded higher and lower values of the total kinetic energy, respectively, as expected. Another simu-
lation using the artificial viscosity (7.84) alongwith (7.85) yielded a stationary solution at a very
high energy level after about 17 time units proving the enormous amount of numerical viscosity
introduced by this approach. Furthermore, a test calculation with another definition of the ele-
ment length h, namely the streamlength, i.e. the length of the element in streamline direction,
has led to substantially higher values of the total kinetic energy. These results for this element
length definition, which is often used for the stability parameter calculationwithin stabilizedme-
thods, has to be expected, since it usually results in a larger element length h than the oneobtained
as the cubic root of the element volume. This emphasizes the sensitivity of the results to the
choice of the Smagorinsky constant aswell as the element length definition. This has been analy-
zed by Zang et al. (1993) where they display the progression of the Smagorinsky constant obtai--
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Fig. 10.2: Temporal evolution of total kinetic energy for: (a) Re = 3200; (b) Re = 7500;
(c) Re = 10000
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nedby thedynamicproceduresDSMandDMMthroughout the centerlines in themidplane. They
have been able to show that CS fromDMM is nearly everywhere (expect from from a fewpeaks)
substantially smaller than 0.1. In comparison, DSM bears explicitly larger values.

Fig. 10.3: Quantities on the centerlines in the midplane for Re = 3200 and SAR 1.0: (a)
mean velocities; (b) rms velocities (factor 10); (c) Reynolds stress (factor 500)
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Analyzing the profiles of the mean velocities u1 and u2 for the various cases in Figs. 10.3(a),
10.4(a), and 10.5(a), it may be stated that the USFEM as well as, in particular, the Galerkin me-
thod with the Smagorinsky model overpredict the velocity values and the two-- as well as three--
level method underestimates them (with one exception for u2 at the right boundary) for Re-
ynolds number 3200. For Reynolds numbers 7500 and 10000, the two-- and, in particular, the
three--level method show very good agreement with the experimental data even with the coarse
basic discretization at hand. The Smagorinsky model as well as the USFEM still overestimate.
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Fig. 10.4: Quantities on the centerlines in the midplane for Re = 7500 and SAR 1.0: (a)
mean velocities; (b) rms velocities (factor 10); (c) Reynolds stress (factor 500)
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This relatively good agreement cannot be maintained for the root--mean--square values and the
components of the Reynolds stress particularly. The general tendency of the experimental curve
for the root--mean--square values at Reynolds number 3200 in Fig. 10.3(b) can be reproduced
by the various methods with the Smagorinsky model being the only method which, on the one
hand, correctly predicts the lower peak of the vertical curve and, on the other hand, overpredicts
both peaksof thehorizontal curve. Similar observations, in amore distinctmanner however,may
be made for the Reynolds stresses in Fig. 10.3(c). It has to be emphasized that mispredictions
of variouspeaks of these curves (although in a lessdistinctmanner admittedly)mayalso be found
in the numerical results of Zang et al. (1993) achieved with a two times finer discretization in
every coordinate direction and even some slight deviations in the numerical results of Ding and
Tsang (2001) obtained with the help of an almost four times finer discretization in every coordi-



169

nate direction. This underlines the difficulty in predicting these values. Aside from this, experi-
mental uncertainties cannot be ruled out completely in this context either. In accordance with
this, it has to be stated that the root--mean--square values in Figs. 10.4(b) and 10.5(b) partly as
well as the Reynolds stresses in Figs. 10.4(c) and 10.5(c) for the most part, respectively, are not
acceptable for all applied methods compared with the experimental data at hand. Probably, the
basic discretization chosen here simply has to be viewed as being insufficient for a correct predi-
cition of these extremely sensitive values. A finer discretization, possibly about two times in
every direction at least, may be sufficient to obtain reasonable results also for the root--mean--
square values and the Reynolds stresses.
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Fig. 10.5: Quantities on the centerlines in the midplane for Re = 10000 and SAR 1.0: (a)
mean velocities; (b) rms velocities (factor 10); (c) Reynolds stress (factor 500)
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10.3 Plane mixing layer (2--D)

10.3.1 Problem description

The domain of the problem is defined to be Ω= [0, 1]× [0, 1], see Fig. 10.6(a). No, i.e. free--
slip, boundary conditions are applied at the boundaries x2= 0 as well as x2= 1 and periodic
boundary conditions at the boundaries x1= 0 as well as x1= 1. The initial velocity field is gi-
ven by a hyperbolic tangent profile reading

u1x2 = u1,max tanh2x2− 1
δ0
 (10.2)

where δ0 denotes the initial vorticity thickness, which will be defined in section 10.3.4. Accor-
ding to Boersma et al. (1997), δ0 is chosen to be 1/28. The velocity component u2 is assumed
to be zero initially. The initial velocity distribution (10.2) is displayed in Fig. 10.6(b).

Fig. 10.6: Plane mixing layer: (a) domain with boundary conditions; (b) colored initial
velocity distribution
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A white--noise perturbation of small amplitude is imposed on the initial velocity field expressed
in a streamfunction formulation as

ψper= cnoise u1,max e
−x2−0.5δ0
2
cosαx1 (10.3)

It may be proven by the reader that this perturbation is divergence--free. The corresponding wa-
venumber is α= 2π∕λ with a wavelength λ. This random perturbation injects energy into all
longitudinal spatial modes according to Lesieur et al. (1988) and should, therefore, reasonably
approximate the case of a real mixing layer that is naturally submitted to a residual turbulence
having a broadband spectrum. The small perturbation in the initial condition is expected to be
amplified by so--called Kelvin--Helmholtz instabilities during the evolution of the flow. Accor-
ding to Michalke (1964), the most unstable wavelength λa is given by λa= 7δ0, i.e. λa= 1∕4
in this case. The most amplified wavenumber is
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αa= 2π
λa
= 2π

7δ0
= 8π (10.4)

Thus, a number of nvortKelvin--Helmholtz vortices is expected to develop in the streamwise di-
rection for a domain with length ls= 7δ0nvort in this direction. With unit length chosen here,
4 vorticeswill appear. As can be observed in (10.3), a determinstic sine perturbation is also impo-
sed. This results in fixing the position of the Kelvin--Helmholtz vortices on the x1--axis. Other-
wise, the vortices would take a randomly distributed position from one run to another, confer
Lesieur et al. (1988). The sum of two waves with wavelength λa= 1∕4 and a smaller wave-
length λa= 1∕10 are chosen according to Boersma et al. (1997). Consequently, the final velo-
city components including the pertubation are

u1,perx2 = u1,maxtanh2x2− 1
δ0
+ cnoise

∂ψper
∂x2
 (10.5)

and

u2,perx2 = −u1,maxcnoise
∂ψper
∂x1

(10.6)

where u1,max and cnoiseare specified to be 1 and 10
−3, respectively. With these parameter speci-

fications and a viscosity of ν= 3.571× 10−6 at hand, the Reynolds number of the problem
amounts to be

Re=
u1,maxδ0
ν = 10000 (10.7)

Furthermore, a non--dimensional time unit to be used later on is defined to be the actual time sca-
led by δ0∕u1,max= 1∕28.

10.3.2 Relevance and earlier investigations

Mixing layers are encountered in aerodynamics, in the atmosphere or the ocean (e.g. in the wake
of mountains, in the Gulf stream or in the Mediterranean sea), as well as in the atmospheres of
Jupiter and Saturn (at the interface between neighboring zonal jets), confer Lesieur et al. (1988).
It is actually a flow developing far away from boundaries, and the influence of boundaries is eli-
minated in this example thus. As an answer to potential objections that a two--dimensional flow
will not lead towhat is usually perceived as ’turbulence’, the following features of the flowconsi-
dering it to be ’turbulent in a certain sense’ have to be returned (consult Lesieur et al. (1988)):

• The flow is extremely sensitive to the initial condition. In fact, it would be com-
pletely unpredictable in an infinite domain. This has been proven by investigating
two flows which were very close in the relevant parameters initially. In an infinite
domain, they would show a complete decorrelation. Only the finite domain, which
has to be chosen for the simulation being viable, ’prevents’ the flow from being
completely unpredictable.

• After a first pairing (to be described in the subsequent section), a broadband energy
spectrum of slope intermediate between k−4 and k−3 is developed. The interac-
tion between two-- and three--dimensional turbulence related to this flow situation
has been elaborated in Lesieur et al. (1988), section 4.
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The mixing layer has been investigated experimentally, for instance, in Brown and Roshko
(1974) as well asWinant and Browand (1974). A review of this type of flows is given in Ho and
Huerre (1984). Numerically, it hasbeen thoroughly analyzed in a quasi--DNSapplying a second--
order finite differencemethod on a 256x256 grid by Lesieur et al. (1988). Further numerical stu-
dies may be found in Boersma et al. (1997), Griebel and Koster (2000), John (2002a, 2002c),
and Nägele and Wittum (2002). The corresponding three--dimensional case has been analyzed
numerically by Balaras et al. (2001) as well as Rogers and Moser (1994).

10.3.3 Physical evolution of the flow

The physical evolution of the flowwill be explainedwith the help of Fig. 10.7. This picture series
has been obtained from a simulation using the basic method, which will be described in section
10.3.6, with 160x160 elements. The flow situations at non--dimensional time 10, 20, 30, 40, 70,
100, 110, 120 and 200 are displayed. Four different stages of this flow may be distinguished:

• Development of four primary eddies: The distinct appearance of the four pri-
mary eddies can be observed at about 15 time units. This corresponds to the time
also observed by Lesieur et al. (1988) for the development to occur. John (2002a,
2002c) found a later development at 30 time units.

• First pairing:The first pairing takes place at about 35 time units. Again, this com-
pares exactly to the point in time noticed by Lesieur et al. (1988). The later pairing
in the simulation of John (2002a, 2002c) at about 80 time units went on in a non--
symmetric procedure, i.e. one pairing started earlier than the other. Here, both pai-
rings occur at the same time.

• Second pairing: The second pairing is finished at about 115 time units. This is a
later point in time in comparison to Lesieur et al. (1988) (75 time units) as well as
an earlier one in comparison to John (2002a, 2002c) (140 time units).

• Rotation of the final vortex: After the end of the second pairing the final vortex
rotates at a fixed position. The value of the vorticity thickness oscillates during this
stage due to the elliptic shape of this vortex, confer Fig. 10.8.

10.3.4 Measured values

Four aspects of the flow are recorded quantitatively: the mean velocity u1, the root--mean--
square value of the velocity u1, the total kinetic energy and the vorticity thickness. The mean
velocity u1 at every node is evaluated as a discrete time average according to (A.2) over the
complete simulation time. In addition, these nodal values are spatially averaged along the perio-
dic x1--direction, in order to achieve a final velocity profile along the x2--direction. The respec-
tive root--mean--square value is evaluated during this averaging procedure. The total kinetic
energy has already been defined in (10.1), and this definition is applied here again for the quanti-
fication of the temporal evolution of the energy. In principal, an evolution exhibiting a somehow
decaying total amount of kinetic energy has to be expected, since the initial velocity distribution
is subject to a non--zero viscosity, and no additional energy input is provided.

According to the general definition of the vorticity vector (2.8), the scalar vorticity in the 2--D
case reads
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Fig. 10.7: Colored vorticity field (blue: intense vorticity, red: irrotational outer flow) at
time units 10, 20, 30, 40, 70, 100, 110, 120, 200 (left to right, top to bottom)

ω= 1
2
∂u2∂x1−∂u1∂x2 (10.8)

Nägele and Wittum (2002) define the maximum value of ω as

ωmax(t)= sup
x2 ∈ [0, 1]

|< ω> x2, t| (10.9)

where < ω> x2, t denotes the integral mean in the periodic x1--direction reading
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< ω> x2, t =


1

0

ωx1, x2, tdx1


1

0

dx1

= 
1

0

ωx1, x2, tdx1 (10.10)

In the practical computation, this integral is evaluated discretely for all mesh lines parallel to the
x1--axis (confer John (2002a, 2002c)) and the maximum of these results is employed for ωmax.
With this maximum value of ω at hand, the vorticity thickness δ is defined to be

δ(t)=
∆uml
ωmax(t)

=
2u1,max
ωmax(t)

(10.11)

with ∆uml indicating the velocity jump across themixing layer. The initial value for the vorticity
thickness corresponding to the undisturbed velocity distribution has already been chosen to be
δ(t= 0)= δ0= 1∕28. All values t> 0 are scaled by this initial value δ0. A principal sketch
of the temporal evolution is displayed in Fig. 10.8 related to the calculation displayed in Fig.
10.7. The particular stages of the respective flow characterized in the preceding section may be
discovered in this course. The maximum values of the vorticity thickness at the first and second
pairing are slightly higher than the comparable values in Lesieur et al. (1988) and John (2002a,
2002c).

Fig. 10.8: Principal sketch of temporal evolution of vorticity thickness (cf. Fig. 10.7)
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10.3.5 Spatial and temporal discretization

For the previously described flow at Reynolds number 10000, basic discretizations with 40x40,
80x80, 160x160, and 240x240 bilinear quadrilateral elements of uniform length have been cho-
sen, respectively. The sub-- and sub--submeshes are created as in the previous examples. With
the 240x240 mesh, the resolution level of the quasi--DNS by Lesieur et al. (1988) is almost re-
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ached. Boersma et al. (1997), among other things, have applied local grid refinement up to this
level only in themiddle part of the flowdomain starting froman initial 80x80 discretization. John
(2002a, 2002c) reached even further than Lesieur et al. (1988) by using elements employing bi-
quadratic velocity interpolation and discontinuous bilinear pressure interpolation for his DNS.
The resolution level is comparable up to 1024x1024 purely bilinear elements with respect to the
number of velocity degrees of freedom (about 2 million). The number of pressure degrees of
freedom is considerably lower for this type of elements and resolution level in comparison to
equal--order interpolated bilinear quadrilaterals.

Starting with the perturbed initial velocity field (10.5)--(10.6), the Crank--Nicolson schemewith
θ= 0.5 is used for the temporal discretization with a time step δt= 0.35δ0∕u1,max= 0.0125.
570 time steps are performed resulting in an overall simulation time of approximately 200 non--
dimensional time units. Statistics are collected during the complete simulation time.

10.3.6 Results

Various methods are investigated. Firstly, a basic method will be defined. Secondly, the Smago-
rinsky model already used for the previous example is applied, i.e. the Smagorinsky constant is
again chosen to be CS= 0.1. Thirdly, the two--level method as well as the three--level method
with dynamic modeling are utilized.

A first attempt to define a ’pure’ PSPG finite elementmethod tobe thebasicmethod for the follo-
wing investigations failed even for the finest discretization (240x240). An immediate energy
blow--up has been observed for thismethodwith every discretization. This concurs with impres-
sions received by studying the aforementioned literature dealing with this flow example. Even
Lesieur et al. (1988) added a biharmonic dissipative term to their formulation applied to a
256x256grid. (By theway, this explains thehere usedmarking ’quasi--DNS’ for this simulation.)
Boersma et al. (1997) incorporated a Smagorinsky term with CS= 0.1 in the method applied
on their finest grid with 240x240 grid points. John (2002a, 2002c) mentions explicitly an energy
blow--up for a simulation without any additional dissipative term on a discretization level
roughly comparable to a 128x128 mesh. According to the conclusion that it is not possible to
performaDNSwith the underlyingdiscretizations, an additional dissipative term has to be incor-
porated into the PSPG finite element method. Deviating from the frequent use of the Smago-
rinsky model, an alternative in form of the bulk viscosity term is employed here. The obvious
analogy of this term in comparison to the Smagorinsky termmay be identified by analyzing them
(The reader may just compare the first term in the second line of (7.77) with the second term in
first line of (7.87)).With this supplementary term at hand, a reasonable basic method can be defi-
ned.

In Fig. 10.9, the results for simulationswith this basicmethod on the various discretization levels
are displayed. Fig. 10.9(a) shows that the mean velocity profiles achieved with the help of the
different discretizations are fairly close together. The curves for the root--mean--values displayed
in Fig. 10.9(b) uncover the expected differences for the various resolution levels more disc-
tinctly. Concerning the temporal evolution of the total kinetic energy depicted in Fig. 10.9(c),
it may simply be stated that the lower the resolution level the higher the overall energy loss, i.e.
the more dissipative is the method. An interesting observation may me made by analyzing the
temporal evolution of the vorticity thickness in Fig. 10.9(d). The results for the 240x240 mesh
and the 160x160mesh almost conincide. However, the character of the curve is substantiallymo-
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dified for the coarser discretizations. In particular, it may be observed that the coarser the discre-
tization the later the point in time indicating the first pairing and, simultaneously, the sooner the
second pairing. Furthermore, the actual values of the various amplitudes also show up quite dif-
ferently. It may be concluded that the chosen discretization level has a considerable influence
on the temporal development of the vorticity thickness and, hence, on the character of the flow.

The same conclusion may be drawn, if various methods on the same resolution level are investi-
gated instead of one method on various discretizations. Fig. 10.10(d) shows the temporal evolu-
tion of the vorticity thickness for the aforementioned four methods applied to a basic discretiza-
tionwith 40x40 elements. The basicmethod and the Smagorinskymodel are fairly close together
which may be justified by their inherent similarity. Despite the small difference in the method
however, both curvesmay be distinguished precisely. The difference to the two-- and three--level
method is evident, and even the one between both multi--level methods. In particular, the last
episode of the simulated flow exhibits interesting varieties.Whereas the final vortex in the simu-
lation using the basic method reveals a slightly elliptic character (confer e.g. the last picture of
the series in Fig. 10.7), the two--level method, on the one hand, produces an almost circularly
shaped final vortex and the three--level method, on the other hand, bears amore distinctly elliptic
vortex at the end of the simulation. This is indicated by the amplitude of the oscillations in the
temporal evolution of the vorticity thickness during the final stage of the flow. It has been possi-
ble to verify by suitable calculations that the specified general tendency is not changed by using,
for instance, a two--level method with a finer 8x8 submesh or a three--level method with various
’static’ ways of modeling. By observing the velocity profiles in Figs. 10.10(a) and 10.10(b), it
may be concluded that the two--level method fails to produce reasonable results at this Reynolds
number. Particularly, the overshoots in the left as well as the right section of the curve for the
mean velocity in Fig. 10.10(a) produce evidence for this conclusion. Finally, the temporal evolu-
tion of the energy depicted in Fig. 10.10(c) indicates that the two-- and the three--level method
are less dissipative than the basic method and the Smagorisky model is (not surprisingly) the
most dissipative method of all.

A final remark has to bemade concerning the stabilizedmethod ofUSFEM--type for this particu-
lar flow example. The readermight havewondered at the neglect of thismethodduring the report
of the results. There is a definite and fatal reason for this disregard, see Fig. 10.11. For every
discretization, an energy blow--up has been observed approximately around the occurence of the
second pairing. Comparing the USFEM--type method to the basic method introduced before, it
may be concluded that for the employed bilinear elements the only major difference between
these two methods consists in the convective stabilization term, i.e., alternatively expressed, the
classical SUPG--term introducing a certain amount of dissipation in the streamline direction.
Further investigations have revealed that the zone of influencewhere this energy blow--up emer-
ges can be restricted to the vicinity of the upper and lower (free--slip) boundary. In particular,
a sinusoidal perturbance with small amplitude on top of the actually constant velocity distribu-
tion of (absolute) unit value along the upper and lower boundary arises around the time of the
second pairing. The amplitude is quickly amplified provoking the drastic energy blow--up in Fig.
10.11 and causing the simulation to break down finally. This issue is not pursued further, since
the main focus of this work is not on improving stabilizedmethods, and, thus, it is also refrained
fromdisturbing the reader byputting the author’s speculativepoint of view. It is, however, intere-
sting to note that this problemhas not been observed for the two-- and three--level method despite
the close affinity between the USFEM and the multi--level finite element methods.
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Fig. 10.9: Various discretizations for the basic method: (a) mean velocities; (b) rms
velocities; (c) total kinetic energy; (d) vorticity thickness
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Fig. 10.10: Various methods on a basic discretization with 40x40 elements: (a) mean
velocities; (b) rms velocities; (c) total kinetic energy; (d) vorticity thickness
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Fig. 10.11: Evolution of the total kinetic energy for the USFEM on various discretizations
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10.4 Remark concerning computational cost of the applied methods

An important last remark has to be made concerning the computational cost of the two-- and the
three--levelmethodon theonehand and the stabilizedmethod ofUSFEM--type on the other hand.
This can be dealt with in few words. It is unambiguous that the two-- as well as the three--level
method are by nomeans on a competitive basiswith the stabilizedmethod from the point of view
of computational cost. Depending on the respective example, it roughly comes down to a factor
of 5 up to about 10 for the 2--D flow examples (and a considerably higher factor for the 3--D flow
examples) which the cost for the two-- and three--levelmethod can be set in proportion to the cost
of the stabilized method on one processor. Definitely, this depends on a lot of parameters of the
multi--level methods, in particular the chosen submesh and sub--submesh, respectively, on every
element domain. Furthermore, the choiceof quasi--static bubble functions, for example, diminis-
hes the computational expenses considerably. Comparing the two--level method to the three--le-
vel method in the versions used in the numerical examples in chapters 9 and 10, it may be stated
that the three--level methodwith 3x3(x3) submesh and 4x4(x4) sub--submesh requires less com-
putational effort than the two--levelmethodwith 4x4(x4) submesh. The savings becomesubstan-
tial for the 3--D examples in particular. Of course, the ’end of the road’ for the multi--level me-
thods is not reached yet, since there is still some room for increasing computational efficiency
with regard to all major parts of the method. In particular, the use of multi--processor machines
is extremely favorable for the calculations on the second and third level of the multi--level finite
element methods. The procedure on these lower levels is almost completely parallel. Thus, sub-
stantial gainmay be achieved by using a high number of processors. Unambiguous in almost the
samemanner however, it is essential to admit that themulti--levelmethodswill probably not ever
overtake the stabilized methods in matters of computational cost.
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1111 Summary and Outlook

11.1 The past (of this work) ...

The contents of this work have aimed at three issues: the development of a general framework,
the specific implementation of a method based on the preceding general development, and an
extensive test program for this method in form of numerical examples for laminar and turbulent
flow situations.

The variational multiscale method has been utilized for the purpose of providing themethodolo-
gical background for the general framework. For the linear model problem of a scalar convec-
tion--diffusion--reaction equation, the enormous potential of the variational multiscale method
as a starting point for various solution strategies has been exposed and some solution strategies
have been suggested. The transition to the more complicated problem of the nonlinear set of in-
compressible Navier--Stokes equations has been performed and two of the solution strategies,
a global and a local one, have been picked up again seeming to be reasonable approaches for the
Navier--Stokes problem as well. These considerations are valid for the incompressible Navier--
Stokes equations in general. However, additional considerations have to be taken into account
as soon as the challenging phenomenom of turbulent flow regimes is encountered. As a starting
point for these particular considerations, the classical procedures of Direct Numerical Simula-
tion (DNS) and Large Eddy Simulation (LES) have been adapted to the numerical method of
choice in this work, the Galerkin finite element method, in a straightforward manner. After-
wards, particular attention has been paid to the retrospective interpretation of the basic DNS and
LES procedureswithin the framework of the variationalmultiscalemethod. It was, in fact, possi-
ble to identify these classical approach as special cases of the variationalmultiscale method.Mo-
reover, the variational multiscale method gives rise to further approaches going beyond this. In
particular, the core version of the variational multiscalemethod consisting in a separation of two
scales has been extended to a separation of three scales. This three--scale separation represents
the general framework matching the first goal of this work.

In order tomeet the secondclaim of thiswork, i.e. a practicalmethodbased on this general frame-
work, a three--level finite element method has been developed. The major focus of this practical
method had to be on computational efficiency due to the limitations with respect to available
computer resources. Therefore, the local approximation in form of residual--free bubbles has
been exploited as a first approach. The name of themethod especially accounts for threedifferent
types of discretizations linked with the respective levels. Starting with a basic discretization (le-
vel 1), submeshes (level 2) are introduced on each element of this basic mesh. These two levels
constitute a two--level finite elementmethod for the time being, which has been tested in numeri-
cal examples.With the help of these submeshes, approximate solutions for residual--free bubbles
on these elements are pursued. Particular attention has also been paid to the adequate considera-
tion of the continuity condition on level 2. The proposed three--levelmethod is not achieved until
a third level is introduced. The simple introduction of stabilizing terms or dissipative models on
the second level has been identified as a ’static’ way of exhibiting a third level. Beyond this sim-
ple approach, a dynamic way of modeling the still unresolved scales of the problem is proposed
as the manifestation of third level. According to this, a third type of discretization, namely ele-
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mentwise sub--submeshes, i.e. slightly refined submeshes with regard to the submeshes on the
second level, is employed into the method.

The previously described two-- and three--level finite element method as well as a well--establis-
hed and inherently linked stabilized method (USFEM) were tested for several flow situations.
It was possible to show that thesemethods work in various arrangements, i.e., for example, with
element interpolations of lower and higher order on the first and second level as well as with va-
rious models on each level. Analyzing the performance of these methods for the sample flows
chosen in thiswork, some final conclusionsmay be drawn. The two--levelmethodmay be judged
as being a reasonablemethod for flows at low andmoderate Reynolds number, but it mostly fails
for higher Reynolds number flows. Thus, it does not seem to be well--suited for turbulent flows
in particular. As soon as the Reynolds number becomes higher, the introduction of a third level
is inevitable. The three--level method with dynamic modeling on the third level has yielded ex-
cellent results for laminar flows even at high Reynolds number. A final judgement concerning
the performance of this method for turbulent flows is not advisable based on the two examples
in this work in the author’s point of view. These two sample flows have been investigated here
with very coarse basic discretizations, i.e. up to a factor of about 6 in comparison with analog
calculations reported in the literature. Nevertheless, this ’coarse’ modus operandi has already
brought to light the limitations for these methods based on residual--free bubbles. In the author’s
opinion, the severe assumption of ’cutting’ all inter--element connections by using elementwise
solutions on levels 2 and 3 clearly limits the applicability to turbulent flows. This issue will be
further addressed in the next section. The stabilized method of USFEM--type has also yielded
good results for laminar flowsat low andhighReynoldsnumberwith someminor deficits in view
of accuracy compared to themulti--levelmethods. However, the stabilizedmethods are certainly
equippedwith the crucial advantage of providing substantial computational savings in compari-
son to the multi--level methods. In the context of turbulent flows, the results of the sample flows
in this work seem to indicate that the limitations of the stabilized methods outcrop even more
distinct casting a reasonable application of these methods into doubt for the time being. This is
not surprising, since stabilized methods suffer from the same ’localization problem’ as the resi-
dual--free bubbles in even stronger occurencedue to the crucial additional approximation expres-
sing itself in the notorious algebraic parameter.

11.2 ... and the future (beyond this work)?

The variational multiscale method basically offers an enormous potential for providing ametho-
dological framework for the numerical simulation of turbulent flows from the author’s point of
view. Nevertheless, themain object of concern linkedwith the particular implementation in form
of the proposed methods of this work, the two-- and three--level finite element method, has al-
ready been activated in the preceding section. The use of residual--free bubbles with assumed
zero Dirichlet boundary conditions on the element boundaries most likely has to be ’credited’
for most of the shortcomings of the multi--level methods. Aside from this, the multi--level me-
thods are still open to improvements in various places. In particular, the dynamic procedure on
the third level which is initially based on some crude approximations still invites to some further
considerations. Even with substantial improvements, the aforementioned main drawback of the
multi--level methods in the chosen characteristic remains and needs some further investigation,
especially for the application to turbulent flow situations. Apart from this, a somehow localized
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approach on the second level seems to be adequate for turbulent flow simulations in the author’s
opinion. This is mainly due to the perceptions of section 4.3 where it has been shown that the
addressed two--point correlations show, in principal, substantial significance only over a finite
sector of the domain. The crucial measure in this context is the integral length scale and its rela-
tion to the length of the domain both depending on the respective flow situation. The very tough
localization procedure used here for the time being and resulting in a restriction to individual
elements surely exceeds the tolerable degree of localization by far. However, a strategy ranging
between this ’extreme’ localization on the one hand and a completely global concept potentially
demanding enormous computer resources on the other hand seems to be a very attractive appro-
ach to the author’s mind.

Some potential alternatives which may be pursued in the future have already been pointed out
in section 8.4. It remains to be proven if the addressed improvement of the residual--free bubble
strategy may extend its success in the context of diffusion--reaction equations also to problems
with dominating convective terms. Casting doubts on this is probably not completely devious.
Aside from this, two alternative implementations for the complete procedure, i.e. also concer-
ning the large--scale solution, have also beenproposed. First resultswith one of these twoapproa-
ches, namely the discontinuous Galerkin method, have already been reported by another author
(Scott Collis). Aside from the particular choice of the method from the point of view of approxi-
mation strategy, the important topic addressing the absolute and relative choice of large-- and
small--scale spaces discussed at the end of section 8.2 is named here again for emphasis. Being
a crucial parameter of themethod, this selection demands careful and intensive future study from
the author’s point of view. Further improvements are surely necessary from the point of view
of subgrid--scale modeling as well. Here, it may be reverted to the achievements which have al-
ready been made for the ’classical’ ways of performing LES.

Altogether, it may be stated that the ’field’ in form of the variational mutiscale method is exi-
sting; it has to be ’cultivated’ now. For this purpose, the ’agricultural implements’ in form of
further reasonable practical methods have to be developed. It is safe to say that this will not be
an easy exercise. As in the beginning, Peter Bradshaw, whom the author admires as a valuable
source of quotable statements, is granted to articulate a word of cautionmarking the termination
of thiswork: ”The user of a turbulencemodel is more like a test pilot than a sunny SundayCessna
flier” (Bradshaw (1998)). The author thinks that nothing remains to be added at this point to this
statement in principle; it may rather be extended to any kind of modeling process performed
afore and in the future -- and, thus, this work has reached its very end. Contemporaneously, it
opens the stage to successive endeavors.
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Appendix A Somemeasures for the statistical description
of turbulence

At first, three differentways of averaging are presented. It is important to keep inmind that either
way of averaging provides us with an estimation of the mean value< v> of some variable v.
It cannot be measured with certainty. Afterwards, the alternative definition of the mean value
< v>by using its probability density function (PDF) is introduced. Given an underlying theo-
retical analysis of the respective PDF, themean value< v>may be estimated with some level
of confidence, but also not with certainty. The introduction of the PDF will also be exploited to
define important higher--order moments of statistics besides the first--order moment ’mean va-
lue’. Furthergoing studies of basics of statistics may be done in special literature dealing with
this topic or in the respective chapters in most of the books on turbulence mentioned in the intro-
ductory part of chapter 4.

A.1 Reynolds averaging
In order to get amean value of, for instance, the velocity in the first coordinate direction u1 three
different ways of averaging are conceivable. First of all, the most general way of averaging is
ensemble averaging by taking into account the measurements from N identical experiments or
numerical simulations. With the nth result for the velocity denoted un1, the ensemble averageu1

E(x, t) is obtained as

u1
E(x, t)= lim

N → ∞
1
N
N
n=1

un1(x, t) (A.1)

For stationary turbulence, time averaging is an appropriate procedure. The time average
u1

T(x) starting at some time t is defined as

u1
T
(x)= lim

T → ∞
1
T

t+T

t

u1(x, t) dt (A.2)

For discrete methods in time, the integral may be replaced by a summation over the discrete time
steps. Strictly speaking, time averaging is only valid for stationary turbulence leaving behind a
mean value u1

T(x) depending only on the spatial location. Stationary turbulence in this context
means

∂uT
1
(x)
∂t = 0 (A.3)

For slowly varying mean flow, one may, more generally, consider the temporal dependence in
u1

T(x, t), if the time scale of the mean flow does not interact with the time scale of the fluctua-
tions. For problems with this procedure, please confer Wilcox (1998). Most turbulent flows
being of engineering interest, in particular the ones considered in this work, fulfill condition
(A.3) approximately.

Independently of this, spatial averagingmay be performed over one or more homogeneous di-
rections if there are any. A completely homogeneous flow, for example, allows for spatial avera-
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ging over all coordinate directions representing a volume V yielding the spatial average u1
S(t)

as

u1
S(t)= lim

V → ∞
1
V


V

 u1(x, t) dV (A.4)

According to the ergodic hypothesis, all three averages u1
E
, u1

T
and u1

S
are equal for flows

being stationary and homogeneous in all spatial directions.

A.2 Probability density function

The probability of an event E assuming, for example, thevelocity u1being smaller than adefined
velocity, say, ua= 5 m/s reads

p= P(E)= Pu1< ua (A.5)

Here, p is a real number in the range between 0 and 1. The cumulative distribution function defi-
ned as

CDF(ua)= Pu1< ua (A.6)

determines the probability of any event with the limits CDF(−∞)= 0 and CDF(+∞)= 1
as well as the important property of non--decrease subject to

CDFub ≥ CDF(ua) (A.7)

for ub≥ ua. The probability density function is defined to be the derivative of the CDF subject
to

PDF(u)= dCDF(u)
du

(A.8)

satisfying the conditions


+∞

−∞

PDF(u) du= 1 (A.9)

and PDF(−∞)= PDF(+∞)= 0. This function defines the probability of u1 having its va-
lue between two defined velocities ua and ub as

Pua≤ u1< ub = CDFub − CDF(ua)= 
ub

ua

PDFu1 du (A.10)

Using the PDF, the mean value of u1 now reads

u1 = 
+∞

−∞

u1PDFu1 du (A.11)
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This mean value may be interpreted as the probability--weighted average of all possible values
of u1.

A.3 Higher--order moments of statistics

Applying the Reynolds decomposition to the variable u1 subject to

u1= u1 + u~1 (A.12)

the fluctuating part u~1 may be extracted with

u~1 = 0 (A.13)

By shifting the PDF of u1 over the distance of the mean value u1 along the u1--axis, the PDF
of the fluctuating part u~1 is created. The moments formed with the fluctuating part and its PDF
are termed central moments. To be sure, the first central moment of u~1 analog to (A.11) is zero.
The nth--order central moment in general form reads

u~n1 = 
+∞

−∞

u~1PDF
nu~1 du (A.14)

The second--order centralmoment is calledvariance, and its square root is termed standarddevia-
tion or root mean square of u~1, respectively. The third--order central moment normalized by the
standard deviation is called skewness and the equivalently mormalized fourth--order centralmo-
ment kurtosis or flatness.

To be sure, all thesehigher--ordermomentsof statisticsmay alsobe achievedby collectingvalues
in the sense of Reynolds averaging. Here, the variance (n= 2) reads

u~21 = u~1u~1 = u1u1 − u1u1 (A.15)

with the standard deviation (rootmean square) defined as u~21 . The skewness (n= 3) norma-
lized by the standard deviation may be written as

u~31 =
u~1u~1u~1

 u~21 
3

(A.16)

and the flatness (n= 4) is defined as

u~41 =
u~1u~1u~1u~1

 u~21 
4

(A.17)
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Appendix B A hierarchy of functional spaces

A hierarchy of functional spaces may be displayed as in Fig. B.1.

Fig. B.1: Sketch of a hierarchy of functional spaces

linear space

normed space

inner product spaceBanach space

Hilbert space

Sobolev space

In Fig. B.1, X→ Ymeans that all properties of the functional space X are also exhibited by the
functional space Y. This is not the case in opposite direction however. A linear space is a collec-
tion which is closed under the operations of addition and scalar multiplication, i.e. for a linear
space X, it is assumed

(L1) x+ y∈ X ∀ x, y∈ X (B.1)

(L2) λx∈ X ∀ x∈ X (B.2)

for a scalar λ. Within a normed space, there exists a norm ‖ x ‖ with the properties

(N1) ‖ x ‖≥ 0 , and ‖ x ‖= 0 if and only if x= 0 (B.3)

(N2) ‖ λx ‖= |λ| ‖ x ‖ , where |λ| is the absolute value of λ (B.4)

(N3) ‖ x+ y ‖≤‖ x ‖ +‖ y ‖ (B.5)

∀ x, y∈ X and a scalar λ. A Banach space X is a completely normed space in the sense that
every Cauchy--convergent sequence in X converges to a member of X. For an inner product
space, an inner product (x, y) ∀ x, y∈ X is defined with the properties
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(I1) (x, y)= (y, x) (B.6)

(I2) λ1x+ λ2y, z = λ1(x, z)+ λ2(y, z) (B.7)

(I3) (x, x)≥ 0 ; (x, x)= 0 if and only if x= 0 (B.8)

(I1)--(I3) are the properties of symmetry, bilinearity and positive--definiteness, respectively.
Herewith, a natural norm defined as

‖ x ‖ := (x, x)
1
2 ∀ x∈ X (B.9)

exists for every inner product space. AHilbert space unifies the properties of the Banach space
and the inner product space and, finally, a Sobolev space is a particular case of the Hilbert space
with respect to the inner product.

The two main Sobolev spaces used throughout this work are now being adressed. The space L2
(being essentially equal to H0) is the space of square--integrable functions with the particular
L2--inner product

(x, y)0= 
Ω

xy dΩ (B.10)

and the corresponding natural norm

‖ x ‖0=⎪
⎧

⎩

Ω

x2 dΩ⎪
⎫

⎭

1
2

(B.11)

∀ x, y∈ L2. Furthermore, the space H
1 is the space of square--integrable functionswith square--

integrable generalized derivatives. The H1--inner product

(x, y)1= 
Ω

xy+∇x∇y dΩ (B.12)

corresponds to the natural norm

‖ x ‖1=⎪
⎧

⎩

Ω

x2+ |∇x|2 dΩ⎪
⎫

⎭

1
2

(B.13)

It is obvious that H1 is a subspace of L2. In general, H
k+1⊂ Hk.

The last question to be answered concerns the relationship between the Sobolev spaces and the
classical spaces of bounded differentiable functions Ckb. Sobolev’s imbedding theorem states,
among others, that Hk+1⊂ Ckb in one dimension. In themultidimensional casewith n indicating
the number of dimensions, it may be stated that Hs⊂ Ckbwhere s> n∕2+ k, i.e., for instance,
H1 is not a subset of C0b and, hence, H

1 contains functions which are not in C0b. Thus, H
1 may

be viewed as the largest functional space in which a variational formulation is reasonable for the
finite elements with C0--shape functions used throughout this work.
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Appendix C A brief survey of used computational tools

C.1 Preprocessing stage

The problem data necessary for the initiation of the simulation process put into execution with
the help of the research code(s) (see below) is provided by an ASCII input file. This data file
contains information related to the chosen algorithm, the generated mesh data (including the re-
spective submeshes if necessary), the specification of the chosen type of elements and the boun-
dary conditions of the problem. For the new generation of the research code, the program GID
(see GID (2003)) is available as a helpful assistance within the pre-- and postprocessing stage.
However, this opportunity has merely been used for the preprocessing stages of the examples
in chapter 10 to a limited extent, since the geometric domains of the numerical examples in this
work do not require sophisticated mesh generation techniques.

C.2 Research code -- The next generation

During this work, the author has been blessedwith the ’delight’ of observing a change of genera-
tionswith respect to the research code used at the Institute of StructuralMechanics. Starting this
work in 2000, the ’old’ research code CARAT (’Computer Aided Research Analysis Tool’) re-
presented the platform for most of the programming efforts at the Institute. CARAT is based on
the programming language FORTRAN.All sample calculations exhibited in chapter 9 havebeen
performed using CARAT. In the course of the year 2002, however, the ’wind of change’ blew
through the Institute of Structural Mechanics and, finally, the next generation was born: CCA-
RAT. Although the change might seem to be miniscule (just another ’C’ in front of the name),
the old one is hoped to ’pale’ in comparison though. The two most important advances in CCA-
RAT with regard to CARAT are as follows: The development of CCARAT has explicitly been
oriented towardsmultifield problems, in particular problemsof fluid--structure--interaction.Mo-
reover, CCARAT can be run as a sequential as well as a parallel code where the parallelization
is based onMessage Passing Interface (MPI). Please consult e.g. Gropp et al. (1998) for the com-
plete refernce and Pacheco (1997) for an introduction to MPI. The change in language directly
observable in the title, i.e. from FORTRAN to C, as well as the new environment implicated the
joyful task of programming the two-- and three--level finite element method again -- practicema-
kes perfect. Consequently, the numerical examples of chapter 10 have been computed using the
new code CCARAT.

C.3 Solver

Four different solver packages have been attached toCARAT and/or CCARAT, respectively, and
used for the solution of the various linear systems of equations arisingwithin the two-- and three--
level finite element methods:

• The direct solver package LAPACK has been applied to the solution of all linear
systems of equations on the second and third level, i.e. the ones based on the ele-
mentwise submeshes and sub--submeshes. More precisely, the module DGESV
(see GAMS (2003) for a comprehensive description of the respectivemodules) for
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the solution of a general linear system of equations has been attached to CARAT
and CCARAT. This simple direct solver showed a satisfactory performance due to
the relatively small number of unknowns of these equation systems.

• For the solution of the final (large--scale) linear systems of equations in the sample
calculations of chapter 9, the direct solver package UMFPACK (see Davis (2002)
for product details) based on the unsymmetric multifrontal method and direct
sparseLUfactorization hasbeen attached toCARAT.Please consult alsoDavis and
Duff (1997) for elaboration of the basic solution procedure. The performance of
this powerful direct solver has been sufficient for the respective problem sizes of
these numerical examples.

• More efficient solvers have been required for the solution of the final (large--scale)
linear systems of equations in the sample calculations of chapter 10. A high--capa-
city object--oriented direct solver package for sparse linear systems of equations
named SPOOLES (see Ashcraft et al. (1999) for product details) as well as the ite-
rative solver packageAZTEC (see Tuminaro et al. (1999) for product details) have
been available for these linear equations systems with substantially larger number
of unknowns. More precisely, a stabilized biconjugate gradient (BiCGSTAB)me-
thod along with a symmetric Gauss--Seidel preconditioner or an incomplete LU
preconditioner has been chosen from the extensive range of potential solution pro-
cedures offered within the AZTEC--package.

C.4 Postprocessing stage

The most important aspect of the postprocessing stage consists in the visual presentation of the
achieved data. For this purpose, the visualization tools Visual2 (see Haimes and Giles (1992))
for the 2--D examples and Visual3 (see Haimes (1998)) for the 3--D examples have been used
throughout this work exclusively. These visualizations tools have been available for all exam-
ples, i.e. the ones computed with the old as well as the new research code, by adding an appro-
priate interface to the respective code.
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