


�
��
�
��
�
�
�
��
 
��
��
�

�
�
��
�
�
�
�
�

������� ��
����

	��� 	��������������� �����������

���
� ����������� 	������ �������


���������� � �����

������������ ��������
��������� �!�� 	��������
���� 	���������



Robust methods for fluid-structure

interaction with stabilised finite elements

von

Christiane Förster

Bericht Nr. 51 (2007)
Institut für Baustatik und Baudynamik der Universität Stuttgart

Professor Dr.-Ing. M. Bischoff
Stuttgart 2007



c© Christiane Förster

Berichte können bezogen werden über: / Reports are distributed by:

Institut für Baustatik und Baudynamik
Universität Stuttgart
Pfaffenwaldring 7
D-70550 Stuttgart
Tel.: ++49(0)711/685 66123
Fax: ++49(0)711/685 66130
http://www.ibb.uni-stuttgart.de/
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Zusammenfassung

In nahezu allen Bereichen des Ingenieurwesens treten Mehrfeldprobleme auf, zu denen
auch Fluid-Struktur-Interaktionen (FSI) zu zählen sind. Diese Arbeit trägt zur Entwick-
lung eines stabilen und robusten numerischen Verfahrens zur Lösung solcher FSI-Pro-
bleme bei. Hier werden speziell zwei- und dreidimensionale Strukturen betrachtet, die in
Wechselwirkung mit inkompressiblen Flüssigkeiten treten. Dabei ist das Strukturverhal-
ten durch die nichtlinearen Gleichungen der Elastodynamik bestimmt. Die Dynamik des
Fluids wird durch die inkompressiblen Navier-Stokes-Gleichungen beschrieben. Beide
Felder werden mit Hilfe finiter Elemente im Raum und mittels Differenzenverfahren in der
Zeit diskretisiert. Um das gekoppelte Problem zu lösen, kommt ein iterativ gestaffeltes
partitioniertes Kopplungsverfahren mit Relaxation zum Einsatz.

Der Schwerpunkt dieser Arbeit liegt auf methodischen Aspekten. Insbesondere sollen
die theoretischen Grundlagen des numerischen Verfahrens verbessert werden. Dabei ist
das Ziel sicherzustellen, daß das Verfahren stabil läuft und für einen weiten Parameterbe-
reich Ergebnisse von verläßlicher Genauigkeit liefert. Besondere Aufmerksamkeit gilt dem
Fluidlöser, der in

”
Arbitrary Lagrangean Eulerian“ (ALE) Betrachtungsweise formu-

liert ist. Das Verhalten des Fluids wird also in Bezug auf ein bewegtes Koordinatensystem
beschrieben. Daher gilt es hier, neben den klassischen Erhaltungssätzen für Masse, Impuls
und Energie auch die geometrische Erhalung zu beachten. Der Zusammenhang zwischen
den verschiedenen Erhaltungssätzen und der Stabilität des numerischen Verfahrens wird
untersucht und es können Stabilitätsgrenzen in Form von maximalen Zeitschrittweiten
für verschiedene Verfahren angegeben werden. Weiterhin kann gezeigt werden, wie ein
unbedingt stabiles ALE Verfahren formuliert werden muß. Ein nächstes Schwerpunkt-
thema ist das stabilisierte Finite-Element-Verfahren auf dem bewegten Gebiet. Es wird
eine Version des Stabilisierungsverfahrens hergeleitet, deren Stabilität von der Netzbewe-
gung nahezu unberührt bleibt. Weitere Untersuchungen betreffen die Empfindlichkeit des
Verfahrens in Bezug auf kritische Parameter wie sehr kleine Zeitschritte, steile Gradien-
ten oder auch stark verzerrte Netze. Für Elemente höherer Ordnung ist das stabilisierte
Verfahren vollständig konsistent. Es wird gezeigt, daß mit solchen Elementen auch auf
deutlich verzerrten Nezten sehr genaue Ergebnisse erzielt werden können.

Besonderes Augenmerk wird auch auf die Fluid-Struktur-Kopplung im Rahmen parti-
tionierter Verfahren gelegt. In diesem Zusammenhang betrifft eine erste Frage den Aus-
tausch genauer und methodisch konsistenter Kopplungsinformation an der Grenzfläche
zwischen Fluid und Struktur. Weiterhin wird der sogenannte

”
artificial added mass ef-

fect“ analysiert. Dieser Effekt bezeichnet die inherente Instabilität, die bei sequentiell
gestaffelten Verfahren auftritt, wenn leichte Strukturen mit inkompressiblen Fluiden ge-
koppelt werden. Dabei ist letztendlich die Inkompressibilität dafür verantwortlich, daß
einfache sequentiell gestaffelte Verfahren nicht erfolgreich verwendet werden können. Die
mathematische Analyse, die im Rahmen dieser Arbeit vorgenommen wird, zeigt, warum
die Instabilität nicht nur vom Massenverhältnis der beteiligten Kontinua, sondern auch
von der Zeitdiskretisierung der Felder abhängt. Es wird deutlich, warum genauere zeitliche
Diskretisierungsansätze ein früheres Eintreten der Instabilität zur Folge haben.

Die theoretischen Ergebnisse werden durch begleitende kleine Beispielrechnungen ver-
anschaulicht. Einige größere Anwendungen des Verfahrens werden am Schluß der Arbeit
präsentiert.



Abstract

Various multifield problems and among them fluid-structure interaction applications arise
in nearly all fields of engineering. The present work contributes to the development of
a stable and robust approach for the numerical simulation of fluid-structure interaction
problems. In particular two-dimensional and three-dimensional elastic structues inter-
acting with incompressible flow are considered. The structural field is governed by the
nonlinear elastodynamic equations while the dynamics of the fluid field are described by
the incompressible Navier-Stokes equations. Both fields are discretised by finite ele-
ments in space and finite difference methods in time. An iteratively staggered partitioned
coupling procedure with relaxation is applied to obtain the overall coupled solution.

This work focuses on methodological aspects and contributes to a deeper understanding
of the theoretical foundations of the approach. This is necessary to ensure that the for-
mulation is stable and offers reliable results for a wide range of parameters. In particular
the flow solver formulated in an arbitrary Lagrangean Eulerian approach is consid-
ered. In addition to the classical conservation laws of mass, linear momentum and energy
geometric conservation has to be considered. This is a consequence of the formulation of
the flow equations with respect to a moving frame of reference. The relationship of these
conservation laws and the stability of the numerical scheme is investigated and stability
limits in terms of maximal time step sizes for different formulations are established. It
is further shown how an unconditionally stable ALE formulation has to be constructed.
Another key issue is the stabilised finite element method employed on the fluid domain.
The derivation of the method from a virtual bubble approach is revisited while special
attention is turned to the fact that the domain is moving. A version of the stabilisation
is derived which is nearly unaffected by the motion of the frame of reference. Further the
sensitivity of the stabilised formulation with respect to critical parameters such as very
small time steps, steep gradients and distorted meshes is assessed. At least for higher
order elements where full consistency of the formulation is assured very accurate results
can be obtained on highly distorted meshes.

As another main issue the coupling of fluid and structure within a partitioned scheme
is considered. A first concern in this context is the exchange of proper coupling data
at the interface which is crucial for the consistency of the overall scheme. Subsequently
the so-called artificial added mass effect is analysed. This effect is responsible for an
inherent instability of sequentially staggered coupling schemes applied to the coupling of
lightweight structures and incompressible flow. It is essentially the influence of the incom-
pressibilty which excludes the successful use of simple staggered schemes. The analysis
derived in the course of this work reveals why the artificial added mass instability de-
pends upon the mass ratio but further on the specific time discretisation used on the fluid
and structural field. In particular it is shown why more accurate temporal discretisation
results in an earlier onset of the instability.

While the theoretical considerations are accompanied by small numerical examples
highlighting particular aspects some larger applications of the method are finally pre-
sented.
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für die Übernahme des Mitberichtes, die gründliche Durchsicht des Manuskriptes sowie
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Chapter 1

Introduction

1.1 Motivation

Problem and applications

Fluid-structure interaction (FSI) describes a very general class of physical problems. A
wide variety of FSI problems arises in engineering and technology but also in understand-
ing and treatment of biological phenomena FSI plays a key role. Sample FSI applications
from very different backgrounds are depicted in figure 1.1. The first sub figure shows a
Coriolis mass flowmeter which serves as a measuring tool for the flow rate in a pipe. The
amount of liquid passing the omega-shaped tube can be deduced from tube oscillations
which are influenced by the passing flow. Mass flowmeters at very different scales are
used in a multitude of technical applications. An undesired FSI takes place when wide-
span bridges oscillate due to wind forces. Reliable predictions of the mutual influence of
structural motion and surrounding air flow might well reduce the need for expensive wind
channel tests and eventually help to increase the safety of buildings.

Figure 1.1: Coriolis mass flowmeter, Cable stayed bridge and human lung; source
and copyright of images from left to right “RHEONIK Messgeräte GmbH” [203]
MAGEBA [170] and Heinemann [124]

On top of all the engineering applications FSI is omnipresent in biological phenomena.
The dynamical behaviour within a human lung as depicted figure 1.1c is governed by the
interaction of air and soft tissue.

These and many more applications of FSI vary widely with respect to their character-
istic scales in time and space but share the challenge of being coupled problems. Con-
sequently the understanding and eventually the simulation of such problems tends to be
tricky and time-consuming. However there is an immense interest in reliable predictions
of the behaviour of FSI systems.

1
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In a first classification FSI phenomena are distinguished in surface coupled problems
and volume coupled problems. While in the first class the fluid and structural domain
coincide along the common interface, i.e. the wet boundary of the structure the latter class
contains problems like flow in porous media where the fluid and the structure commonly
occupy a domain of interest.

Within this work surface-coupled problems are considered. Examples of such FSI prob-
lems in technical applications include besides the already mentioned ones tank sloshing,
airbag deployment, parachute development, wind-force analysis on tall buildings or also
earthquake response analysis of liquid storage tanks to name but a view.

But tools which are used to simulate those engineering applications are also applica-
ble to enhance the understanding of biological processes which usually happen on very
different scales. FSI occurs in the interaction of blood flow and vessels, air and lung or
blood and heart valve. An increased understanding in particular of these latter processes
gives rise to the hope that medical treatment can be improved, eventually increasing the
quality of life for patients or even helping to reduce the number of premature death cases.

It is thus not surprising that the increase in computer power in terms of CPU and
memory boosts the efforts made to simulate and predict the physics of multifield phe-
nomena such as FSI. The present work has been undertaken within the collaborative
research centre “Sonderforschungsbereich 404” on multifield problems at the University
of Stuttgart. An overview over the numerical approach developed within this research
project is given in [85].

Besides the research institutes an impressive number of scientific conferences indicates
the high interest in the field of FSI. In the meantime FSI and other multifield modules
have also been incorporated into commercial software packages reflecting the practical
importance of the matter.

Modelling and approaches

Models of various levels of complexity have been derived to predict the behaviour of
mechanical systems of fluids and structures influencing each other. A classical civil engi-
neering problem including FSI is sloshing in liquid filled tanks under earthquake loading.
A simple approach to such applications dates back to Housner in 1963 who proposed
to model the effect of the sloshing fluid by a system of horizontal springs, masses and
damping. Similar applications are considered by Rammerstorfer et al. [198] who also
couple a complex structural model with a simple added mass approach for the fluid.

However many applications deserve more accurate modelling. If the interaction of fluid
and structure shall be simulated realistically including local effects at the interface both
fields have to be modelled at a high level of complexity. This is particularly the case
for problems where structural stresses as well as properties of the flow are of interest as
in many biomechanical applications. Further problems where the structural response is
particularly requested may require a complex flow description offering a prediction of the
fluid forces which is sufficiently accurate.

Approaches combining advanced models for the structural and fluid description can
be found among many others in Dettmer and Perić [64], Donea et al. [68], Engel
and Griebel [72], Farhat et al. [77], Fernandez et al. [80], Förster et al. [85],
Heil [123], Hübner et al. [130], Le Tallec and Mouro [166], Löhner et al. [169],
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Massjung [174], Piperno and Farhat [193, 194], Tezduyar et al. [222] and Wall
and Ramm [229].

While doubtless an immense amount of research effort has already been put into accu-
rate simulation of coupled FSI problems the challenge has by far not been solved to full
satisfaction. Many recent publications indicate the persistent interest in the theory of cou-
pled formulations. Sound mathematical formulations are required in order to guarantee
that simulations offer reliable results.

A common characteristic of a large class of surface coupled FSI problems is the slen-
derness of the participating structure. Thin-walled structures are particularly sensitive
to fluid forces and tend to exhibit large deformation which highly influence the dynamics
of the flow. Thus numerical models need to include at least geometrical nonlinearities of
the structure. The effect of non-linear elastic material behaviour may also be introduced
into the structural solver if required. Numerical methods for this kind of structures are
largely available. An overview of models and finite elements for thin-walled structures
has recently been presented by Bischoff et al. in [16]. Within the present work the
family of nonlinear three-dimensional finite shell elements as described by Bischoff [14]
is employed which goes back to works of Büchter et al. [36, 37] in the early 1990s. For
two-dimensional examples geometrically nonlinear wall elements are applied.

In the present context the term fluid denotes materials that cannot resist shear stresses
while being at rest. Thus fluids include liquids such as water, blood, oil or glycerol but
also gases such as air as indicated in figure 1.1. In the regime of low Mach number,
i.e. whenever the characteristic flow speed is considerably lower than the speed of sound
in the fluid the flow behaves almost incompressible (see Ferziger and Perić [81]).
Consequently compressibility or incompressibility is a problem dependent property rather
than a material feature.

A restriction to incompressible flows of Newtonian fluids puts the scope of the fluid
field to the incompressible Navier-Stokes equations. For most technical applications
the assumption of a linear relation between fluid shear strain rate and the corresponding
stress is reasonably accurate. In a number of other cases as for example in blood flow the
assumption of Newtonian fluid behaviour allows to obtain a good first impression of the
flow field and to assess the need for more appropriate material models.

On top of a structural and flow solver the interaction has to be managed, i.e. the ideal
coupling algorithm is sought-after. Such an ideal algorithm would be efficient while not
affecting accuracy and stability. It has to be admitted that despite all improvements the
perfect algorithm has not yet been established.

1.2 Scope and objective

This work can in some sense be regarded a follow-up of the comprehensive dissertation of
Wall [227] who introduced the topic of FSI at the Institute of Structural Mechanics at
the University of Stuttgart. Within a subsequent work of Mok [182] the coupling issue
was focused.

Within this work the flow problem is discretised by finite elements in space and finite
difference methods in time similar to the structural equations. A stabilised Finite Element
Method (FEM) the origin of which dates back to the works of Hughes in the late 1970s
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(see e.g. [135]) is used to treat convection dominated cases as well as to overcome the inf-
sup condition. The flow equations are formulated in an Arbitrary Lagrangean Eulerian
(ALE) scheme which combines the possibility of considerable deformation of the fluid field
with acceptable accuracy in particular at the interface.

Building upon an existing algorithm and code the present work is dedicated to a revisit
of the methodological fundamentals and aims at improvements in accuracy, efficiency and
stability. The focus is set on the flow simulation on a moving flow field and the coupling
of the physical fields. In particular the ALE flow solver for a deforming domain deserves
special attention to establish a scheme which is accurate and reliable. Therefore the effect
of discrete versions of different ALE formulations on various conservation laws shall be
considered. In addition to the conservation of linear momentum, mass and energy the
matter of geometric conservation has to be settled in this context. Closely related to
these conservation laws is the question of the numerical stability of the respective ALE
schemes. Considering the model problem of advection-diffusion this stability issue shall
be clarified. Limiting time steps sizes with respect to the mesh velocity will be derived
and interpreted for different ALE formulations of the problem. A discrete ALE scheme
which is stable irrespective of the mesh velocity shall be formulated.

Besides the clarification of the precise effect of mesh velocity the common occurrence
of a time dependent domain and stabilisation of the fluid elements shall be considered by
revisiting the derivation of a stabilised fluid formulation from a virtual bubble context.
The ambition is to establish a numerical scheme for flow on deforming domains which
inherits the defined stability with respect to mesh motion that is obtained for the unsta-
bilised model problem. A modification of the stabilisation terms is searched for which
guarantees that the stabilised flow element works independently of the mesh motion.

An ALE scheme does not only introduce a mesh velocity but goes along with poten-
tially significantly distorted elements. The influence of mesh distortion on the accuracy of
stabilised fluid elements shall be assessed and element formulations shall be found which
are highly insensitive to mesh distortion. A robust and reliable FSI algorithm further
requires that all related modules are not just stable but offer accurate results even at
critical parameters such as very small time steps or steep gradients in space and time.
In particular very small time steps result in a dominating zeroth order term within the
semidiscrete equation which might give rise to local oscillations in the velocity and even-
tually also the pressure field. The effect of the stabilisation of such oscillations in the
context of the unusual stabilised FEM including a zeroth order weighting function within
the stabilisation terms shall be investigated. Altogether the reliability of different versions
of the flow solver at such critical parameters will be assessed and improved.

Another important issue regarding the stability of the entire FSI algorithm rather
than just the flow solver is the so-called artificial added mass effect. This effect is an
inherent instability of weakly coupled partitioned FSI schemes coupling incompressible
flow and light-weight structures. This topic taken up from the dissertation of Mok [182]
where the effect was observed and studied numerically. A detailed stability analysis which
was missed since shall be given here. This analysis will show why more accurate time
discretisation on the participating fields strengthen the effect of the instability. Further
the nature of the strong influence of the mass density ratio between fluid and structure
will be clarified.

The present work focuses primarily on methodological aspects and intends to provide a
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profound understanding of the schemes under consideration. Numerical examples shall be
reported throughout the work verifying theoretical considerations and providing further
insight into particular matters. Some larger applications will be presented in a final
chapter. In this context modelling aspects and simulation issues of FSI problems will
particularly be addressed.

1.3 Overview

Finishing this introduction an outline of the single chapters shall be provided offering a
first impression of the subsequent matters.

In chapter 2 the governing equations of the single fields are summarised. Further the
discretisation of the structural equations in space and time is briefly presented. The flow
equations are introduced in an Eulerian framework where particular emphasise is put on
the conservation structure of the respective equations. Within the chapter also a number
of model problems is introduced which are used subsequently to analyse particular effects
of interest.

Chapter 3 is devoted to the ALE scheme for flow on deforming domains. A convective
and a divergence ALE formulation of the flow equations are introduced. A comparison
with respect to the conservation properties of discrete versions of the two alternative
formulations is given and the stability with respect to the mesh motion is considered. It
turns out that an ALE formulation can be found which is stable irrespective of the mesh
velocity.

Within chapter 4 stabilised finite element methods are considered. An initial discus-
sion concerns the reasons of numerical oscillations and thus the need for some kind of
stabilisation. Residual based stabilisation methods for flow problems are reviewed and
a family of the stabilisation methods which are applicable for ALE formulations is in-
troduced along with all required details. Subsequently the performance of the stabilised
finite element method on moving meshes is considered.

An investigation of stabilised methods at critical parameters is presented in chapter 5
where the common occurrence of stabilisation and very small time steps or distorted
meshes is considered. By means of a coercivity analysis the effect of very small time steps
on different versions of the stabilisation is investigated. A numerical example confirms
the theoretical observations. In a subsequent part of this chapter numerical tests are
reported to evaluate the sensitivity of the method with respect to different kinds of mesh
distortion.

The matter of chapter 6 is the coupling of fluid and structural field. The correct
exchange of interface data is discussed in the first place while subsequently a popular
class of partitioned FSI algorithms is described. An analysis of the sequentially staggered
version of the partitioned algorithm is presented. This analysis provides an explanation of
the inherent instability of sequentially staggered schemes, the artificial added mass effect.

Within chapter 7 some larger numerical examples are given highlighting the capa-
bilities of the approach. Particular emphasise is put on the complete presentation of all
modelling and discretisation details which have been crucial to obtain results.

It is the scope of chapter 8 to offer an overall summary of the work along with conclu-
sions and indications of future work. Within the appendix A some further information
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is provided. In the first place a derivation of the basic kinematic formulae is presented and
some extra mathematical background is provided. Subsequently additional result data of
numerical test cases is appended completing the examples presented in chapter 5.



Chapter 2

Governing equations and model
problems

This chapter reviews the continuum mechanical basis of solids and structures to the extent
required within the present work. As the focus of this work is on the fluid and interac-
tion rather than the structural part of FSI problems the discretisation of the structural
equations is also briefly covered within this chapter.

Subsequent to the governing equations of the flow problem a number of model problems
is presented which are used throughout this work to highlight particular effects of the flow
problem.

2.1 Systems of reference

Three different systems of reference shall be used within this work. Structural deforma-
tions are most conveniently described in the so-called Lagrangean or material formu-
lation. The corresponding Lagrangean coordinate system denoted by X is associated
with the particular material points.

The Eulerian or spatial system of reference denoted by x is most appropriate for
pure fluid dynamics problems. The observer in an Eulerian system is fixed in space and
watches the fluid passing. Within a fluid-structure interaction problem a time dependent
fluid domain has to be considered. Thus a third system of reference χ is introduced. This
Arbitrary Lagrangean-Eulerian reference system follows the motion of the flow at the
respective boundaries while deforming arbitrary in between. An introduction to the ALE
formulation can be found in [69, 227]. Within the present work the ALE formulation of
the flow equations is covered in chapter 3.

2.2 Structure

This section is devoted to a brief introduction to the basic structural continuum equa-
tions. Verbose explanations can be found in a broad variety of textbooks. In particular
the field of structural continuum mechanics is covered by an overwhelming amount of
literature of which the book by Marsden and Hughes [173], the classical textbook by
Malvern [171] and the German texts by Stein [207] and also the one by Altenbach
and Altenbach [2] shall be given here to name but a view.

The basics of continuum mechanics are also covered by many books concerned with
numerical approximations of continuum mechanics equations as for example in the second

7
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volume of the finite element series of Zienkiewicz and Taylor [236] or the monograph
by Bonet and Wood [26].

2.2.1 Modelling

The fluid-structure interaction applications considered here include large structural de-
formations and thus geometric nonlinearities have to be considered. There is a broad
range of problems dealing with thin-walled structures where the structural strains remain
small and thus the assumption of linear elastic material behaviour is justified. However
the iterative algorithm also allows to include nonlinear elastic materials.

2.2.2 Kinematics

The structural material initially occupies the domain Ω0
S ⊂ Rd with d ∈ {2, 3} and under-

goes a displacement defined by the field d(X, t). The structural reference configuration is
conveniently identified with the initial configuration Ω0

S even if other choices are equally
well possible. ΩS denotes the time dependent domain currently occupied by the structure.
The deformation gradient tensor F relates a line element in the reference configuration
dX to its image in the current configuration via

dx = F dX. (2.1)

The deformation gradient tensor F is given by

F = Gradx, (2.2)

where Grad denotes the spatial gradient operator with respect to the reference configu-
ration, i.e. X. The deformation gradient tensor is a two-field tensor connecting material
and current configuration.

In contrast to F the right Cauchy-Green tensor

C = F T · F (2.3)

is symmetric and does not contain the rotational part of the deformation any more. It
might thus be used as a strain measure if the material law accounts for the fact that
C = I for rigid body motions.

The Green-Lagrangean strain tensor E is defined as a proper strain measure by
normalising the right Cauchy-Green tensor with respect to rigid body translations.

E =
1

2

(
F T · F − I

)
. (2.4)

A graphical interpretation of the Green-Lagrangean strains E shows that in an one-
dimensional setting it relates the difference in the squares of a deformed and undeformed
line element to the reference configuration, i.e.

E =
1

2

(dx)2 − (dX)2

(dX)2
.
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2.2.3 Constitutive equation

The second Piola-Kirchhoff stress tensor S is obtained from the physical Cauchy
stresses σS of the structural point by

S = (det F ) F−1 · σS · F−T . (2.5)

This work is restricted to hyper elastic materials possessing an energy density function
with potential character, i.e. satisfying

ẆS =
∂WS

∂E

.. Ė. (2.6)

As the second Piola-Kirchhoff stresses and the Green-Lagrangean strains are a
work conjugate pair of stresses and strains the specific strain energy density rate is also
given by ẆS = S .. Ė. Thus the second Piola-Kirchhoff stresses can be derived from

S =
∂WS(d)

∂E
. (2.7)

From the balance of angular momentum the symmetry of the Cauchy stresses is obtained
which is inherited by the second Piola-Kirchhoff stress tensor.

St.Venant-Kirchhoff material

In the case of linear St.Venant-Kirchhoff material the specific strain energy density
depends linearly upon the strains according to

S =
(4)

C .. E (2.8)

where
(4)

C denotes the fourth order material tensor. The over set number is used to distin-
guish the material tensor from the right Cauchy-Green tensor.

Due to the symmetry of S and E and the potential character of WS the number of in-

dependent material parameters in
(4)

C reduces to 21. Assuming further isotropic behaviour
the fourth order tensor of linear elasticity is given by

Cijkl = λSgijgkl + µS
(
gikgjl + gilgjk

)
(2.9)

depending on two constants only. If the material law is expressed with respect to a
Cartesian system of reference the contravariant coordinates of the metric tensor gij can
be identified with the Kronecker delta δij. The Lamé constants λS and µS are related
to the engineering material parameters Young’s modulus E and Poisson’s ratio νS via

λS =
EνS

(1 + νS)(1− 2νS)
, µS =

E

2(1 + νS)
. (2.10)

Due to the linearisation of the stress-strain relationship inherent in the St.Venant-
Kirchhoff material this model applies to small strain elasticity only. If large strains in
particular large compressive strains are expected more appropriate material models have
to be chosen.
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Compressible Neo-Hookean material

In contrast to the linear elastic material law (2.8) a Neo-Hookean material is capable
of representing an infinite internal energy at both limits of infinite deformation, i.e. if
a portion of material is either stretched infinitely long or compressed to just one point.
Compressible Neo-Hookean material behaviour yields the second Piola-Kirchhoff
stresses

S =
λS

2

(
(det F )2 − 1

)
C−1 + µS

(
I −C−1

)
(2.11)

depending on the left Cauchy-Green tensor C (see e.g. Wriggers [234]). In (2.11)
λS and µS denote the Lame constants (2.10).

2.2.4 Balance of linear momentum

Newton’s second law of motion states the dynamic equilibrium at a structural point and
reads

D

D t

(
ρS Dd

D t

)
−∇ · σS = ρS bS, in ΩS × T, (2.12)

where D / D t denotes the material time derivative and ρS represents the structural mass
density in the deformed configuration. The balance equation applies the points within
the structural domain ΩS for all times of the time interval T . A reformulation of (2.12)
with respect to the reference configuration yields

ρ0d̈−Div(F · S) = ρ0bS in Ω0
S × T (2.13)

where Div denotes the divergence in the Lagrangean reference system and d̈ represents
the second material time derivative of the displacement field, i.e. the material acceleration.
In contrast to (2.12) which refers to ΩS a weak form of equation (2.13) has to be integrated
over the time independent reference structural domain Ω0

S which is much more convenient
as a starting point of a FEM formulation. Correspondingly ρ0 denotes the structural mass
density referring to ΩS.

Along with a constitutive equation (2.8) or (2.11) and the kinematic equation (2.3)
or (2.4) the balance of linear momentum (2.13) defines a system of coupled hyperbolic
partial differential equations governing the temporal evolution of the displacement field
d, the stresses and strains.

2.2.5 Initial conditions and boundary conditions

At t = 0 the initial structural displacement field as well as its first material time derivative,
the velocity, is employed to serve as initial conditions

d(t = 0) = d0, ḋ(t = 0) = ḋ0 in Ω0
S. (2.14)

The boundary of the structural domain ∂ΩS is decomposed into the disjoint portions ΓS,D

and ΓS,N where displacement and traction boundary conditions are prescribed, respec-
tively. The boundary portions satisfy

∂ΩS = ΓS,D ∪ ΓS,N and ΓS,D ∩ ΓS,N = ∅. (2.15)
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The system of differential equations (2.13) (along with the kinematic and constitutive
equation) is formulated with the displacement field as primary unknown thus ΓS,D is the
Dirichlet portion and ΓS,N the Neumann part of the structural boundary. The applied
displacement boundary conditions are given by

d = d̄ on ΓS,D (2.16)

while force boundary conditions read

N · S = T on Γ0
S,N, (2.17)

where the vector T is the pseudo traction vector referring to the initial configuration and
N denotes the normal vector on Γ0

S,N. The boundary portion Γ0
S,N represents the image

of the Neumann boundary ΓS,N in the reference configuration.

2.2.6 Weak formulation

In order to derive a finite element approximation to the structural system of equations
an integral formulation is required. If all occurring energies exhibit potential character
which implies that also the material law possesses a potential, the weak form can be
derived from minimising the total potential energy.

Another approach to the principle of virtual work is obtained from the formal appli-
cation of the method of weighted residuals which paves the way to a much wider class of
test functions differing from the variation of the displacement.

The weak form of the structural balance equation (2.13) is to find d ∈ VS,D × T such
that(

ρ0d̈, δd
)

Ω0
S

+ (S, δE)Ω0
S

=
(
ρ0bS, δd

)
Ω0

S
+ (T, δd)Γ0

S,N
for all δd ∈ VS,0 (2.18)

where the space VS,D =
{
d ∈ H1(Ω0

S)|d = d̄ on Γ0
S,D

}
contains all functions that sat-

isfy the Dirichlet boundary conditions while all functions comprised in the space
VS,0 =

{
d ∈ H1(Ω0

S)|d = 0 on Γ0
S,D

}
are zero on Γ0

S,D. By (., .)Ω0
S
and (., .)Γ0

S,N
the standard

inner product evaluated over the reference domain or its Neumann boundary portion is
denoted. Further δE denotes the variation of the Green-Lagrangean strains due to a
variation δd of the displacement field.

Remark 2.2.1 The symbol δ used here represents a variation and should not be mixed
up with the δ introduced in a subsequent chapter along the time discretisation of the fluid
equations. However the meaning of δ is obvious from the respective context.

Remark 2.2.2 The use of the notation δd for the weighting function of the structural
balance of linear momentum shall indicate that a variation of the unknown displacement
field d is utilised to serve as test function. This yields a Bubnov-Galerkin type of
weak formulation. In contrast different symbols will be used to represent the unknown
field and its corresponding weighting function on the fluid domain. In this latter case
the test function is understood as a general (somewhat arbitrary) function in the sense
of a general weighted residual method and pointing towards Petrov-Galerkin type of
methods.
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2.2.7 Discretisation in space and time

The structural formulation employed within this work is based on a large number of
previous works in the fields of nonlinear structural dynamics at the Institute of Structural
Mechanics. Thus detailed information can be found among others in the dissertations of
Bischoff [14], Kuhl [162] and Gee [99] as well as in Kuhl and Ramm [163].

The integral equation (2.18) which represents the underlying structural field equations
along with the corresponding boundary conditions is discretised in space by means of finite
elements. Subsequently a finite-difference method is applied to discretise the resulting
differential algebraic system of equations in time. Linearisation and an iterative solution
method is required to eventually obtain a numerical approximation of the nonlinear partial
differential equations governing the motion of the structure.

Discretisation in space

The finite element method applied here is a powerful tool in engineering and particularly
applicable to structural mechanics applications. An almost infinite amount of work has
been put into the method since it was first cast into a book by Zienkiewicz in 1967. A
broad overview covering the basics as well as numerous recent developments can be found
in the sixth edition of the famous book by Zienkiewicz and Taylor [236, 238]. One
should further mention the monographs by Bathe [9] and Hughes [134].

An early book covering the theory of finite elements is the one by Oden [185]. The
mathematics of the FEM are dealt with by Braess [28], Brenner and Scott [30] or also
by the series edited by Ciarlet and Lions [44, 45]. Another mathematically oriented
classic is the monograph by Ciarlet [43]. A recently given overview on finite element
methods from a mathematical point of view can be found in the encyclopedia article by
Brenner and Carstensen [29]. Clearly this collection is by far not complete. A list of
literature entitled ‘some books on finite elements’ and occupying more than two pages is
given in the introduction of the monograph by Gresho and Sani [107].

The Galerkin weak form (2.18) is discretised in space by replacing the function spaces
VS,D and VS,0 by discrete spaces Vh

S,D and Vh
S,0, respectively. Vh

S,D and Vh
S,0 contain

C0-continuous piecewise polynomial functions defined on the single elements. Within
this work the class of Lagrangean polynomials as well as Serendipity elements are
considered.

Thus the unknown displacement field d is replaced by the approximation

dh = Nd, δdh = N δd, d̈h = N d̈ (2.19)

where N is the matrix of the shape functions while d and d̈ denote the vector of all time
dependent nodal displacement and acceleration values, respectively.

Introducing the discrete approximation (2.19) into the weak form (2.18) and noting
that an arbitrary variation of the nodal displacements δd is possible yields a system of
nonlinear differential algebraic equations which in matrix notation read

MSd̈ + DSḋ + FS
int(d) = FS

ext, (2.20)

where the viscous damping term DSḋ has been added. In (2.20) MS denotes the symmetric
positive definite structural system mass matrix while FS

int represents the internal force
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vector the linearisation of which eventually yields the tangential stiffness matrix. FS
ext is

the external force vector and collects the discrete representation of the right hand side
in (2.18).

Discretisation in time

Subsequent to the spatial discretisation finite difference schemes shall be applied to discre-
tise the semi-discrete system (2.20) in time. A general overview over time discretisation
schemes for the structural system of equations can be found in the sound textbook by
Hughes [134]. Further references are the volumes by Hairer et al. [111, 112]. The
time discretisation of the nonlinear structural equations shall yield a stable and accu-
rate approximation of the temporal derivatives. A nonlinear version of the generalised-α
time integration scheme of Chung and Hulbert [42] has shown to offer the desired
properties [162] and is used here.

The generalised-α method is based on the Newmark scheme replacing the newest
displacement and velocity by expressions in terms of accelerations. Denoting the time step
size by ∆t the nodal displacements and velocities at the new time level are approximated
by

dn+1 = dn + ∆tḋ
n

+ ∆t2
((

1

2
− β

)
d̈

n
+ βd̈

n+1
)

(2.21)

ḋ
n+1

= ḋ
n

+ ∆t
(
(1− γ) d̈

n
+ γd̈

n+1
)

. (2.22)

Further the balance of linear momentum is satisfied at an intermediate time level tα

between tn and tn+1

MSd̈
α

+ DSḋ
α

+ FS
int(d

α) = FS,α
ext , (2.23)

where special care has to be taken in the treatment of the nonlinear internal force vector
FS

int(d
α) as shown in [60, 163].

Displacements, velocities and accelerations of the structure are interpolated between
the discrete time levels by

dα = (1− αf)d
n+1 + αfd

n, (2.24)

ḋ
α

= (1− αf)ḋ
n+1

+ αf ḋ
n
, (2.25)

d̈
α

= (1− αm)d̈
n+1

+ αmd̈
n
. (2.26)

The integration constants are chosen such that the overall scheme has the desired spectral
radius ρ∞ while also minimal damping on low frequency modes is ensured. Evaluating
the parameters αm, αf , β and γ according to

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞
ρ∞ + 1

β =
1

4
(1− αm + αf)

2 , γ =
1

2
− αm + αf

and satisfying

αm ≤ αf ≤
1

2

yields a second order accurate system.
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2.3 Fluid

Within this section the basic fluid equations are introduced in Eulerian notation while
the required ALE formulations of the balance of linear momentum in a fluid are derived
and discussed in chapter 3. The intention of this section is to provide a brief presentation of
the basic equations and notations required within this work rather than giving a profound
introduction into the broad topic of continuum fluid mechanics. Some more detailed
presentations of the fundamental equations used here can be found in Wall [227] and
Gravemeier [103].

A presentation of the continuum mechanics of fluid flow along with historical remarks
is given by Malvern [171] who offers a sound introduction to both, fluid and solid contin-
uum mechanics. Among others one may also consult Flechter [82], Pironneau [196],
Warsi [230] and the book by Ferziger and Perić [81] covering also computational
techniques besides the mechanical basis.

2.3.1 Modelling

The flow problems here are considered incompressible. Further it is focused at low and
moderate Reynolds numbers where the viscosity cannot be neglected. In particular in
the vicinity of a structure the flow may exhibit a viscous boundary layer the dynamics of
which significantly influence the physics of the overall coupled problem. A discussion of the
model restrictions which also applies to the present work has been given by Wall [227].

2.3.2 Kinematics

The primary kinematic unknown of a flow problem is the velocity field u(x). The sym-
metric gradient of u(x) is called strain rate tensor

ε(u) =
1

2

(
∇u + (∇u)T

)
, (2.27)

where the gradient operator ∇ denotes spatial derivatives with respect to the fixed Eu-
lerian system x.

The acceleration of a fluid particle is given by the material time derivative of the re-
spective velocity. In an Eulerian formulation however this velocity is given as a function
of spatial rather than material coordinates. Thus the material time derivative of the
velocity field reads

Du

D t
=

∂u

∂t

∣∣∣∣
X

=
∂u

∂t

∣∣∣∣
x

+ u ·∇u (2.28)

containing a nonlinear convective term.

2.3.3 Constitutive equation

As a portion of fluid at rest cannot carry any shear forces it is reasonable to decompose
the Cauchy stresses σF at a fluid point into a hydrostatic pressure p̄ and a tensor of
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shear stresses τ . Denoting the identity tensor by I this decomposition reads

σF = −I p̄ + τ . (2.29)

Dating from Stokes is the assumption that the shear stress tensor τ = f(ε) is a func-
tion of the strain rate tensor where Stokes considered a linear relationship. However,
flows with a linear relation between shear stresses and strains are nowadays called New-
tonian [171]. Symmetry considerations reduce the number of independent material pa-
rameters to two, λ and µ, determining the viscosity of the fluid. Thus the constitutive
equation for a Newtonian flow reads

σF = −I p̄ + λ tr(ε)I + 2µ ε. (2.30)

The assumption that mean pressure of the fluid equals the thermodynamic pressure p̄
holds if and only if either the flow is incompressible, i.e. tr(ε) = 0 or the bulk viscosity
κ = λ + 2/3 µ vanishes [171].

Within this work incompressibility is assumed yielding the constitutive equation

σF = −I p̄ + 2µ ε. (2.31)

Thus the only remaining material constant of the fluid is the viscosity µ of the dimension
stress × time. The parameter µ is also termed dynamic viscosity to distinguish it from
the kinematic viscosity

ν =
µ

ρF
(2.32)

which is normalised by the fluid mass density ρF. Similarly the kinematic pressure p =
p̄/ρF will be used.

2.3.4 Conservation of mass

In an Eulerian control volume v the rate of mass change of the mass mF enclosed in v is
directly related to the inflow and outflow to the respective boundaries if no mass sources
or sinks are present

∂mF

∂t

∣∣∣∣
x

=

∫
v

∂ρF

∂t

∣∣∣∣
x

dv = −
∫

∂v

ρFu · n dγ = −
∫

v

∇ · (ρFu) dv, (2.33)

where n denotes the outward normal of the control volume. As (2.33) is valid for every
possible control volume one obtains the local form of the mass balance reading

∂ρF

∂t

∣∣∣∣
x

+ ∇ · (ρFu) = 0. (2.34)

For flows which exhibit a maximal velocity significantly smaller than the speed of sound
in the respective medium, i.e. a small Mach number the effect of compressibility can be
neglected. Thus the mass balance also termed continuity equation reduces to

∇ · u = 0 in ΩF × T. (2.35)

a scalar but powerful condition omnipresent in the fluid domain ΩF.
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2.3.5 Conservation of linear momentum

Convective form

Analogously to the dynamic equilibrium at a structural point (2.12) the balance of linear
momentum at a fluid particle inside the domain ΩF is given by

ρF ∂u

∂t

∣∣∣∣
x

+ ρFu ·∇u−∇ · σF = ρF bF in ΩF × T, (2.36)

where bF denotes specific fluid body forces. In (2.36) use has been made of the mate-
rial acceleration in Eulerian formulation (2.28). Inserting further the constitutive equa-
tion (2.31) and dividing by the density yields the Eulerian formulation of the momentum
balance of the incompressible Navier-Stokes equations in the convective form

∂u

∂t

∣∣∣∣
x

+ u ·∇u− 2ν ∇ · ε (u) + ∇p = bF in ΩF × T (2.37)

which is accompanied by the continuity equation (2.35). As a result of the incompress-
ibility the strain rate tensor ε is a traceless tensor containing shear strains only.

An interpretation of (2.37) naturally refers to a single fluid particle at which forces
due to inertia, viscosity and the pressure gradient are in (dynamic) equilibrium with
the external body forces. The formulation of the momentum balance given in (2.37) is
frequently called non-conservative formulation.

Divergence form

The respective conservative or divergence form is given by

∂u

∂t

∣∣∣∣
x

+ ∇ · (u⊗ u− 2ν ε (u) + Ip) = bF in ΩF × T, (2.38)

where the continuity equation (2.35) has been employed. This version of the balance
equation suggests an interpretation referring to a control volume rather than a single
fluid particle. Integrating (2.38) over an arbitrary control volume v which is fixed in
Eulerian coordinates yields∫

v

∂u

∂t

∣∣∣∣
x

dv +

∫
∂v

(u⊗ u− 2ν ε (u) + Ip) · n dγ =

∫
v

bF dv, (2.39)

where Gauss’ theorem has been applied. The integral equation (2.39) reveals why (2.38)
is called conservative: A temporal change of the velocity in a control volume v is balanced
by sources or sinks in v and fluxes over the boundary of the control volume.

Clearly both formulations are equal in the continuous setting. However their discrete
solutions differ as in a discrete setting the continuity equation (2.35) is approximated
rather than satisfied exactly. This opens the question of the better formulation or rather
the one which is more appropriate in a particular case. The problem of conservation
properties of various discrete versions of the flow equation will be discussed in chapter 3.
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2.3.6 Conservation of energy

The energy is another conservative quantity of the flow. For the incompressible flows
considered here energy conservation is not an independent equation. It is rather closely
related to the balance of linear momentum (2.36). The kinetic energy Ekin inside a control
volume vc is given by

Ekin =
1

2

∫
v

ρF|u|2 dv =
1

2
‖
√

ρFu‖2
v, (2.40)

where |u| =
√

u · u denotes the Euclidian norm of the velocity and ‖.‖v represents the
L2-norm in the control volume v. Following the lines of [107] to derive the energy balance
equation the equilibrium equation (2.36) is multiplied by the velocity u and integrated
over v yielding(

ρF ∂u

∂t

∣∣∣∣
x

,u

)
v

+
(
ρFu ·∇u,u

)
v
− (∇ · σF,u)v =

(
ρFbF,u

)
v
. (2.41)

The first term in (2.41) can be recognised as temporal change of the kinetic energy in-
side the volume v while the convective term is reformulated using the continuity equa-
tion (2.35). Further the viscous contribution to the energy rate is integrated by parts
yielding a boundary term and the internal energy dissipation rate σF .. ∇u which reduces
to τ .. ∇u since the pressure does not contribute to the internal viscous work. Using the
symmetry of the shear stress tensor τ this term can further be reformulated to

τ .. ∇u = τ ..

1

2 µ
τ =

1

2 µ
|τ |2 ≥ 0.

Thus inserting all these terms back into (2.41) and employing Gauss’ divergence theorem
conservation of the kinetic energy is obtained according to

∂Ekin

∂t

∣∣∣∣
x

+
1

2
ρF
(
|u|2 n,u

)
∂v
− (n · σF,u)∂v +

1

2 µ
||τ ||2v =

∫
v

ρFbF · u dv. (2.42)

Equation (2.42) states that a change of the kinetic energy inside the control volume
is balanced by the inflow of kinetic energy, the work done by the traction along the
boundary of the control volume, the work of body forces and the energy dissipated by
internal friction. From (2.42) it can be observed that in every volume with homogeneous
Dirichlet boundary conditions and zero body forces the kinetic energy has to decay
monotonously.

Analytical solutions of either the convective or the divergence formulation of the fluid
momentum balance satisfy energy conservation. However this does not necessarily apply
to the respective spatially discrete equations as the discrete velocity field will not be
exactly divergence free. To carry conservation of energy over to the discrete version the
balance of linear momentum has to be written in the form (consult also [107, 197] in this
issue)

∂u

∂t

∣∣∣∣
x

+ u ·∇u +
1

2
∇ · uu− 2ν ∇ · ε (u) + ∇p = bF in ΩF × T. (2.43)

The energy conservation equation (2.42) can be derived from (2.43) without requiring an
exactly divergence free velocity field. It is noteworthy that (2.43) is the average of the
convective formulation and the divergence form of the incompressible Navier-Stokes
equations in a fixed Eulerian system of reference.
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2.3.7 Properties of the incompressible Navier-Stokes equations

The transient incompressible Navier-Stokes equations are a nonlinear system of mixed
hyperbolic-parabolic partial differential equations for the primary unknown fields of the
velocity u and the kinematic pressure p.

As a result of the incompressibility a local change in the pressure is instantly carried
to the entire domain, i.e. the fluid exhibits an infinite speed of sound.

The incompressible Navier-Stokes equations contain two main challenges. The first
one is the saddle point structure of the problem caused by the mixed formulation in
velocity and pressure. A second problem is the hyperbolic convective term which also
introduces a nonlinearity.

The properties of a particular flow can be measured by dimensionless numbers repre-
senting a ratio of forces which govern the problem. The most famous of these measures
is the Reynolds number given by

Re =
L |u|

ν
, (2.44)

where L is a characteristic length of the respective flow problem while u and ν denote a
representative scalar velocity and the kinematic viscosity, respectively. The Reynolds
number gives the ratio of stationary inertial forces and viscous forces. The higher the
Reynolds number gets the lower is the influence of the elliptic viscous term. Conse-
quently very thin internal and boundary layer may develop at high Reynolds number.

A further dimensionless measure required within the present work is the Strouhal
number defined by

St =
L

tc u
(2.45)

where the characteristic period length tc enters. The Strouhal number is a dimensionless
frequency representing the ratio of transient and stationary inertial forces.

An exhaustive discussion of alternative formulations of the single terms as well as
expressions in alternative variables is given by Gresho and Sani in [107]. Mathematical
properties of incompressible viscous flow are also discussed by Rannacher in [202].

2.3.8 Initial conditions and boundary conditions

The initial condition of the momentum balance is an initial velocity field in the initial
fluid domain Ω0

F

u(t = 0) = u0 in Ω0
F (2.46)

which has to be solenoidal, i.e. to satisfy ∇ · u0 = 0 to guarantee a well posed problem.
It is important to note that the fact that the initial velocity field has to be divergence
free excludes impulsive starts of the velocity perpendicular to the boundary.

There is no initial condition for the pressure in an incompressible flow. It rather acts
as a Lagrange multiplier for the incompressibility condition and instantly adjusts to
the velocity field. For a broad discussion of the initial condition one should consult [107].
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In accordance to the structural boundary conditions the boundary of the fluid domain
∂ΩF is decomposed into

∂ΩF = ΓF,D ∪ ΓF,N with ΓF,D ∩ ΓF,N = ∅ (2.47)

where the respective Dirichlet and Neumann boundary conditions are prescribed as

u = ū on ΓF,D and
1

ρF
n · σF = h on ΓF,N. (2.48)

Here h denotes the specific traction vector.

The incompressibility condition (2.35) demands that on a fixed control volume the
inflow and outflow balance, i.e. ∫

ΓF

u · n dγ = 0. (2.49)

Clearly (2.49) puts a restriction if the fluid is fully constraint by Dirichlet type of
boundary conditions.

It is of interest to interpret particular boundary conditions with respect to their physical
meaning.

• No-slip boundary conditions can be chosen as the Navier-Stokes equations include
viscous effects. Assuming that the fluid particles at the boundary stick to the fixed
or moving surface Dirichlet boundary conditions for the velocity are prescribed
in the normal and tangential component. A prescribed tangential velocity typically
causes a boundary layer where the physics are dominated by internal friction.

• Slip boundary conditions consequently have to be used if the Euler equations are
considered, i.e. if no viscosity occurs. In the case of slip boundary conditions the
first equation of (2.48) is replaced by

u · n = ū · n on ΓF,D. (2.50)

For viscous flow problems these boundary conditions may be used to model an
artificial boundary of the domain.

• Slip with friction boundary conditions are a choice between the above two. Thus
the fluid particles are allowed to slip tangentially to the boundary line but the slip
results in shear forces due to a linear friction law. These boundary conditions require
an additional material type of parameter. This friction coefficient heavily depends
upon the property of the respective surface and the viscosity of the flow. Suggested
by Galdi and Layton [97] in the context of large eddy simulations such boundary
conditions have been used by John, e.g. [148, 151].

• Outflow boundary conditions are a particular challenge. Caused rather by the need
to limit the computational domain than by any physically reasonable boundary
neither essential nor natural boundary data is available. Within this work the
popular ‘do nothing’ boundary condition is used which implies the assumption of a
zero Neumann boundary condition. The question of outflow boundary conditions
is discussed by Heywood et al. [125].
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• A pressure boundary condition is required as the pressure is determined by the
incompressible Navier-Stokes equations up to a constant. For pure flow problems
the pressure constant is usually fixed implicitly by a Neumann boundary condition
or directly at a particular point. Alternatively the mean value of the pressure can be
fixed. The influence of the pressure boundary condition in a coupled FSI problem
will be touched upon again in section 2.4.

Further possible boundary conditions such as symmetry boundary conditions, periodic
boundary conditions or free surfaces will not be used within this work. For an exhaustive
discussion of appropriate boundary conditions and their effects one may consult Gresho,
Sani and coauthors, i.e. in [107, 206].

2.4 Coupling conditions

In order to reach at the coupled FSI problem the structural and fluid field have to be
connected along the interface Γ.

The solution of the overall problem requires kinematic and dynamic continuity across
Γ for all times in T

xS
0 + d = x, ḋ = u, d̈ = u̇ on Γ× T (2.51)

and

n · σS = n · σF on Γ× T (2.52)

where x denotes the position of the fluid boundary and xS
0 represents the initial position

of the structural point. In most cases xS
0 will be identified with the Lagrangean coor-

dinate X. In (2.51) no-slip boundary conditions at the interface Γ have been assumed.
If slip shall be possible the normal components of the kinematic variables are coupled
exclusively.

It is worth noting that the dynamic coupling condition (2.52) connects the fluid pressure
level with the structural stresses. Thus for problems where the structure is not fully
immersed in the fluid the free pressure constant implicitly depends upon the external
structural loads. Correspondingly the interface displacement has to satisfy the global
mass conservation of the fluid field. Particularly partitioned solution approaches may fail
for some problems due to these implicit coupling conditions. Approaches to solve this
incompressibility dilemma are discussed by Küttler et al. in [164].

2.5 Model problems

Within this section a number of model problems is introduced which will used subse-
quently to study particular numerical effects of the flow field. These differential equations
can be regarded as special simplifications of the incompressible Navier-Stokes equations
while they also possess a physical interpretation on their own.

The Stokes equations modelling creeping flow state an important simplification of
the incompressible Navier-Stokes equations. The Stokes problem is a classical model
problem to study the effect of the incompressibility condition.
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Mixed convective-diffusive transport of a quantity is modelled by the advection-diffu-
sion equation. A scalar advection-diffusion problem suffices to investigate the ability of a
numerical method to properly reproduce transport including significant convection.

2.5.1 Stokes problem

In the limit of very small flow velocities u the effect of the convective term might be
neglected. Such creeping flows are governed by the incompressible Stokes equations
reading

∂u

∂t

∣∣∣∣
x

− 2ν ∇ · ε (u) + ∇p = bF in ΩF × T (2.53)

∇ · u = 0 in ΩF × T

along with appropriate initial- and boundary conditions.

While still exhibiting the problem of the incompressibility the Stokes problem is
linear and does not contain a hyperbolic term any more. It is thus used to model the
saddle point structure of the incompressible Navier-Stokes equations.

2.5.2 Transient advection-diffusion equation

The advection-diffusion equation governs the transport of a scalar quantity φ as for ex-
ample the concentration of milk in a cup of coffee which is stirred up. The milk diffuses
depending on the gradient in milk concentration while it is moved by the underlying veloc-
ity field at the same time. The function φ may also represent the temperature distribution
in a medium which is moving with the velocity field a.

In the convective formulation on a potentially time dependent domain Ωt the advection-
diffusion problem reads

∂φ

∂t

∣∣∣∣
x

+ a ·∇φ− κ∆φ = f in Ωt × T, (2.54)

φ(t = 0) = φ0 in Ω0, (2.55)

where f denotes a source or sink, κ the diffusivity and the advective velocity field a is
divergence free.

The advection-diffusion equation is accompanied by appropriate Dirichlet and Neu-
mann boundary conditions given by

φ = φ̄ on ΓD n · κ∇φ = h on ΓN. (2.56)

Equation (2.54) is a linear model problem of (2.37) combining diffusive and convective
transport. It allows to study the properties of a mixed hyperbolic-elliptic differential
equation in a linear context. As a measure of the ratio of the convective and diffusive
transport the Peclet number

Pe =
|a|L
κ

(2.57)
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is used. This number is the analogue to the Reynolds number for the Navier-Stokes
equation as given in (2.44).

A temporally discretised version of (2.54) in convective formulation takes the form

φ + δa ·∇φ− δκ ∆φ = r, in Ωt (2.58)

where the symbol r denotes the right hand side term consisting of body forces and con-
tributions from temporal discretisation and δ represents a coefficient stemming from time
discretisation. Equation (2.58) is also termed advection-diffusion-reaction equation. The
zeroth order term is called reactive as in certain reactive processes sources depend upon
the unknown quantity φ itself. In the context of this work the term is used to model the
effect of the zeroth order term introduced by time discretisation of the flow equations.

Remark 2.5.1 The parameter δ depends upon the time step size and the choice of the
time discretisation scheme as defined in (3.17).

2.5.3 Singular diffusion

A further reduction of the advection-diffusion-reaction equation (2.58) yields the singular
diffusion problem

φ− δ κ ∆φ = r, (2.59)

along with appropriate boundary conditions. Differential equations of this kind are ob-
tained from temporally discretised diffusion problems or transient heat conduction. The
singular diffusion problem is employed to model the effect of the zeroth order term stem-
ming from time discretisation and its relationship to elliptic diffusion.
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Flow solver on moving meshes

Within this chapter the ALE formulations of the flow equations are derived and discussed.
Similar to the convective and divergence formulation in an Eulerian setting a convective
and divergence formulation on a moving domain can be derived. Discretising these formu-
lations in time and space yields schemes with different discrete properties and potentially
different discrete solutions. In particular the conservation features of these discrete forms
are considered.

3.1 Introduction

Fluid-structure interaction problems have to deal with temporally changing domains.
While the structural equations are written in a Lagrangean formulation and thus track
the moving interface Γ the balance of linear momentum in the flow field (2.37) poses a
difficulty. The use of an ALE formulation removes the problem. It allows to define a
reference system following the moving boundaries while not being attached to the motion
of the fluid particles inside the deforming domain.

ALE schemes have gained significant popularity for simulations which have to treat
temporally changing domains and in particular for flow simulations with free surfaces or
FSI problems [131]. The original development of the method was done in the context of
finite difference methods in the 1960s. The formulation was later adopted for finite element
schemes. Early applications with moving finite element meshes have among others been
presented by Donea et al. [67] in 1977 and Belytschko and Kennedy [13] in 1978.
In [13] the flow formulation is termed ‘quasi-Eulerian’. Apparently the term ALE was
established by Hirt et al. in 1974 in an article that was reprinted in 1997 [127, 128].
Applications of the method in the finite element context from the early 1980s and are
reported by Donea in [66, 68]. ALE methods in the finite element context are covered
in the book by Donea and Huerta [69] where also some more references to the history
of ALE methods can be found. An overview including information on mesh update
procedures is also given in the encyclopedia article by Donea et al. [70].

It is obviously desirable to transfer the temporal order of accuracy obtained on a fixed
reference system to the deforming domain problem. Additionally stability of the ALE
formulation is required. Stability of different ALE formulations is a persistent problem of
interest [5, 83, 84, 175]. The matter of accurate and stable computations on deforming
domains is further closely linked to the question of geometric conservation, an additional
conservation property on moving frames of reference. However, geometric conservation of
a numerical scheme should not be discussed independently of conservation of linear mo-
mentum and energy as no numerical approximation will be able to satisfy simultaneously

23
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all conservation laws exactly.

Within this work the focus is set on the flow solver on deforming domains rather
than the treatment of mesh motion itself. Some comments on the mesh update shall
thus be added here. Various mesh motion schemes have been proposed over the last
few decades. For simple shaped domains heuristic or interpolation methods as the one
described in [156] are used. Such approaches may be formulated rather efficient, i.e.
without the need to solve a large system of equations. For complicated geometries and
arbitrary motion of the boundary pseudo-structural approaches are frequently preferred
for their generality. Pseudo-structural methods can be found for example in Chiandussi
et al. [39] and Löhner and Yang [168]. Within such schemes locally varying stiffnesses
are used to maintain an optimal mesh quality close to the moving boundary. The same
motivation is behind the idea of discontinuous pseudo-structural schemes based on a spring
analogy. In such formulations the mesh motion is determined from the displacement of
a system of translational and possibly torsional springs attached to the edges, diagonals
and vertices of the elements. Two-dimensional applications of the spring analogy can be
found in Blom [18] and Farhat et al. [74]. The three-dimensional case is considered by
Degand and Farhat in [61] and very recently by Markou et al. in [172].

Within the present work pseudo-structural approaches as well as spring-type mesh
motion schemes are employed.

3.2 ALE forms of the Navier-Stokes equations

Analogously to the convective and divergence form of the momentum balance in an Eu-
lerian setting the respective formulations can be recovered on a deforming domain. The
derivation of the ALE formulation of the flow equations can be found in the book by
Donea and Huerta [69]. A graphical interpretation has also been given by Wall [227].

3.2.1 The ALE system of reference

A sketch of the ALE system of reference is given in figure 3.1. The spatial coordinates of
a particular point x ∈ ΩF are given by the unique mapping

x = ϕ(χ, t) for all t ∈ T. (3.1)

The reference system χ tracks the moving boundaries of ΩF and is allowed to move
arbitrarily and independent of the fluid flow inside the domain. It can be identified with
a particular temporal configuration for example the initial configuration. Within this work
the elemental parameter space is considered as reference configuration in the discrete case.

Jacobian determinant of the ALE frame of reference

The ALE mapping (3.1) allows to introduce the strictly positive Jacobian determinant

Jt = det

(
∂x

∂χ

)
(3.2)
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ΩFχ1
x2

x1

χ2

χ2

χ1

ϕ(χ, t)

reference space

physical space

Figure 3.1: Sketch of ALE measuring of the fluid domain

relating the differential portions of volume in the spatial and reference domain according
to

dΩF = Jt dΩ0
F. (3.3)

The reference fluid domain Ω0
F is time independent. The temporal change of the fluid

domain ΩF is caused by the normal velocity of its boundary according to

∂

∂t

∣∣∣∣
χ

∫
ΩF

dΩF =

∫
Ω0

F

∂Jt

∂t

∣∣∣∣
χ

dΩ0
F =

∫
∂ΩF

uG · n d∂ΩF. (3.4)

The local form of (3.4) yields the well known Euler expansion formula [3] also termed
Euler’s formula by Warsi in [230]

∂Jt

∂t

∣∣∣∣
χ

= Jt∇ · uG. (3.5)

In the context of ALE formulations (3.5) is called geometric conservation law (GCL).
A less illustrative and more mathematical derivation of this equation is given in ap-
pendix A.1.

Material time derivative in the ALE frame of reference

In order to formulate the flow equations in the moving frame of reference χ the material
time derivative of a quantity f(x (χ, t) , t) shall be expressed in the deforming reference
system. Application of the chain rule yields

D f

D t
=

∂f(χ, t)

∂t

∣∣∣∣
χ

+
∂f(χ, t)

∂χ

∂χ

∂t

∣∣∣∣
X

=
∂f(χ, t)

∂t

∣∣∣∣
χ

+
∂f(x, t)

∂x

∂x

∂χ

∂χ

∂t

∣∣∣∣
X

. (3.6)

The material time derivative of the spatial coordinate x, i.e. the temporal change of the
spatial position of a material point is the velocity u. Expressing this derivative according
to (3.6) in the moving frame of reference reads

u =
Dx

D t
=

∂x(χ, t)

∂t

∣∣∣∣
χ

+
∂x(χ, t)

∂χ

∂χ

∂t

∣∣∣∣
X

, (3.7)
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where the temporal change of the spatial position of a reference point ∂x(χ, t)/∂t|χ can

be identified with the velocity of the reference system uG. Inserting (3.7) into (3.6) yields
the ALE expression of the material time derivative of a function f

D f

D t
=

∂f(χ, t)

∂t

∣∣∣∣
χ

+
(
u− uG

)
·∇f. (3.8)

Equation (3.8) also termed fundamental ALE equation allows to express the material
time derivative of a quantity f as a temporal change of f in the reference system and a
convective term accounting for the relative motion of this system. As a special case of (3.8)
the material time derivative in Eulerian coordinates (2.28) is recovered by setting χ = x
which implies uG = 0.

3.2.2 Convective formulation

By means of the fundamental ALE equation (3.8) an ALE formulation of the momentum
balance equation (2.37) is easily obtained reading

∂u

∂t

∣∣∣∣
χ

+
(
u− uG

)
·∇u− 2ν ∇ · ε (u) + ∇p = bF in ΩF × T. (3.9)

In (3.9) the Eulerian material time derivative has been replaced by the fundamental
ALE equation employed on the velocity field u.

The convective formulation in the Eulerian or ALE form is commonly used as a base
for spatial discretisation by means of finite elements (as for example in [103, 107, 109, 227]).
It is also the preferred version within the present work. Equation (3.9) is frequently termed
non-conservative ALE formulation.

Remark 3.2.1 All spatial derivatives occurring in (3.9) refer to the Eulerian system x
while only the time derivative has been transfered to the moving frame of reference χ.
Consequently the continuity equation (2.35) remains unchanged and applies to the moving
domain formulation as well.

3.2.3 Divergence formulation

Analogous to the Eulerian formulation (2.38) a divergence or conservative form of (3.9)
can be obtained. To serve this purpose the convective term in (3.9) is reformulated(

u− uG
)
·∇u = ∇ ·

((
u− uG

)
⊗ u

)
+ u∇ · uG, (3.10)

where the continuity equation ∇ · u = 0 has been used. Employing (3.10) and (3.5) a
divergence form of the ALE formulation is recovered.

∂ (Jt u)

∂t

∣∣∣∣
χ

+ Jt ∇ ·
((

u− uG
)
⊗ u− 2νε(u) + Ip

)
= Jt b

F in Ω0
F × T (3.11)

On a deforming domain the convective and the divergence form of the momentum balance
equation (or indeed of every conservation law) differ not only in the appearance of the
convective term but also the time derivative. This has a significant impact on the discrete
versions of the respective equations.
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Remark 3.2.2 Alternatively to using the fundamental ALE equation (3.8) the convective
and divergence ALE formulation of a conservation law can also be derived from integral
forms as it has been done for example in [86].

3.3 Discretisation

The flow equations are discretised in a sequential manner, i.e. discretisation in space and
time are performed (at least to some extent) independently and by different methods. This
allows to employ the finite element method for the spatial discretisation and to use a finite
difference method in time. An alternative to this approach provide space-time elements
allowing to simultaneously discretise all dimensions by a finite element concept. This
approach pursued among others by the group of Tezduyar (see e.g. [213, 218] or [221,
224] for more recent applications). A space-time formulation for moving domain problems
has also been proposed by Masud and Hughes in [176] where a discontinuous Galerkin
method based on the physical entropy variables is used. The main disadvantage of space-
time formulations is the significantly increased size of the resulting equation systems.
In particular when higher order accuracy in time is desired sequential discretisation is
preferred.

With respect to the stabilised finite element flow formulation introduced in chapter 4
the time discretisation is performed prior to the discretisation in space. In contrast to
the usual sequential discretisation in space and subsequently in time, i.e. the method of
lines, this approach is also termed horizontal method of lines or Rothe method inspired
by an article of Rothe in 1930 [204].

3.3.1 Discretisation in time

Introduction

With respect to time the incompressible Navier-Stokes equations (3.9) and (2.35)
pose a coupled problem composed of a partial differential equation and the constraint
of the incompressibility. Anticipating discretisation in space one notes that the discrete
Navier-Stokes equations yield a differential-algebraic problem. Thus the incompress-
ible Navier-Stokes equations might be regarded as infinitely stiff partial differential
equation. A rough definition of stiffness of ordinary differential equations (ODE) in time
is the presence of a very large range of characteristic time scales. And indeed without
specifically determining the largest time scale one can easily observe that the incompress-
ibility condition introducing an infinite speed of sound also introduces an infinitely small
time scale.

Relaxation of the incompressibility condition will be introduced by using a stabilised
finite element method for spatial discretisation. Thus eventually the resulting discrete
equations will be of large but finite stiffness.

Time integration of stiff problems requires implicit methods. For the present problem
where the stiffness is related to the incompressibility implicit methods have to be used at
least to integrate the pressure field. Explicit methods would demand a step size able to
resolve the dynamics of the smallest occurring time scale. Therefore such methods show
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tremendously inefficient on stiff problems. However not only efficiency but also stability
requirements limit the possible time discretisation methods for stiff problems [112].

The method of choice to discretise the incompressible Navier-Stokes equations in
time therefore has to be stiffly stable at least. (See Gear [98] for a definition of stiff
stability.) A subset of stiffly stable methods are A-stable. Applying an A-stable method
to the linear ODE

ẏ(t) = −λ y(t) λ ∈ C, Re(λ) < 0 (3.12)

yields limn→∞ yn = 0 independent of the fixed time step size ∆t. Dahlquist’s test
equation (3.12) can be regarded a model of an advective-diffusive equation where the real
part of λ represents the diffusive effect and the imaginary contribution models advective
transport. Consult Gresho and Sani [107] for an explanation of this analogy.

The time discretisation schemes employed within this work are further limited by a
theorem known by the name second Dahlquist barrier which states that an A-stable
multistep method does not exceed order two. It further says that the most accurate second
order A-stable scheme is the well known trapezoidal rule. For a detailed discussion of
stiffness and stable numerical step methods the reader is referred to the book by Hairer
and Wanner [112].

The present work thus aims at a second order accurate time discretisation of the in-
compressible Navier-Stokes equations on a deforming domain which is (at least condi-
tionally) stable. An analysis comparing temporal discretisation schemes for the particular
use to integrate the stabilised FEM of the Navier-Stokes equations can be found in
Dettmer and Perić [62].

One-step-θ

The one-step-θ method is one of the integration schemes considered within this work.
Applied on the general first order ODE ẏ = f(y, t) one-step θ time integration yields

yn+1 − yn

∆t
= θ f(yn+1, tn+1) + (1− θ) f(yn, tn), (3.13)

where ∆t denotes the time step size. The method is A-stable if 1/2 ≤ θ ≤ 1 and
contains the special cases of backward Euler (BE) time discretisation at θ = 1 and the
trapezoidal rule (TR) for θ = 1/2. The TR is a second order accurate scheme while
a deviation from θ = 1/2 yields a method which is just first order accurate. Another
advantage of the TR is that it is free of spurious damping. It is thus the method of choice
for long time simulations. However the lack of numerical damping frequently results in
a tendency to spurious oscillations caused by unresolved transients or initial inaccuracy.
As the numerical stability of (3.13) increases with increasing parameter θ a slight shift
of θ towards a higher value frequently cures the oscillations but sacrifices second order
accuracy.
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Second order backward differencing

The second order representative of the backward differentiation formulae (BDF2) applied
to the general first order ODE ẏ = f(y, t) reads

yn+1 − yn

∆t
=

1

3

yn − yn−1

∆t
+

2

3
f(yn+1, tn+1). (3.14)

The method combines second order accuracy and some numerical dissipation. It thus
guarantees that errors are always damped. BDF2 is A-stable (or more precisely even
L-stable see [112]). A disadvantage of BDF2 is its need for a starting algorithm.

The method has been preferred within this work for its robustness and accuracy.

Time discretisation of the convective form

The temporally discretised equation is cast into a unified concept. Applying (3.13) and
(3.14) to the convective form of the ALE momentum balance (3.9) and the continuity
equation yields

un+1 + δ
[(

un+1 − uG,n+1
)
·∇un+1 − 2ν∇ · ε

(
un+1

)
+ ∇pn+1

]
= rn+1 in Ωn+1

F ,
(3.15)

δ ∇ · un+1 = 0 in Ωn+1
F , (3.16)

where δ represents a scalar depending on the discretisation scheme:

δθ = θ ∆t, δBDF2 =
2

3
∆t. (3.17)

The vector valued function r contains history terms of the velocity and depends on the
time integration scheme. Possible body forces f are also included in r according to

rn+1
θ = δθ bF,n+1 + (1− θ) ∆t u̇n + un rn+1

BDF2 = δBDF2 bF,n+1 +
4

3
un − 1

3
un−1.

Equation (3.15) can be interpreted as a differential equation in space which refers to a
different domain in every time step.

Remark 3.3.1 The time parameter δ introduced in (3.16) does not emerge from tem-
poral discretisation. It is rather introduced to scale the continuity equation for better
conditioning of the resulting effective fluid coefficient matrix and to preserve the last bit
of symmetry of the mixed formulation.

Time discretisation of the divergence form

Time integration of the divergence ALE form (3.11) requires to discretise the temporal
change of the product Jtu yielding

Jn+1un+1 + δJn+1∇ ·
((

un+1 − uG,n+1
)
⊗ un+1 − 2νε(un+1) + Ipn+1

)
= rn+1

d in Ω0
F,

(3.18)

δ Jn+1 ∇ · un+1 = 0 in Ω0
F,
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where the above definition of the parameter δ applies. However the right hand side
contribution significantly differs from the one obtained for the convective formulation. It
now reads

rn+1
d,θ = δθJ

n+1bF,n+1 + Jnun + ∆t (1− θ)
˙

(Ju)
n

(3.19)

and

rn+1
d,BDF2 = δBDF2J

n+1bF,n+1 +
4

3
Jnun − 1

3
Jn−1un−1 (3.20)

for one-step-θ and BDF2, respectively, including terms that refer to previous positions of
the reference system. Compared to the convective ALE equation this results in a slightly
increased effort as previous node positions have to be tracked.

Remark 3.3.2 The subscript ‘d’ is used here and subsequently to denote symbols that
refer to the divergence formulation and differ from the respective term of the convective
form.

3.3.2 Discretisation in space

Spatial discretisation by means of finite elements is introduced here in order to discuss
the conservation properties of the convective and divergence ALE formulation on the fully
discretised equations. With this in mind the Galerkin weak form is considered in this
section. Additional stabilisation terms which complete the spatial discretisation will be
regarded in chapter 4. Suffice it here to assure that the instabilities requiring stabilisation
terms are (at least to some extent) independent of the fundamental conservation properties
of the equations and the potential loss of stability due to mesh motion.

Finite element discretisation is covered subsequently to the extent required for the
present work. A presentation of the details and problems encountered on the way of
using finite elements for flow problems can be found in the exhaustive monograph by
Gresho and Sani [107] which has already been mentioned several times. The book
by Donea and Huerta [69] also covers the subject including ALE formulations. Further
the third volume of the classic books on FEM by Zienkiewicz and Taylor [237] should
be mentioned along the engineering books on the subject. A more mathematical view on
the FEM for incompressible flows can be found in the book by Gunzburger [109] or
also the volume by Girault and Raviart [102].

Spatial discretisation of convective form

In order to discretise the semi-discrete convective ALE equation (3.15) in space the do-
main ΩF is divided into non-overlapping patches, the elements. The spatial discretisation
maintains its topology while following the deformation of the domain. The reference do-
main Ω0

F is then associated with the elemental parameter spaces, such that Jt is identified
with the elemental Jacobian determinant.

To define the discrete Galerkin form the finite element spaces Vh
F,0 ⊂ H1

0(ΩF) and
Vh

F ⊂ H1(ΩF) are selected, where Vh
F satisfies the time dependent Dirichlet boundary
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conditions of the problem while all functions in Vh
F,0 are zero on ΓF,D. The pressure is

taken from the space P h ⊂ L2(ΩF) of square integrable functions.

The discrete variational statement then reads: seek the solution at u ∈ Vh
F,n+1, p ∈

P h
n+1 at the new time level n + 1 such that

Bgal ({u, p} , {v, q}) =
(
rn+1,v

)
Ωn+1

F
+ δ

(
hn+1,v

)
Γn+1

F,N
for all (v, q) ∈ (Vh

F,0,n+1, P
h
n+1),

(3.21)

where the discrete operator in convective form Bgal ({u, p} , {v, q}) is given by

Bgal ({u, p} , {v, q}) = (u,v)Ωn+1
F

+
(
δ
(
u− uG,n+1

)
·∇u,v

)
Ωn+1

F
+ (δ 2νε(u), ε(v))Ωn+1

F

− (δ p, ∇ · v)Ωn+1
F

− (δ ∇ · u, β q)Ωn+1
F

. (3.22)

It is pointed out that the superscript n+1 is dropped at the unknown velocity and pressure
field at the new time level for clarity of the presentation. The parameter β ∈ {−1, 1}
carries the sign of the pressure test function q. This parameter is introduced here with
respect to the general stabilised formulation that shall be considered in chapter 4.

From (3.21) and (3.22) it can be observed that all inner products refer to the actual time
instant, i.e. the time discretisation of the convective ALE formulation does not interfere
with the temporal mesh evolution.

Discrete flow equations in matrix notation

Denoting the vectors of unknown nodal velocity values by u and the corresponding nodal
pressure values by p, i.e. bold face non-serif upright letters which are generally used here
for discrete matrices and vectors, the fluid system of equations can conveniently be cast
into matrix form reading

MFu + δ N(u) + δ KFu + δ Gp = fF
b + fF

h (3.23)

δ GTu = 0, (3.24)

where fluid mass matrix is obtained from the bilinear form

vTMFu = (u,v)Ωn+1
F

.

The fluid ‘stiffness’ is derived from the discrete nonlinear convective term reading

vTN(u) =
(
(u− uG,n+1) ·∇u,v

)
Ωn+1

F

and a symmetric positive definite matrix stemming form the viscous term

vTKFu = (2νε(u), ε(v))Ωn+1
F

.

The discrete gradient operator is obtained from

vTGp = − (p, ∇ · v)Ωn+1
F
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while the discrete divergence operator is given by

qTGTu = −β (∇ · u, q)Ωn+1
F

.

The vector fF
b collects the right hand side terms from history values and body forces

vT fF
b =

(
rn+1,v

)
Ωn+1

F

while fF
h represents tractions

vT fF
h =

(
hn+1,v

)
Γn+1

F,N
.

On deforming domains all coefficient matrices are time dependent.

Spatial discretisation of divergence form

A spatial discretisation of the divergence formulation (3.18) depends upon the particular
time discretisation scheme. In the case of one-step-θ it reads: find the velocity and
pressure u ∈ Vh

F,n+1, p ∈ P h
n+1 at the new time instant n + 1 such that

Bgal,d ({u, p} , {v, q}) =
(
δ bF,n+1,v

)
Ωn+1

F
+ (un,v)Ωn

F
+
(
∆t (1− θ)

˙
(Ju)

n

,v
)

Ω0
F

+
(
δ hn+1

d ,v
)
Γn+1

F,N
for all (v, q) ∈

(
Vh

F,0 ⊂ H1
0(Ω

0
F), P h ⊂ L2(Ω0

F)
)
.

(3.25)

After time discretisation by BDF2 the Galerkin weak formulation reads: seek u ∈
Vh

F,n+1, p ∈ P h
n+1 such that

Bgal,d ({u, p} , {v, q}) =
(
δ bF,n+1,v

)
Ωn+1

F
+

4

3
(un,v)Ωn

F
− 1

3

(
un−1,v

)
Ωn−1

F

+
(
δ hn+1

d ,v
)
Γn+1

F,N
for all (v, q) ∈

(
Vh

F,0 ⊂ H1
0(Ω

0
F), P h ⊂ L2(Ω0

F)
)
.

(3.26)

In both cases the weighting functions for velocity and pressure are defined with respect to
the reference system, i.e. on the elemental parameter spaces and integrated over domains
referring to different time levels. The discrete operator in the divergence form is given by

Bgal,d ({u, p} , {v, q}) = (u,v)Ωn+1
F

− (∇ · u, q)Ωn+1
F

+ δ
(
−
(
u− uG,n+1

)
⊗ u + 2νε(u)− Ipn+1, ∇v

)
Ωn+1

F
(3.27)

applying to either of the above cases.

Remark 3.3.3 In the divergence or conservative form (3.27) the integration by parts
refers to the total momentum flux including the convective one. Thus the corresponding
Neumann boundary condition is

hn+1
d = n ·

(
σ −

(
un+1 − uG,n+1

)
⊗ un+1

)
= hn+1 − n ·

(
un+1 − uG,n+1

)
⊗ un+1. (3.28)
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On boundaries with a local Lagrangean formulation, i.e. u = uG or where the velocity
vector is tangential to the boundary the total momentum flux equals the traction force
vector h. Alternatively to (3.27) it is possible to use a weak formulation of the divergence
form where the integration by parts exclusively refers to the viscous and pressure term as
it is not strictly necessary to integrate the convective term by parts. If such an approach
is followed the Neumann boundary condition is not altered.

Remark 3.3.4 The weighted residual of the divergence ALE formulation (3.25) or (3.26)
can also be used to derive a finite volume method by choosing v to be element wise
constant. In such a case the second line in (3.27) vanishes and it remains to balance the
total fluxes hn+1

d over the boundaries of the control volumes.

3.4 Conservation laws on deforming domains

It is worthwhile to open the discussion of conservation with the words of Hughes and
coauthors [137]: “Let us take the point of view here that local conservation is at least
desirable, possibly helpful, and certainly not harmful.” indicating that discrete conserva-
tion is not unconditionally mandatory. While the stated sentence refers to the conserved
quantity which is actually discretised, i.e. in the present case to the conservation of linear
momentum, it is of interest to simultaneously have a look at the various other conser-
vation laws which are met on the way of discretising the flow equations on a deforming
domain.

The matter of conservation properties of discrete equations arises when discrete rep-
resentations of conservation laws are considered. In general such a law governing the
temporal evolution of a quantity f can be written as

∂f

∂t
+ ∇ · F = s (3.29)

or more obviously

∂

∂t

∫
vc

f dvc +

∫
∂vc

n · F d∂vc =

∫
vc

s dvc (3.30)

stating that the temporal change of f inside the fixed control volume vc is balanced by a
source term s and the fluxes F passing the control volume boundary.

It is easy to observe that the divergence formulation of the momentum balance in
Eulerian formulation (2.38) as well as its ALE version (3.11) pose special cases of con-
servation laws of the type (3.29). Further conservation laws which have been touched
so far are the energy conservation within the fluid (2.42), the geometric conservation
law (3.5) and the conservation of mass (2.35) equation. The latter posing a special case
neither containing a temporal change of the conserved quality nor source terms.

Clearly the structural momentum balance equation (2.12) is another conservation law
even if rarely called so. Structural engineers are used to prefer the idea of force equilibrium
rather than conservation of linear momentum in the above sense.
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3.4.1 Conservation of linear momentum

As the divergence formulation of the flow balance appears in the form (3.29) it is frequently
termed conservative formulation while the convective form is called non-conservative (see
e.g. Formaggia and Nobile [83, 84]). The rigorous equality of the two is lost as soon
as the continuity equation is approximated rather than strictly satisfied.

Using a conservative instead of a non-conservative formulation of the respective equa-
tions for discretisation ensures that the conservation property of the quantity of interest
is carried over to the discrete version. For equation (3.11) this means that the temporal
change of linear momentum within one element is balanced by the elemental body forces
and the total momentum fluxes hd across the element boundaries. This conservation
property cannot directly be observed any more when the convective formulation (3.9) is
discretised which suggests the idea of force balance at a time instant rather than conser-
vation of a quantity over time. However, it is worth noting that conservation does not
necessarily imply accuracy (even if it evidently does not contradict it either). Quoting
Hughes again one may even state that “advective forms are often preferred on grounds
of accuracy despite violation of conservation” [144].

There are two main reasons to prefer the conservative form of the equations. The first
one is the intention to use a finite volume method which relies on a divergence expression.
The second reason is the desire to simulate problems with shock discontinuities which
may be present for high speed compressible flow (see Zienkiewicz et al. [237]).

As neither of the reasons is apparent for the present work the convective formulation
is used preferably here. Nevertheless some properties of divergence formulations of ALE
schemes shall also be considered in the sequel.

Remark 3.4.1 Using the divergence formulation (3.11) implies discrete conservation of
linear momentum in an integral sense. It yields, however, neither energy nor geometric
conservation on the same control volume. Both conservation laws are spoiled by dis-
cretisation errors. Thus the more neutral terms divergence formulation and convective
formulation rather than conservative scheme and non-conservative scheme are preferred
within this work.

Remark 3.4.2 Returning to the initially cited paper by Hughes et al. another aspect
has to be mentioned when conservation is considered. Continuous Galerkin methods are
frequently accused of not being locally conservative irrespective of the form of the discre-
tised equations. Hughes and coauthors [137] clarify this issue demonstrating that local
conservation is well achieved by continuous Galerkin approximations if the conservative
fluxes are deduced from the consistent nodal forces.

3.4.2 Geometric conservation

Geometric conservation poses a difficulty particularly when the divergence ALE formula-
tion (3.11) is applied. The matter of geometric conservation is not restricted to incom-
pressible flow but arises also when compressible flow problems on moving domains are
investigated. Consequently the need for geometric conservation was pointed out first by
Thomas and Lombard [223] in 1979 who solved the GCL numerically along with the
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flow equations using difference operators. In the sequel the GCL was discussed in relation
with the accuracy of finite volume or finite difference methods by Farhat et al. [108, 161].

A desirable property of a numerical scheme is that it is able to predict exactly a
constant flow. Lesoinne and Farhat showed that this condition is satisfied if the scheme
under consideration satisfies a discrete version of the GCL [167]. Discrete geometric
conservations laws (DGCL) for finite volume schemes were suspected to be necessary
for the stability of the overall scheme [75, 76, 73] while it was also shown that it is
neither necessary nor sufficient to guarantee that the discrete scheme on a moving domain
preserves the order of accuracy in time of the respective fixed grid version [101]. Boffi
and Gastaldi proved that the GCL is neither necessary nor sufficient for stability [25].

Nevertheless it remains desirable to satisfy geometric conservation at least for incom-
pressible flow where it is closely related to mass conservation.

The GCL can be satisfied in different ways. Using a convective ALE formulation of the
flow equations intrinsically satisfies (3.5) exactly as shown for example in [86]. When a
divergence formulation is employed the GCL can either be stated as a separate equation
to be solved e.g. as in [72, 223] or a discrete GCL can be used to determine some free
time integration parameters subsequent to temporal discretisation as done in [75, 101].

Subsequently the geometric conservation properties of the discrete schemes (3.22)
and (3.27) are considered by testing the requirement that a constant solution has to
be reproduced exactly.

Convective formulation

To show that geometric conservation is assured in the discrete convective form a spatial
and temporal constant solution ū is inserted into the discrete equation (3.21). A uniform
velocity field is accompanied by a pressure field that carries the body forces and surface
tractions. Thus depending on the time discretisation scheme this yields

(ū,v)Ωn+1
F

= (ū,v)Ωn+1
F

and (ū,v)Ωn+1
F

= (
4

3
ū,v)Ωn+1

F
− (

1

3
ū,v)Ωn+1

F
(3.31)

for one-step θ and BDF2, respectively. Consequently geometric conservation reduces to
the demand that at least all mass like terms in (3.22) have to be integrated over the
same domain ΩF, i.e. at the same instant in time. This condition is met by the discrete
formulation (3.21).

The convective ALE formulation is inherently geometrically conservative irrespective
of the employed time discretisation scheme. Interestingly geometric conservation is sat-
isfied independent of the mesh velocity which does not occur in (3.31). Nevertheless
the determination of uG has a significant impact on the order of accuracy of the overall
scheme.

Determination of the mesh velocity

The mesh motion is governed by the first order ODE

∂x

∂t

∣∣∣∣
χ

= uG (3.32)
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which is a vector equation including the information of the scalar geometric conservation
law (3.5). It has to be remarked here that in the derivation of the GCL 3.5 the definition
of the mesh velocity (3.32) has already been utilised. Within numerical FSI schemes the
new position of the mesh xn+1 is determined by a mesh motion algorithm and thus treated
as known here. Hence (3.32) can be discretised in time yielding

uG,n+1 =
xn+1 − xn

θ ∆t
− 1− θ

θ
uG,n and uG,n+1 =

3xn+1 − 4xn + xn−1

2 ∆t
(3.33)

for one-step θ and BDF2, respectively. Setting θ = 1 in the first equation of (3.33) recovers
the popular step wise constant mesh velocity

uG,n+1 =
xn+1 − xn

∆t

as backward Euler time discretisation of the mesh motion ODE (3.32). Both ways of
discretising (3.32) in time satisfy the geometric conservation condition (3.5).

However care has to be taken if a temporally second order discretisation of the fluid
velocity is desired. In this case the mesh motion equation has to be integrated at least
second order accurately. An analysis of the local truncation error indicates that it should
be possible to use the trapezoidal rule (θ = 1/2) for the mesh movement while using BDF2
for the solution of the Navier-Stokes equations and still obtain second order convergence.
This is indeed the case, however, the trapezoidal rule tends to introduce oscillations into
the scheme. Therefore the second equation of (3.33) is used here for second order accurate
schemes to obtain the new mesh velocity uG,n+1 .

Subsequently a numerical investigation confirming the accuracy observations is re-
ported.

Remark 3.4.3 It is not necessary to use the same time integration scheme for the mesh
velocity that is used for the momentum balance. Any other implicit multistep method
can also be chosen provided is offers the desired accuracy.

Numerical accuracy check for convective ALE formulation

In order to show that second order accuracy in time can be obtained from the discrete
convective formulation (3.22) a numerical example is investigated. The problem is the
well known driven cavity flow where the parameters used here are given in figure 3.2.
The cavity occupies the unit square and the horizontal flow in x-direction prescribed
on the top is parabolic in space and follows sinusoidal function in time according to
ux(x, t) = 4(x − x2) sin(π/4 t). Nine-noded quadratic elements in space are used. To
investigate a moving mesh, the horizontal mesh middle line as indicated in figure 3.2 is
moved vertically following ym(t) = 0.35 sin(π/2 t). The convergence of the horizontal
reaction force Fx at the top of the cavity at time t = 1.0 is investigated for different
temporal discretisations of the mesh velocity uG.

For both lines in figure 3.3 the overall time stepping scheme has been BDF2. The
figure confirms that using constant mesh velocities within the single time steps effectively
sacrifices one order of temporal accuracy. Using a second order accurate scheme to obtain
the new grid velocity restores the overall temporal convergence to second order on moving
meshes without introducing extra effort.
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material data: ν = 0.01

ρ = 1.0
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mesh: 20× 20 nine-noded elements
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Figure 3.2: Driven cavity flow example - problem description
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Figure 3.3: Error in horizontal reaction force

Divergence formulation

To find the inherent geometric conservation properties of the divergence formulation of the
ALE equations a spatially and temporally constant solution ū is inserted into the discrete
equation (3.25), i.e. the one-step-θ case is considered. As all spatial velocity gradients
vanish one obtains

(ū,v)Ωn+1
F

− θ ∆t
((

ū− uG,n+1
)
⊗ ū, ∇v

)
Ωn+1

F
= (ū,v)Ωn

F
+
(
∆t (1− θ)J̇nū,v

)
Ω0

F

+
(
∆t
(
hn+1

d − hn+1
)
,v
)
Γn+1

F,N
, (3.34)

where the pressure field balances the body forces and tractions. To simplify (3.34) further
the convective flux term is integrated by parts which gives

((
ū− uG,n+1

)
⊗ ū, ∇v

)
Ωn+1

F
=
(
n ·
(
ū− uG,n+1

)
⊗ ū,v

)
Γn+1

F,N
+
(
∇ · uG,n+1ū,v

)
Ωn+1

F
,

(3.35)
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where the fact that ū is constant in space has been used. Inserting (3.35) back into the
weak formulation (3.34) the boundary terms cancel due to (3.28) and the weak form

(ū,v)Ωn+1
F

− θ ∆t
(
∇ · uG,n+1ū,v

)
Ωn+1

F
= (ū,v)Ωn

F
+
(
∆t (1− θ)J̇nū,v

)
Ω0

F

(3.36)

is obtained. For arbitrary ū the Euler equation of (3.36) is a discrete representation of
the geometric conservation law (3.5)

Jn+1 − Jn

∆t
= θJn+1 ∇ · uG,n+1 + (1− θ)J̇n. (3.37)

Equation (3.37) has to be satisfied in order to enable the discrete scheme (3.25) to repro-
duce an uniform velocity field exactly, i.e. to make the scheme geometrically conservative.

A similar expression can be obtained for the discrete scheme employing BDF2 time
discretisation (3.26). Inserting a constant solution in (3.26) yields after some algebra

Jn+1 − Jn

∆t
=

1

3

Jn − Jn−1

∆t
+

2

3
Jn+1∇ · uG,n+1. (3.38)

The discrete geometric conservation laws (3.37) and (3.38) are temporally discretised
versions of the GCL (3.5) by the same scheme that has been used for the governing
equations themselves. However, discretising the mesh velocity by the same scheme that
has been used for the ALE formulation of the Navier-Stokes equations does generally
not also satisfy (3.37) or (3.38) as the Jacobian determinant Jt = det (∂x/∂χ) is a
nonlinear function of the current spatial position x.

Discrete geometric conservation laws for temporally second order schemes and finite
volume discretisations on deforming domains have been developed by Farhat et al. e.g.
in [75, 101].

3.4.3 Conservation of energy

In contrast to the Eulerian setting considered in section 2.3.6 the effect of domain motion
upon the energy balance equation shall be investigated here. Conservation of energy in
a discrete scheme is closely linked to stability [107, 197]. Thus the energy conservation
property of the discrete schemes for the incompressible Navier-Stokes equations is of
particular interest.

To investigate the energy conservation properties of the ALE versions of the momentum
balance (3.9) and (3.11) the continuous formulations are considered. The effect of the
spatial discretisation is accounted for by keeping in mind that the continuity condition
∇ · u will not be strictly valid in a discrete scheme.

The kinetic energy Ekin enclosed in a volume of fluid which is fixed in the reference
system χ reads

Ekin =
1

2
ρF

∫
ΩF

|u|2 dΩF =
1

2
ρF

∫
Ω0

F

|u|2 Jt dΩ0
F. (3.39)

Hence the temporal change of kinetic energy inside ΩF is given by

∂Ekin

∂t

∣∣∣∣
χ

= ρF

∫
Ω0

F

∂u

∂t

∣∣∣∣
χ

· u Jt dΩ0
F +

ρF

2

∫
Ω0

F

|u|2 ∇ · uG Jt dΩ0
F, (3.40)

where the geometric conservation law (3.5) has been used.
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Convective formulation

To derive the energy conservation equation on a deforming domain the convective mo-
mentum balance is multiplied by the velocity u and integrated over a domain fixed in the
reference system yielding

ρF

∫
ΩF

∂u

∂t

∣∣∣∣
χ

· u dΩF + ρF

∫
ΩF

(
u− uG

)
·∇u · u dΩF −

∫
ΩF

∇ · σ · u dΩF

= ρF

∫
ΩF

bF · u dΩF. (3.41)

The convective term in (3.41) can be integrated by parts and reformulated using Gauss’s
divergence theorem∫

ΩF

(
u− uG

)
·∇u · u dΩF =− 1

2

∫
ΩF

|u|2 ∇ · u dΩF +
1

2

∫
ΩF

|u|2 ∇ · uG dΩF

+
1

2

∫
∂ΩF

|u|2
(
u− uG

)
· n d∂ΩF

Inserting this into (3.41) and reformulating the viscous term in the same way as in (2.42)
yields

∂Ekin

∂t

∣∣∣∣
χ

− ρF

2

∫
ΩF

|u|2 ∇ · u dΩF +
ρF

2

∫
∂ΩF

|u|2
(
u− uG

)
· n d∂ΩF

−
∫

∂ΩF

n · σ · u d∂ΩF +
1

2µ
‖τ‖2

ΩF
= ρF

∫
ΩF

bF · u dΩF (3.42)

where the temporal change of the kinetic energy according to (3.40) has been identified.
Equally to the energy balance on a fixed reference system (2.42) equation (3.42) states
that the temporal chance of energy inside ΩF is balanced by an inflow of energy, the work
done by tractions and body forces and the energy which is dissipated by the internal
friction. However the second term in the first line of (3.42) which vanishes for strictly
divergence free velocity fields might spoil the correct balance in a spatially discretised
version. Thus conservation of energy cannot be recovered exactly in a discrete scheme
basing on the convective ALE formulation (3.9).

Divergence formulation

A similar energy balance expression to (3.42) is obtained by starting from the divergence
ALE form (3.11), multiplying it with the velocity field u and integrating over a domain
which is constant in the reference system. In this case the resulting energy balance reads

∂Ekin

∂t

∣∣∣∣
χ

+
ρF

2

∫
ΩF

|u|2 ∇ · u dΩF +
ρF

2

∫
∂ΩF

|u|2
(
u− uG

)
· n d∂ΩF

−
∫

∂ΩF

n · σ · u d∂ΩF +
1

2µ
‖τ‖2

ΩF
= ρF

∫
ΩF

bF · u dΩF, (3.43)

i.e. the sign of the energy error term ρF/2
∫

ΩF
|u|2 ∇ · u dΩF has changed.
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Equation (3.43) highlights that discrete schemes derived from the divergence ALE
form (3.11) will also be unable of exactly conserving the energy. It further shows that the
potential energy error is of the same order of magnitude for the divergence form and the
convective formulation provided that the deviation form exact fulfilment of the continuity
equation is comparable.

A combined ALE formulation

A comparison of (3.42) and (3.43) suggests that an energy conserving discrete formulation
could be derived from an average of the convective and divergence formulation. This is
well known for Eulerian flow formulations where it yields the form (2.43). Consult
Gresho and Sani [107] or also Quateroni and Valli [197] for a detailed discussion in
the Eulerian case. Also on deforming domains the average of the convective ALE form
and the respective divergence formulation yields a discretely energy conserving scheme.
However in this case it is not only the convective term which is affected by ‘averaging’
the two equations but also the time derivative, i.e. the mass term. The energy conserving
formulation reads

ρF

2

(
∂ (Jtu)

∂t

∣∣∣∣
χ

+ Jt
∂u

∂t

∣∣∣∣
χ

)
+ Jtρ

F
(
u− uG

)
·∇u +

Jtρ
F

2
∇ ·

(
u− uG

)
u

+Jt ∇ · σ = Jt ρ
FbF on Ω0

F × T. (3.44)

Unfortunately (3.44) contains time derivatives of different fields and is thus not accessible
to straightforward temporal discretisation. Nevertheless it is of theoretical interest as it
indicates how to design an unconditionally stable scheme on a deforming domain.

3.5 Stability of ALE formulations

Numerical schemes for the approximation of initial value probles require to be consistent
and stable in order to be convergent. Also for boundary value problems consistency and
stability are highly desired. Consistency is obvious for weighted residual methods which
will always be satisfied by the analytical solution.

The stability of temporally discretised ALE formulations, however, is a persistent mat-
ter of concern. In [83, 84] Formaggia and Nobile conclude that the convective ALE
formulation was potentially unstable. According to the latter paper the divergence for-
mulation discretised in time by BE is the only scheme for which unconditional temporal
stability can be shown. However it is also stated there that the authors “were actually
unable to find a test case where the simulation would blow-up”. Recent contributions to
the question of stability of ALE based schemes have been made by Badia and Codina [5]
and Masud [175].

Stability of a discrete problem requires that for a finite right hand side the solution
does not exhibit unbounded growth. Thus it demands that the discrete operator can be
inverted which is the case if the operator is coercive. However, coercivity is a sufficient
but not a necessary condition for stability. In the present context of the incompressible
Navier-Stokes equations a coercivity estimate can also be interpreted as a lower bound
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on the energy which is generated if inertial forces, convective forces, viscous forces and
pressure forces which are due to a velocity field u act along the direction of u.

The subsequent analysis is considered with stability within one time step which is a
kind of local stability (with respect to time) in contrast to long-term stability considered
in [5, 83, 84]. Conditions are obtained here that guarantee that the operator can be
inverted within a particular step. Thus these conditions could also be termed solvability
condition to distinguish it clearly from a stability condition obtained from a long-term
stability analysis.

Stability within one time step is necessary but not sufficient for long-term stability
which is hard to show. The present considerations shed light on why and how the mesh
motion affects stability of a numerical scheme.

A stability analysis is performed here on the model problem of the transient advection-
diffusion equation (2.55). This allows to assess the effect of the domain motion on the
stability independent of the other difficulties contained in the incompressible Navier-
Stokes equations, i.e. the velocity-pressure coupling and the nonlinearity.

3.5.1 Stability of the convective ALE formulation of the advec-
tion-diffusion equation

The discrete model problem in convective formulation

The convective ALE form of the model problem reads

∂φ

∂t

∣∣∣∣
χ

+
(
a− uG

)
·∇φ− κ∆φ = f in Ωt × T (3.45)

with an initial field φ(t,χ) = φ0(χ) and homogeneous Dirichlet boundary conditions
φ = 0 on ∂Ωt assumed for brevity of the presentation. After discretisation in time by
one-step-θ or BDF2 this yields in every time step

φn+1 + δ
{(

an+1 − uG,n+1
)
·∇φn+1 − κ∆φn+1

}
= rn+1 in Ωn+1 (3.46)

where the parameter δ is given by (3.17) and the right hand side term rn+1 depends on
the particular choice of the time discretisation scheme according to

rn+1
θ = δθf

n+1 + (1− θ)∆t φ̇n + φn, rn+1
BDF2 = δBDF2f

n+1 +
4

3
φn − 1

3
φn−1.

Thus the Galerkin weak form is given by: find φ ∈ V h
0,n+1 ⊂ H1 such that

(φ, ω)Ωn+1
+ δ

((
an+1 − uG,n+1

)
·∇φ, ω

)
Ωn+1

+ δκ (∇φ,∇ω)Ωn+1
=
(
rn+1, ω

)
Ωn+1

(3.47)

is satisfied for all ω in V h
0,n+1 ⊂ H1 which is the discrete space that satisfies the homoge-

neous Dirichlet boundary conditions.

Coercivity analysis

It is worth noting that the convective ALE formulation of the present model problem (3.46)
is not affected by the motion of the mesh within one time step. The problem rather
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takes the form of an advection-diffusion-reaction equation with an underlying velocity
field a − uG which is not divergence free. The stability limits of convective problems
with non-solenoidal velocity fields are well known, consult for example Knabner and
Angermann [157], and transfer to the present case as shall be shown subsequently.

A weak formulation of the right hand side of (3.47) defines the bilinear form

Bmod(φ, ω) = (φ, ω)Ωn+1
+ δ

((
an+1 − uG,n+1

)
·∇φ, ω

)
Ωn+1

+ δκ (∇φ,∇ω)Ωn+1
(3.48)

coercivity of which is required for the stability of the discrete problem (3.47). Inserting
ω = φ yields

Bmod(φ, φ) = ‖φ‖2
Ωn+1

+ δ

∫
Ωn+1

(
an+1 − uG,n+1

)
·∇φφ dΩt + δκ‖∇φ‖2

Ωn+1
. (3.49)

The second term in (3.49) can be reformulated by integration by parts and employing
∇ · a = 0. Using further that the boundary integral term vanishes due to the boundary
conditions one obtains∫

Ωn+1

(
an+1 − uG,n+1

)
·∇φφ dΩn+1 =

1

2

∫
Ωn+1

∇ · uG,n+1|φ|2 dΩn+1. (3.50)

Inserting (3.50) into (3.49) allows to obtain the coercivity estimate

Bmod(φ, φ) ≥
(

1 + δ
1

2
min

(
∇ · uG,n+1

))
‖φ‖2

Ωn+1
+ δκ‖∇φ‖2

Ωn+1
. (3.51)

which is sharp if ∇ · uG is constant in space, i.e. if the domain expands or contracts
uniformly.

Thus the formulation is stable within one time step if

1 + δ
1

2
min

(
∇ · uG,n+1

)
> 0 (3.52)

is satisfied, i.e. if the coefficient of the L2-norm in (3.51) is strictly bounded away from
zero. This condition on the solvability of convection dominated problems can also be
found in [157].

Consequently a discrete scheme based on the convective ALE formulation is only con-
ditionally stable. A similar result has also been obtained by Badia and Codina who
consider the long-term stability of the convective ALE formulation in [5].

Interpretation of stability result

However the situation is not as bad as it might seem. A first soothing observation is the
fact that a positive divergence of the mesh velocity will never yield instability but rather
stabilise the bilinear form. Thus element contraction has to be considered dangerous.
Recalling the value of δ for one-step-θ and BDF2 time discretisation upper limits on the
time step size are obtained. The time step size has to obey

∆t <
2

θ max |∇ · uG,n+1|
and ∆t <

3

max |∇ · uG,n+1|
(3.53)
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for one-step-θ and BDF2, respectively, to yield a stable method. The strictest time step
limit according to (3.53) is observed for BE time integration. Assuming linear approxima-
tion in space and time the divergence of the mesh velocity of an element in d dimensions
that shrinks uniformly can be expressed by

∇ · uG,n+1 = d
hn+1 − hn

∆t hn+1
, (3.54)

which is negative for a contracting element with a size of hn+1 = γhn and γ < 1. The
derivation of (3.54) is illustrated in figure 3.4 where a rectangular element is considered
which is aligned in global coordinate directions. However, as the divergence of the mesh

time tn

1

y

x

time tn+1

1

2

43

3 4

2hn
x hn+1

x

uG,n+1
x,x =

uG,n+1
x1 −uG,n+1

x2

hn+1
x

of horizontal velocity:

x-derivative

uG,n+1
xi =

xn+1
i −xn

i

∆t

x-velocity of node i:

Figure 3.4: Sketch of linear finite element within the time step from tn to tn+1 and the
resulting mesh velocity derivative assuming linear interpolation in time and space

velocity actually is a measure of a volume ratio it is clear that (3.54) applies for all
elements which expand and shrink uniformly.

Inserting this divergence expression into the time step limit obtained for BE time
discretisation (3.53a) with θ = 1 yields the maximal allowable contraction within one
time step. Depending on the dimension of the problem d the bilinear form remains
coercive for a uniform contraction satisfying

d/(2 + d) < γ. (3.55)

Thus in the three-dimensional case the element can contract to nearly 60% of the previous
length hn in every direction and the scheme is still stable on the deforming domain.
Schemes with θ < 1 or BDF2 are even more permissive. Similarly more rapid contraction
is possible in lower dimensional cases. Presumably this is the reason why the suspected
instability of a convective ALE formulation could not be confirmed numerically [84].

It is more complicated to evaluate (3.53) for higher order schemes, when more than
two time levels are involved. A much more unfavourable divergence of the mesh velocity
can be constructed for higher order schemes by assuming that an element expands in one
time step and contracts rapidly in the subsequent one. If the approximation of the mesh
velocity within one element is linear in space which means that either linear elements are
used for the mesh motion or quadratic elements are involved with perfectly placed edge
and centre nodes, a divergence of the mesh velocity within an element can be deduced
from (3.33b).

To sample the following case shall be considered: a three-dimensional element has
a characteristic length of hn+1 at time level n + 1 and was larger in the previous step
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hn = γhn+1 with γ > 1 and of the same small size at the time level n−1, i.e. hn−1 = hn+1.
The expansion and subsequent contraction shall happen uniformly in space which is the
worst case. Thus one coordinate of the mesh velocity according to (3.33b) evaluates to

uG =
2(1− γ)hn+1

∆t
.

In a three-dimensional case this yields a negative divergence of the mesh velocity of

∇ · uG =
6(1− γ)

∆t
.

It shall further be assumed that BDF2 has been used to discretise the overall equations
and thus (3.53b) has to hold. The maximal expansion factor γ of such a scenario is
γ = 1.5 which means that the scheme is at its limit if an element uniformly expands
to hn = 1.5 hn−1 and shrinks back to hn+1 = hn−1 within the next step. However such
a scenario for the mesh motion should irrespective of stability issues not be considered
trustworthy.

These results transfer to the respective ALE formulation of the incompressible Navier-
Stokes equations if the divergence of the mesh velocity is replaced by −∇ ·

(
u− uG,n+1

)
to account for the divergence error of the discrete velocity field. Hence it is advisable to
check the stability limits (3.53) during a computation and issuing a warning that causes
the user to restart the problem with a smaller time step if necessary.

3.5.2 Stability of the divergence ALE formulation of the advec-
tion-diffustion equation

The discrete model problem in divergence form

Analogously to the Navier-Stokes equations a divergence ALE form of the model prob-
lem can be found reading

∂ (Jtφ)

∂t

∣∣∣∣
χ

+ Jt∇ ·
{(

a− uG
)

φ− κ∇φ
}

= f in Ω0 × T (3.56)

accompanied by initial conditions and homogeneous Dirichlet boundary conditions. A
temporal discretisation of this divergence expression yields

Jn+1φn+1 + δJn+1 ∇ ·
{(

an+1 − uG,n+1
)
φn+1 − µ∇φn+1

}
= rn+1

d in Ω0, (3.57)

where rd contains right hand side terms analogously to the respective terms for the flow
momentum balance in divergence form (3.20).

rn+1
d,θ = δθJ

n+1fn+1 + Jnφn + (1− θ) ∆t ˙Jφ
n

, (3.58)

rn+1
d,BDF2 = δBDF2J

n+1fn+1 +
4

3
Jnφn − 1

3
Jn−1φn−1. (3.59)

The Galerkin weak formulation of the discretised problem reads: find φ ∈ V h
0 (Ω0) such

that(
Jn+1φn+1, ω

)
Ω0

+ δ
(
Jn+1∇ ·

{(
an+1 − uG,n+1

)
φn+1

}
, ω
)
Ω0

+ δκ
(
Jn+1∇φn+1, ∇ω

)
Ω0

=
(
rn+1
d , ω

)
Ω0

for all ω in V h
0 (3.60)
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is satisfied where V h
0 denotes the discrete space that satisfies the homogeneous Dirichlet

boundary conditions.

Coercivity analysis

Equation (3.60) defines the bilinear form

Bmod,d (φ, ω) = (φ, ω)Ωn+1
+ δ

(
∇ ·

{(
an+1 − uG,n+1

)
φ
}

, ω
)
Ωn+1

+ δκ (∇φ,∇ω)Ωn+1

(3.61)

coercivity of which is required for stability. Inserting ω = φ yields

Bmod,d (φ, φ) = ‖φ‖2
Ωn+1

+ δ

∫
Ωn+1

∇ ·
{(

an+1 − uG,n+1
)
φ
}

φ dΩn+1 + δκ‖∇φ‖2
Ωn+1

.

(3.62)

Evaluating the second term in (3.62) gives∫
Ωn+1

∇ ·
{(

an+1 − uG,n+1
)
φ
}

φ dΩn+1 = −1

2

∫
Ωn+1

∇ · uG,n+1|φ|2 dΩn+1,

where ∇ · a = 0 and (3.50) have been used. This reformulation yields the stability result
of the divergence ALE formulation

Bmod,d (φ, φ) ≥
(

1− δ
1

2
max

(
∇ · uG,n+1

))
‖φ‖2

Ωn+1
+ δκ‖∇φ‖2

Ωn+1
. (3.63)

The estimate (3.63) is sharp if the domain contracts or expands uniformly. Thus the
stability limit obtained for the conservative ALE scheme is given by

1− δ
1

2
max

(
∇ · uG

)
> 0 (3.64)

showing that a discrete scheme obtained from the divergence ALE form is also condi-
tionally stable. This result is remarkably similar to the stability condition obtained for
the convective ALE formulation. However the divergence ALE formulation might get
unstable at sudden element expansion rather than contraction. Transferring (3.64) into a
specific time step limit yields

∆t <
2

θ max (∇ · uG,n+1)
and ∆t <

3

max (∇ · uG,n+1)
(3.65)

for one-step-θ and BDF2, respectively, which apply for positive divergence of the mesh
velocity only.

In order to estimate the practical meaning of the time step limits (3.65) a d-dimensional
element is considered again subject to uniform expansion. The initial length hn is
stretched to hn+1 = γhn with γ > 1. Assuming linear interpolation in space and time the
divergence of the mesh velocity is evaluates to

∇ · uG,n+1 = d
hn+1 − hn

hn+1 ∆t
= d

γ − 1

γ ∆t
. (3.66)
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The lowest time step limit in (3.65) obtained for BE states that the divergence of the
mesh velocity (3.66) has to be smaller than 2/∆t. If the dimension is lower than three
this is satisfied for all finite γ. In the three dimensional case stability is conditional upon
γ < 3. Thus a three-dimensional element may stably undergo an expansion to up to three
times the original length in each direction within one time step. Clearly this limit has not
been met in practical computations.

Similar to what is observed for the convective ALE formulation further unstable cases
can be constructed for higher dimensional interpolations of the mesh velocity. However
such scenarios are likewise not of high interest in practical computations.

Remark 3.5.1 (on comparison) The obvious unsymmetry between element contrac-
tion and expansion is caused by the fact that the divergence of the actual mesh velocity
∇ · uG,n+1 refers to the most recent configuration. Thus an element contracting to zero
will always yield an infinitely negative divergence of the mesh velocity and thus certainly
violate the condition (3.53) with every time step. However both of the limiting time
step sizes hardly determine the maximal time step for a given physical problem as rapid
changes of the element lengths are caused by rapid motion of the fluid-structure inter-
face Γ which indicates highly transient dynamics. Such situations anyway deserve small
time steps to resolve the physical problem adequately.

3.5.3 An unconditionally stable formulation on deforming do-
mains

A comparison of the stability estimates obtained for the convective formulation (3.51)
and the divergence form (3.63) indicates how to construct an unconditionally stable ALE
formulation of conservation laws on deforming domains. An energy conserving ALE form
results from averaging the convective and divergence ALE formulation, however, this
partial differential equation cannot straightforwardly be discretised in time.

An unconditionally stable discrete formulation is obtained by averaging the discrete
convective and divergence ALE form (3.21) and (3.25) or (3.26) for one-step-θ and BDF2,
respectively. In the case of the present model problem this means averaging of the weak
forms (3.47) and (3.60) yielding the discrete problem of finding φ ∈ V h

0 (Ωn+1) such that

(φ, ω)Ωn+1
+ δ

((
an+1 − uG,n+1

)
·∇φ, ω

)
Ωn+1

+
1

2
δ
(
∇ ·

(
an+1 − uG,n+1

)
φ, ω

)
Ωn+1

+ δκ (∇φ,∇ω)Ωn+1
=

1

2

(
rn+1, ω

)
Ωn+1

+
1

2

(
rn+1
d , ω

)
Ω0

(3.67)

is satisfied for all ω ∈ V h
0 . Indeed repeating the stability analysis one obtains coercivity of

the bilinear form Bmod,av defined by the left hand side of (3.67). The respective analysis
yields after some algebra

Bmod,av (φ, φ) = ‖φ‖2
Ωn+1

+ δκ‖∇φ‖2
Ωn+1

(3.68)

confirming that the problem (3.67) can stably be integrated irrespective of the time step
size or the mesh motion.

However there is nothing for free. While guaranteeing stability with respect to the mesh
motion the weak form (3.67) has lost the exact geometric conservation property of the
convective ALE form as well as the conservation property of the divergence formulation.
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3.6 Summary

There are different ways to formulate conservation laws on moving domains. While in
a continuous setting all these formulations are equal, discrete versions thereof exhibit
differences with respect to the exact fullfillment of conservation laws. A summary of the
conservation laws inherently satisfied by different ALE formulations is given in table 3.1.

Table 3.1: Short summery of inherent conservation properties of different ALE formula-
tions
ALE conservation of conservation of conservation of conservation of
formulation energy momentum mass geometry

divergence form no yes yes no
convective form no no yes yes
average form yes no yes no

It has been shown that the convective ALE formulation inherently satisfies geometric
conservation while a discretisation error enters the conservation of linear momentum and
energy. Schemes basing on the convective ALE formulation share the temporal order
of accuracy of their fixed grid counterpart as soon as the mesh velocity is interpolated
sufficiently high.

A temporally discretised scheme of the divergence formulation guarantees exact con-
servation of momentum. However, extra effort has to be made here in order to approach
geometric conservation. Similarly to the convective formulation the discrete versions of
the divergence form do not satisfy energy conservation exactly. Both schemes are condi-
tionally stable where an upper bound on the time step size can be obtained which depends
upon the divergence of the mesh velocity as well as on the particular time discretisation
scheme.

Similar to what is well known for Eulerian methods an energy-conserving ALE formu-
lation can be obtained by averaging the convective and divergence formulation. Averaging
time discretised versions of the convective and divergence formulation a temporally dis-
crete scheme is obtained which is unconditionally stable on moving domains.





Chapter 4

Stabilised finite element methods for
incompressible flow

Within this chapter the temporally discretised flow equations are discretised in space.
Along with the spatial discretisation stabilisation has to be introduced. This need for sta-
bilisation of the discrete flow equations is explained and a number of stabilisation methods
are discussed. After briefly reviewing the reason for the observed numerical oscillations
some more or less popular methods to circumvent these oscillations are considered. The
main part of the chapter is devoted to the family of residual based stabilisation methods
which are discussed and analysed in some detail.

The focus is set on introducing and formulating a stabilised finite element method on
a deforming domain such that no additional stability restrictions arise.

4.1 Wiggles and the need for stabilisation

It is well known that finite element methods based on weak Galerkin forms such
as (3.21), (3.25) or (3.26) frequently fail as soon as significant convection occurs. An-
other important challenge in incompressible flow is the incompressibility condition and
thus the role of the pressure. In particular a close look at the weak forms (3.22) and (3.27)
reveals that the pressure variable acts as a Lagrange multiplier to enforce the incom-
pressibility condition (2.35). Thus the restrictions imposed by the inf-sup condition or
LBB (Ladyshenskaya-Babuška-Brezzi) condition have to be considered.

Increasing the flow velocity on a given mesh, i.e. increasing the convective transport,
as well as violating the inf-sup condition introduces spurious oscillations also termed
wiggles. Gresho and Sani [107] give an exhaustive discussion on such wiggles and
wiggle-generating situations while they insist that wiggles are a self-diagnosis property,
indicating inappropriate resolution and the difficulty of the numerical method to come
up with a suitable approximation of the physical problem. The risk of over-stabilisation
by damping out numerical problems while at the same time changing the physics of the
problem solved has to be kept in mind when stabilisation methods shall be developed.

This section is devoted to briefly highlighting the cause of the occurring unphysical
oscillations. For more exhaustive explanations and examples one might consult the dis-
sertations of Gravemeier and Wall [103, 227] as well as the book by Donea and
Huerta [69]. With respect to the LBB condition mathematical literature on mixed vari-
ational problems and fluid dynamics as for example the monograph by Girault and
Raviart [102] or the one by Gunzburger [109] should be consulted. A standard refer-
ence for mixed methods problems is further the book by Brezzi and Fortin [32].

49
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4.1.1 Convection dominated problems

Mathematical analysis

Numerical oscillations induced by dominating convection are conveniently analysed by
means of the advection-diffusion equation (2.54). Thus the result of a coercivity anal-
ysis of the discrete transient advection-diffusion problem with homogeneous Dirichlet
boundary conditions obtained in section 3.5 is recalled. From (3.51), (3.63) and (3.68) it
can be observed that irrespective of the underlying ALE formulation (and indeed also on
fixed grids) the transient advection-diffusion problem yields a coercivity estimate of the
form

Bmod (φ, φ) ≥ C‖φ‖2
Ωn+1

+ δκ‖∇φ‖2
Ωn+1

(4.1)

where C is a positive constant. Thus the corresponding numerical method is stable in
the sense that the corresponding discrete coefficient matrix is non-singular. However the
convective term a ·∇φ does not contribute to the coercivity. So if the influence of the
convection is much larger than the effect of the diffusion governed by κ the coercivity
estimate (4.1) might be arbitrarily small indicating that the control over the H1 norm of
the solution is gradually lost leaving the discrete solution with the freedom to oscillate.

In the special case of a stationary advection-diffusion problem a coercivity consideration
yields

Bmod,stationary (φ, φ) = κ‖∇φ‖2
Ωn+1

further highlighting the potential loss of stability at small κ compared to the convection,
i.e. at high elemental Peclet number Pee = ah/2κ. An error estimate for stationary
advective-diffusive transport obtained by Hughes [132] reads

‖∇e‖ = O
(
(1 + Pee) hk

)
where k denotes the polynomial order of the element. Thus the gradient of the error
e = φh − φ depends on Pee indicating that oscillations are well possible at convection
dominated flows while the bound behaves optimal for diffusion dominated problems.

Properties and interpretation of convective wiggles

Spurious convection oscillations emanated at unresolved gradients tend to spread over the
entire domain. In particular in time dependent calculations the solution is polluted by
such wiggles globally after just a few steps.

In order to increase the understanding of the deficiency of Galerkin schemes in
convection dominated problems and indicate ways to overcome it, different interpretations
of the problem have been given some of which shall be summarised here.

• Analysing the discrete equations in one dimension Donea and Huerta [69] show
that centred schemes are under-diffusive compared to schemes which would yield
nodally exact solutions. This suggests stabilisation by a proper amount of additional
numerical diffusion.
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• It can also be argued that the solution at a particular node at time level n + 1 is
much more influenced by the behaviour of the function φ upstream than by the
situation downstream at time level n. A numerical scheme to simulate advective
transport should thus include an upwinding of the weighting function rather than
being centred.

• Another view on the problem reveals that the wiggly numerical approximation is
caused by non-resolved physics, i.e. badly represented higher modes. Thus intro-
ducing additional subscale degrees of freedom might cure the deficiencies.

• A further approach is inspired by the coercivity estimate (4.1) in which an advective
term of the form ‖a ·∇φ‖2 is missing; enriching the weighting function space such
that it includes a convective term would yield the desired control in the bilinear
form.

4.1.2 Spurious pressure oscillations and the LBB condition

In order to study the role of the inf-sup condition the Stokes equations (2.53) are
recalled. A discrete weak form of the Stokes problem reads on a fixed domain: find the
velocity u ∈ Vh

F and pressure field p ∈ P h at the new time level such that

(u,v)ΩF
+ δ (2νε(u), ε(v))ΩF

− δ (p, ∇ · v)ΩF
− δ (q, ∇ · u)ΩF

=
(
rn+1,v

)
ΩF

+ δ
(
hn+1,v

)
ΓF,N

for all (v, q) ∈
(
Vh

F,0, P
h
)

(4.2)

is satisfied. In matrix notation the system might be written as[
MF + δ KF δ G

δ GT 0

] [
u
p

]
=

[
fF

0

]
. (4.3)

The discrete system (4.2) is stable if the finite element spaces Vh
F and P h and thus the

elements are chosen such that the discrete version of the well-known LBB or inf-sup
condition is satisfied. This condition reads (see for example Gunzburger [109]): Given
any p ∈ P h,

sup
06=v∈Vh

F,0

(
− (p, ∇ · v)

|v|1

)
≥ γ‖p‖, (4.4)

where the positive constant γ is independent of the mesh size h and the particular choice
of p ∈ P h. The condition states that for every admissible non-zero pressure field a velocity
test function v is contained in Vh

F,0 which yields a contribution of the pressure to the total
internal energy.

Employing the matrix G, the discrete LBB condition can be written

sup
06=v∈Vh

0

(
vTGp

|v|1

)
≥ γ‖p‖. (4.5)

Equation (4.5) shows that in the case of LBB stable discretisation the matrix G is of full
rank which is clearly a necessary condition for the solvability of the discrete system (4.3)
as well as discrete versions of the incompressible Navier-Stokes equations.
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Unfortunately the inf-sup condition is frequently violated for desirable combinations
of velocity and pressure spaces. However there are two different grades of violation. A
number of elements can be found which might be used – at least with some care concerning
the boundary conditions – even if they do not satisfy (4.4). Examples of such elements can
be found in the list of possible elements for the incompressible Navier-Stokes equations
given by Gresho and Sani in [107]. Such elements violate the inf-sup condition in the
sense that they do not exhibit a stability constant γ independent of the mesh size h. Thus
they might get unstable in the limit h → 0, a case rarely met in practical computations.

A much more severe problem occurs if (4.5) is violated such that the discrete operator G
exhibits a rank deficiency. In this case the coefficient matrix in (4.3) will be singular and
no unique solution can be obtained. Consequently the discrete solution of the pressure –
while possibly accompanied by a reasonable velocity approximation – exhibits devastating
spurious oscillations. Examples of such spurious pressure modes have been computed e.g.
by Wall [227].

4.2 Stabilisation – omnipresent in flow solvers

Wherever flow problems with considerable convective transport have to be dealt with
stabilisation is considered. Occasionally it might not be called ‘stabilisation’ but rather
come along termed ‘upwinding’ or ‘balancing diffusion’. However in all those cases some
extra effort has been made in order to overcome the unstable wiggly solution of a pure
Bubnov-Galerkin scheme.

Analogously the restriction imposed by the LBB condition occurs as soon as an incom-
pressible process is considered. And it is generally taken as an advantage of a numerical
scheme if it allows to circumvent this condition opening the full range of velocity and
pressure space combinations.

Before introducing the residual based stabilisation methods which have been used
primarily within this work a short overview over some alternative stabilisation methods
shall be given. It is far beyond the scope of the present work to introduce a wide range of
flow solvers in detail. The intention is rather to highlight that there is no stable flow solver
without extra effort. The focus is put on stabilisation methods applied in conjunction
with finite elements. However, very similar methods are used when finite volumes or
difference methods are considered where analogous instabilities arise.

4.2.1 Convection stabilisation

Inspired by the fact that information is propagated by an underlying velocity field, upwind
schemes have been proposed for convection dominated flow. In the context of weighted
residual methods upwinding is introduced by choosing a weighting function which puts
more weight to the upstream than to the downstream part of the flow, i.e. a Petrov-
Galerkin scheme is employed. Adjusting the amount of upwinding to the Peclet
number allows to obtain nodally exact values for the one-dimensional advection-diffusion
problem [69, 237].

The situation is more difficult in the higher dimensional case. A certain amount of
upwinding corresponds to a particular portion of artificial diffusivity introduced in the
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scheme [69, 237]. But introducing numerical viscosity goes along with the so-called ‘cross-
wind diffusion’, i.e. artificial diffusivity perpendicular to the convective velocity severely
harming the accuracy of the approximation.

In order to overcome these difficulties the streamline upwind Petrov-Galerkin
(SUPG) method has been developed by Hughes and colleagues in [135, 136, 153]. The
method shall be touched upon again in Section 4.3 as this is one of the early members of
the family of residual based stabilisation methods. A next one is the Galerkin/Least-
Squares (GLS) method which has also been proposed by Hughes and coworkers [140].

Finite increment calculus

Stabilisation terms can be derived by employing the so-called finite increment calculus
suggested by Oñate [188]. Recent formulations of stabilisation based on finite calculus
can be found in [190, 191] where the method has also been used to treat incompressible
flows on moving domains. Application of the method to ship hydrodynamics is presented
in [189].

The basic idea of the formulation shall be explained briefly here on the scalar advection-
diffusion equation

a ·∇φ− κ∆φ− f = 0 in Ω. (4.6)

In view of the desired numerical solution of (4.6) by means of a discrete method which
considers finite portions of the domain the residual (4.6) is expanded in space in a Taylor
series yielding

a ·∇φ− κ∆φ− f +
δ

2
·∇ (a ·∇φ− κ∆φ− f) = 0 in Ω, (4.7)

where δ is a spatial distance vector pointing in the direction of the expansion. It is
smaller or as long as an elemental length and scales the stabilisation terms. In order to
ensure streamline oriented stabilisation the expansion is performed in the direction of the
underlying velocity field, i.e. δ = c a/|a| where c is a constant to be chosen appropriately.

Characteristic Galerkin procedure

Another way of obtaining stabilisation terms is the so-called characteristic-Galerkin
procedure extensively used in [237], where the path of a fluid particle is called its charac-
teristic. This approach departs from the Lagrangean formulation of the transient flow
problem which for the advection-diffusion equation (2.54) reads

∂φ(x(t), t)

∂t

∣∣∣∣
X

− κ∆φ = f(x), (4.8)

where the convective term disappears and the material time derivative of the transport
variable is involved. A temporal discretisation of (4.8) by the one-step-θ method then
yields terms to be evaluated at different spatial positions

φn+1
xn+1 − φn

xn = θ∆t [κ∆φ + f ]n+1
xn+1 + (1− θ)∆t [κ∆φ + f ]nxn (4.9)
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where the subscripts xn+1 and xn denote the actual and the previous position of the
fluid particle. Discretising (4.9) directly in space requires a Lagrangean mesh motion
which is highly undesirable. Thus the old value φn

xn is approximated by a Taylor series
expansion backward in space truncated after the second term.

φn
xn ≈ φn

xn+1 − δ ·∇φn
xn+1 +

1

2
δ ·Hφn

xn+1 · δ + O
(
∆t3
)

where the distance vector δ = xn+1 − xn = ā∆t is the way of the respective particle
within the time step and can be obtained if an average convective velocity ā within the
time step is available. The symbol H denotes the Hessean matrix, i.e. second spatial
derivatives.

Similarly the diffusive and load term at the old time level and spatial position xn are
expanded in a Taylor series yielding

∆φn
xn ≈ ∆φn

xn+1 − δ ·∇∆φn
xn+1 + O

(
∆t2
)
,

fn
xn ≈ fn

xn+1 − δ ·∇fn
xn+1 + O

(
∆t2
)
.

Introducing these expansions back into (4.9) yields a scheme with possible second order
temporal accuracy reading

φn+1 − φn = θ∆t [κ∆φ + f ]n+1 + (1− θ)∆t [κ∆φ + f ]n −∆tā ·∇φn

+
1

2
∆t2ā ·Hφn · ā− (1− θ)∆t2 ā ·∇ (κ∆φn + fn) (4.10)

where all terms refer to the present positions of the particles xn+1. In the first line
of (4.10) it can be observed that the transformation of the Lagrangean equation (4.8)
to an Eulerian mesh via Taylor series expansions effectively reintroduces the convective
term. Additionally the second line of (4.8) emerges containing terms that enhance the
stability of the formulation. In particular the first term on the second line of (4.8) offers
the desired stabilisation diffusion in the streamline direction.

It is noteworthy that the characteristic procedure in the formulation sketched above is
restricted to a temporal accuracy up to second order due to the truncations in the Taylor
series. The method of characteristics further applies to transient problems exclusively.

Flow conditioned based interpolation

An alternative way to cope with convection domination has been suggested by Bathe.
Within the scheme proposed in [10] an exponential weighting function for the velocity is
used which depends upon the underlying flow field and thus introduces an appropriate
amount of upwinding within each element. In a subsequent publication [11] the method
was modified such that the convective velocity itself is interpolated by exponential trial
functions depending upon the velocity field.

Recent developments of the method can be found in [158, 159, 160].

4.2.2 Circumventing the LBB condition - pressure stabilisation

Several methods have been proposed to circumvent the restrictions imposed by the inf-
sup condition. This is desirable in particular for low order approximations of pressure
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and velocity most of which do not satisfy the LBB condition. However low order pairs
of velocity and pressure are of special interest as they yield small bandwidths and a low
number of non zero values per line of the coefficient matrix also in three-dimensional
problems.

It is further regarded a general advantage if the choice of the discrete velocity and
pressure space can be made freely. This significantly enlarges the set of possible elements
for incompressible flow simulations. Typically the relaxation of the incompressibility
condition yields contributions on the pressure main diagonal block of the overall coefficient
matrix making this matrix significantly easier to solve by iterative solvers. In other words
a slight relaxation of the incompressibility condition weakens the pressure shock which
results from a deviation from a velocity field which is divergence free in the proper weak
sense. The issue of stabilised versus a priori stable elements shall touched upon later
again in the context of residual based stabilisation methods.

Penalty formulations have been used to formulate the incompressibility constraint al-
lowing to uncouple the pressure and velocity equation (see e.g. [135]). In contrast to
these methods stabilisation aims at relaxing the incompressibility condition such that
LBB incompatible spaces can safely be used.

Pressure stabilisation can be designed basing on a variety of projection schemes. One of
the possibilities is to relax the continuity equation in the context of operator splitting pro-
jection methods such as the characteristic-based split (CBS) algorithm of Zienkiewicz
et al. [237] which is briefly described in the sequel. The possibility of pressure stabilisation
in the context of projection schemes for transient problems has already been shown by
Kawahara and Ohmiya in [152].

As an extension of the operator splitting methods Codina and Blasco proposed a
pressure stabilisation method for the Stokes equations which does not rely on the time
discretisation of the transient problem [54]. This pressure gradient projection method
analysed by Codina and coworkers in [17, 55, 56] is designed for elements with discon-
tinuous pressure spaces. The incompressibility constraint is then relaxed by using the
difference between the discontinuous pressure gradient and its projection onto the con-
tinuous velocity space. However, this stabilisation method comes along with the need for
an inversion of a global matrix in order to perform the projection.

Residual based stabilisation methods for the Stokes problem have been proposed by
Hughes and coworkers [139]. Comparisons of stabilised finite elements and a priori stable
schemes have shown that stabilised formulations compete well with their inherently stable
counterparts as shown by Norburn and Silvester in [184].

Recent work on the Pressure Poisson stabilisation has been reported by Bochev et
al. [8, 20].

Pressure stabilisation within projection based algorithms

A popular family of flow solvers is based on projection and operator splitting. One well-
known representation thereof is the so-called characteristic-based split (CBS) algorithm
described in the third volume of the finite element trilogy of Zienkiewicz et al. [237]. A
comparison of CBS and GLS stabilisation used to stabilise the incompressible Navier-
Stokes equations can be found in [59] where Codina and Zienkiewicz show that both
methods introduce similar stabilising terms.
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The basic idea of the CBS algorithm and similar schemes is to employ the Helmholtz
decomposition also known as the fundamental theorem of vector calculus stating that
every vector field can uniquely be decomposed into a curl-free vector field and the gradient
of a scalar field. In the present context this allows to decompose the unknown solenoidal
velocity field u according to

u = u∗ −∇ϕ (4.11)

where the scalar field ϕ is closely related to the kinematic pressure p. Employing (4.11)
the solution of the incompressible Navier-Stokes equations might be split into two
steps; first solving for the intermediate velocity field u∗ while ignoring the incompressibil-
ity condition. This step can be done in an explicit or semi-implicit manner. Subsequently
the final solution u is obtained by projecting u∗ into the space of (discretely) divergence
free functions. This projection method goes back to the works of Chorin in the context
of finite difference methods [40, 41]. It is also described by Temam in [212]. The projec-
tion method or closely related schemes is also termed fractional step method, (operator)
splitting method or pressure correction method.

The version of the projection method which is used within the CBS algorithm described
in the book by Zienkiewicz et al. [237] can be formulated such that the LBB condition
is circumvented. The basic idea of the formulation shall be sketched here by means of the
Stokes problem a temporally discretised version of which reads on a fixed grid

un+1 − δ2ν∇ · ε(un) + δ∇pn+1 = rn+1 in ΩF (4.12)

∇ · un+1 = 0 in ΩF, (4.13)

where the viscous term is treated explicitly. In view of (4.11) equation (4.12) is rewritten
in the form

un+1 + δ ∇pn+1 = δ2ν∇ · ε(un) + rn+1 = u∗ (4.14)

which can be solved explicitly for the intermediate velocity field u∗ entirely ignoring the
pressure. Taking the divergence of (4.14) allows to obtain an elliptic equation for the
pressure reading

δ ∆pn+1 = ∇ · u∗ (4.15)

that can be solved as soon as u∗ is known. Thus the desired divergence free velocity field
u is eventually obtained in a third step from the initial split, i.e.

un+1 = u∗ − δ ∇pn+1.

From a spatially discretised version of the above algorithm it can be observed that the
restrictions of the inf-sup condition have been circumvented. A matrix representation
of (4.12) reads

MFun+1 + δKFun + δGpn+1 = fF. (4.16)

From the matrix expressions of (4.14) and (4.15), i.e. from

MFun+1 + δGpn+1 = MFu∗ and δHpn+1 = GTu∗,
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where H denotes the negative discrete Laplace operator on the pressure, the intermediate
nodal velocities u∗ can be eliminated yielding the equation

GTun+1 +
(
δGT

(
MF
)−1

G− δH
)

pn+1 = 0. (4.17)

Combining (4.16) and (4.17) shows that the above split algorithm corresponds to solving
the discrete system[

MF δG

GT δ
(
GT
(
MF
)−1

G−H
) ][ un+1

pn+1

]
=

[
fF − δKFun

0,

]
(4.18)

which is nonsingular irrespective of the choice of the discrete velocity and pressure space
due to the strictly positive definite matrix H [237]. This additional freedom is gained
from a relaxation of the incompressibility condition by the difference of two discrete
representations of the Laplacean operator on the pressure. It has to be noted, however,
that this relaxation depends on the time step size and thus the formulation does not work
to circumvent the LBB condition when a stationary solution is sought.

The algorithm is doubtless an interesting one in particular as it allows to solve an
implicit equation for the pressure while the diffusive (and convective) operator are inte-
grated explicitly. However the problems of the projection method are hidden within the
details. In particular the proper choice of the boundary conditions for the intermediate
velocity field u∗ is challenging. The interested reader may consult also [107, 227] in this
context.

Within the CBS algorithm the projection idea presented here has been combined with
the convection stabilisation resulting from the characteristic procedure which is sketched
in section 4.2.1. A detailed description of this algorithm can be found in the third volume
of the finite element trilogy of Zienkiewicz et al. [237].

Pressure stabilisation based on polynomial pressure projection

Pressure projection methods have been designed by Dohrmann and Bochev [19, 65]
with particular respect to the lowest order velocity-pressure pairs such as linear velocity
and pressure approximation as well as linear velocities along with piecewise constant
pressures. It works, however, to stabilise all equal order pairs of velocity and pressure.

The basic idea of the method can be explained by considering the deficiency of such
elements with respect to the inf-sup condition (4.4). While not satisfying this conditions
the linear equal order interpolation spaces obey a weaker inequality reading

sup
06=v∈Vh

F,0

(
− (p, ∇ · v)

|v|1

)
≥ γ1‖p‖ − γ2h‖∇p‖, (4.19)

for any p ∈ P h, where γ1 and γ2 are two positive constants independent of h [19, 209].
The last term on the right hand side of (4.19) quantifies the LBB deficiency of the equal
order interpolation spaces. It can be shown that this term can be bounded from above
by

γ3h‖∇p‖ ≤ ‖p− Πp‖ for all p ∈ P h (4.20)
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where γ3 is a positive constant independent of the element length h [19]. In order to
stabilise equal order interpolations, Π denotes the projection operator for a projection
onto the discontinuous polynomial space which is one order lower than the interpolation
space for velocity and pressure and which is defined on the single elemental domains Ωe,
i.e.

Πp ∈ [Pm] =
{
q ∈ L2(Ω)| q|Ωe

∈ Pm(Ωe); for all Ωe

}
where Pm denotes the polynomial space of order m.

The L2-projection is then given by

(r, Πp− p)ΩF
= 0 for all r ∈ [Pm] .

In order to remove the inf-sup deficiency (4.19) and hence stabilise the discrete weak
problem the bilinear form

qTCp :=
1

2ν
(p− Πp, q − Πq) (4.21)

is added to the weak form of the incompressible Stokes equations (4.2). Due to the
discontinuity of the projection the stabilised method fits into a finite element code with
just minor modifications on element level. Analogously to (4.3) the discrete stabilised
problem reads [

MF + δ KF δ G
δ GT −δ C

] [
u
p

]
=

[
fF

0

]
,

which shows that the polynomial pressure projection allows to retain the symmetry of
the Stokes problem. Further the method does not require to calculate higher order
derivatives and comes along without the need for a stabilisation parameter. It might,
however, be useful to scale the amount of stabilisation introduced. Such a scaling allows
to use the amount of stabilisation required to avoid zero pressure modes while ensuring
that the continuity equation is not relaxed more than necessary. However the proper
amount of stabilisation is hard to determine and it might be regarded a disadvantage
of the method that the additional terms do not vanish when the analytical solution is
inserted into the weak form. Unlike residual based stabilisation methods it is thus not
consistent.

4.3 Residual based stabilisation methods

Residual based stabilisation methods have been developed in order to combine consistency
and accuracy for transport problems with considerable advection. Suggested by Hughes
and coworkers first in the context of advective-diffusion equation [135] the SUPG method
was developed. Similar methods have been proposed by the same group in order to
circumvent the LBB condition in the Stokes problem [139]. A combination of these
two ideas in order to stabilise the incompressible Navier-Stokes equations goes back
to Tezduyar et al. [219], where the approach was termed SUPG/PSPG (Streamline
Upwind Petrov-Galerkin/Pressure Stabilised Petrov-Galerkin). A review of the
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history of residual based stabilisation methods can be found in Brezzi et al. [33], the book
by Donea and Huerta [69] or also in the comprehensive dissertation of Wall [227].
Also the encyclopedia article by Hughes et al. on multiscale and stabilised methods [143]
should be mentioned in this context. An overview of stabilised finite element methods
for the advection-diffusion problem and the history thereof has recently been given by
Franca et al. [94].

A close relationship between residual based stabilisation and a standard Galerkin
approach enriched with bubble functions has been established by Brezzi et al. [31] and
further elaborated for example in [6, 34]. Basing on this insight the so-called unusual
stabilised finite element method (USFEM) has been proposed by Franca and coau-
thors [91, 92, 96]. A comparison of stabilisation methods for the advection-diffusion
equation has been given by Codina in [47] where the close relationship of different sta-
bilisation methods is highlighted. It is shown in [47] that most classical stabilisation
methods can be written as residual based approaches and differ mainly in the stabilisa-
tion operator and the stabilisation parameter. Codina also contributed significantly to
the analysis of these methods, so in [17, 48, 51, 53, 55, 57].

Residual based stabilisation methods are closely related to error estimation as the
stabilisation is designed such that optimal convergence rates can be achieved. This con-
nection of error analysis and design of finite element methods yields numerical schemes
that require mesh dependent terms [116]. A basic introduction to finite element error
analysis can be found in [210] where Stewart and Hughes also give special attention
to the advection-diffusion equation. A recent note of Zienkiewicz sheds light on the
background of error estimation in prose rather than by formulas [235]. A posteriori error
estimation in least-squares stabilised finite element schemes has been covered by Ran-
nacher in [201] and more recently Hauke et al. considered a posteriori error estimation
in a variational multiscale approach in [122].

Recent developments of residual based stabilisation methods include the work by Co-
dina and coworkers who proposed to use orthogonal subscales for stabilisation [50, 52, 53,
58]. Whiting et al. used a hierarchical basis to formulate stabilised methods [232, 233].
A comparison of the classical residual based SUPG/PSPG method and recent develop-
ments of symmetric stabilisation techniques has been published by Braack et al. [27].
In this paper the generalised Oseen problem is analysed in a fixed grid setting.

Very few analysis can be found of numerical schemes considering stabilised finite ele-
ment methods on deforming ALE domains one of which is a very recent paper of Badia
and Codina [5]. Applications of a stabilised ALE formulations for fluid-structure in-
teraction or problems with moving boundaries have been reported by Khurram and
Masud [154] and Tezduyar [217].

Within the present work residual based stabilisation is employed and analysed in the
context of ALE methods. Additional parameters are introduced in order to ensure that no
destabilising effect results from the coexistence of stabilisation terms and domain motion.

4.3.1 Virtual bubbles

A derivation of the stabilising terms from bubble elimination of a classical Bubnov-
Galerkin scheme appears to be the least miraculous one. This derivation reveals that
the stabilising terms can be interpreted as statically condensed bubbles, i.e. the effect
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of smaller scales. The term virtual bubbles was first used by Baiocchi at al. [6] and
indicates that an enrichment by bubble functions which are not specificly defined is used
to achieve the desired stabilisation properties. Baiocchi et al. show that under certain
conditions there exists a bubble the static condensation of which yields the stabilisation
term of interest.

The derivation of a stabilisation method from bubble enrichment makes use of the
linearity of the underlying operator and is thus performed on the advection-diffusion
equation (2.54). In accordance with the scope of this work this derivation is performed on
the convective ALE formulation of the model problem. Thus domain motion is considered
which yields an additional term compared to fixed grid stabilisation methods.

The weak form of the temporally discretised advection-diffusion on a deforming domain
is given by equation (3.47) reading

a (φ, ω) =
(
rn+1, ω

)
Ωn+1

where the bilinear form a(φ, ω) contains an inertia term, a convective term and the viscous
contribution according to

a (φ, ω) := (φ, ω)Ωn+1
+ δ

((
an+1 − uG,n+1

)
·∇φ, ω

)
Ωn+1

+ δκ (∇φ,∇ω)Ωn+1
. (4.22)

The superscript n + 1 has been dropped on the unknown transport variable at the new
time level for brevity.

Rather than approximating the unknown function φ and the weighting function ω by
the usual piecewise polynomial functions (or mappings thereof into the physical space)
the respective functions are now taken from the space

V h
B =

{
ω ∈ H1(Ω0)

∣∣ω|Ωe,0 ∈ Pk(Ωe,0)⊕B(Ωe,0)
}

, (4.23)

defined over the reference domain, i.e. the elemental parameter spaces. V h
B is enriched by

element wise bubble functions ωB ∈ B(Ωe,0) satisfying homogeneous Dirichlet boundary
conditions on the elemental boundaries ωB = 0 on ∂Ωe,0. The linear independence of the
polynomial and the bubble space allows an additional decomposition of the discrete trial
and weighting functions according to

φh = φk + φB and ω = ωk + ωB. (4.24)

Using the decomposition (4.24) in the weak form (3.47) allows to solve (at least formally)
for the bubble degrees of freedom. Due to the bubble property of ωB the bubble equations
decouple and can be solved independently on the single elements where

a (φk, ωB) + a (φB, ωB) =
(
rn+1, ωB

)
Ωe

(4.25)

has to be satisfied for all ωB ∈ B. Noting that after integrating the viscous term by parts

δκ (∇φk, ∇ωB)Ωe
= δκ (∇φk · n, ωB)∂Ωe

− δκ (∆φk, ωB)Ωe

the elemental boundary term vanishes due to the zero boundary condition of ωB on the
element boundaries, (4.25) can be reformulated to

a (φB, ωB) =
(
rn+1 − φk − δ

(
an+1 − uG,n+1

)
·∇φk + δκ∆φk, ωB

)
Ωe

. (4.26)
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Equation (4.26) is a variational problem in the bubble space which has a unique solution.
The right hand side driving the bubble on a single element can easily be recognised as
the negative residual of the original advection-diffusion-reaction problem

R(φk) = φk + δ
(
an+1 + uG,n+1

)
·∇φk − δκ∆φk − rn+1

in the polynomial space (3.46). Hence whenever the polynomial space suffices to de-
scribe the correct solution within one element the contribution of the respective bubble
vanishes. This property eventually transfers to the consistency of the stabilised finite
element method derived.

The bubble in one particular element is then found by solving (4.26), i.e.

φB = −SBPB (R(φk)) , (4.27)

where PB denotes the L2-projection onto the bubble space B and SB is the solution
operator in the bubble space. In other words the magnitude of the bubble within one
element is found by performing two steps. First the bubble which is closest to R(φk) on
the element e in a least-squares sense is searched. In a second step the negative of this
bubble is taken as the right hand side of an advection-diffusion problem in the bubble
space on the element and this problem is solved as indicated by the solution operator SB.

The so found bubble φB can now be used in the second part of the weak form which is
weighted by the polynomial test function ωk.

a (φk, ωk) =
(
rn+1, ωk

)
Ωn+1

− a (φB, ωk)

After integrating some terms by parts and inserting (4.27), the discrete weak problem
reads: find φk in Pk such that

a (φk, ωk) =
(
rn+1, ωk

)
Ωn+1

+
(
SBPB (R(φk)) ,Lstab(ωk)

)
for all ωk ∈ Pk (4.28)

is satisfied, where the operator Lstab is given by

Lstabωk =
(
1 + δ∇ · uG,n+1

)
ωk − δ

(
a− uG,n+1

)
·∇ωk − δκ∆ωk. (4.29)

In equation (4.28) the weak formulation of the original advection-diffusion equation is
augmented by the perturbation term

(
SBPB (R(φk)) ,Lstab(ωk)

)
providing additional sta-

bility. On a fixed grid, where the mesh velocity vanishes the operator Lstab is the adjoint
of the original advection-diffusion operator.

It has been shown by Baiocchi et al. [6] that under certain conditions there exists a
bubble space B such that(

SBPB (R(φk)) ,Lstab(ωk)
)
Ωe

=
(
τeR(φk),Lstab(ωk)

)
Ωe

, (4.30)

i.e. the projection of R(φk) onto the bubble space, the subsequent solution of the bub-
ble problem on the element and a projection back into the space of the operator Lstab

reproduces a linear operator for a particular bubble function.

Assuming that such a bubble has been chosen and inserting (4.30) back into (4.28)
yields the stabilised weak problem to find φk ∈ Pk such that

a (φk, ωk)−
∑

e

(
τeR(φk),Lstab(ωk)

)
Ωe

=
(
rn+1, ωk

)
Ωn+1

(4.31)

is satisfied. The effect of the bubble is now condensed in the elemental stabilisation
parameter τe which will be discussed in section 4.3.7.
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Remark 4.3.1 A similar approach also works to derive stabilisation terms for the in-
compressible Stokes problem [7].

Remark 4.3.2 The stabilisation operator (4.29) derived for the model problem on a
deforming domain contains the divergence of the mesh velocity within the coefficient of
the zeroth order term. This additional term is required to preserve the stability of the
method if ∇ · uG,n+1 < 0 while it destabilises as soon as an element expands, i.e if
∇ · uG,n+1 > 0. It will thus be modified within the stabilisation of the Navier-Stokes
equations.

Remark 4.3.3 The virtual bubble approach is frequently also termed concept of residual-
free bubbles as for example in [138, 205]. However the latter term is somewhat misleading
as it suggests that an analytical fine scale solution - at least on the elemental level - is
available which hardly happens to be the case in real-world problems.

4.3.2 A look beyond – the variational multiscale method

The virtual bubble derivation of a stabilised finite element method reveals that residual
based stabilisation can be regarded a special application of a much wider approach, the
variational multiscale method. The method was proposed by Hughes in 1995 [133] and
is a very general tool to treat physical problems the solution of which exhibits a multiscale
behaviour.

The basic idea of the variational multiscale method is a split of the trial and weighting
spaces into subspaces referring to different scales [133, 138]. Initially the method was
proposed in order to design formulations which treat large resolved scales in the usual
way while additional terms are considered accounting for the effect of the small, unre-
solved scale upon the larger ones of interest. However, the method is by far not limited
there. It allows a split of the solution into more than two scales. For instance a three
level method for the incompressible Navier-Stokes equations has been developed by
Gravemeier [103, 105, 106]. There a distinction is made between large resolved scales,
small resolved scales and unresolved scales.

A key application of the variational multiscale method is turbulent flow where a wide
range of scales is involved. A large eddy simulation developed from the variational mul-
tiscale method was proposed by Hughes and coworkers [141, 142] and also the work of
Gravemeier [103, 106] treats turbulent flows. A state of the art review on the varia-
tional multiscale method for laminar and turbulent flow can be found in [104]. However,
the variational multiscale method is not at all limited to fluid mechanics. Applications
to structural problems include the development of methods for incompressible materi-
als [178, 177] or also the modelling of structural nonlinearities caused by phenomena on
different scales as done in [145]. An overview of state of the art contributions to the
theory of multiscale and stabilised methods can be found in the special issue edited by
Franca [90].

In the light of the variational multiscale method the stabilisation term in (4.31) can be
interpreted as the influence of unresolved fine scales upon the resolved scale represented
by the polynomial finite element space V h. However it has to be kept in mind that two
important simplifications have been made in order to arrive at (4.31). Firstly the static
elimination of the bubble terms relies on the assumption that the fine scale contribution is
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local, i.e. restricted to each element. A second simplification is less obvious. Introducing
one stabilisation parameter per element effectively reduces the fine-scale space within
each element to a one-dimensional space. Consequently the stabilisation term is far from
representing the effect of the unresolved scales exactly.

Nevertheless the derivation of stabilisation terms from a variational multiscale approach
reveals that these additional terms are an appropriate model of fine scale effects rather
than a purely numerical or arbitrary stabilisation tool.

4.3.3 Generalisation and relatives

The stabilisation method resulting from the virtual bubble approach can be extended and
generalised to a wider class of methods which are used within the present work. Applying
the stabilisation obtained in the previous section to the incompressible flow problem of
interest yields the variational problem of finding u ∈ Vh

F,n+1, p ∈ P h
n+1 such that

Bgal ({u, p} , {v, q})−
∑

e

(
τMeRM (u, p) , Lstab

M (u, {v, q})
)
Ωe

+
∑

e

(τCeRC(u),LC(v))Ωe
(4.32)

=
(
rn+1,v

)
Ωn+1

F
+
(
hn+1,v

)
Γn+1

F,N
for all (v, q) ∈ (Vh

F,0,n+1, P
h
n+1),

where e counts all elements of the triangulation. The Galerkin weak form Bgal in (4.32)
is the one defined in (3.22). The first stabilisation term in the above weak formulation
corresponds to the one obtained in (4.31) while the latter one introduced by Franca and
Hughes [95] provides additional stability at high Reynolds numbers [12].

The residual of the momentum equation in convective form and the residual of the
continuity equation at the new time level read

RM (u, p) = u + δ
[(

u− uG,n+1
)
·∇u− 2ν∇ · ε (u) + ∇p

]
− rn+1, (4.33)

RC(u) = ∇ · u, (4.34)

which can be regarded purely spatial differential equations. It has to be remarked there
that the unknown velocity and pressure field at the new time level is denoted by u and p
for clarity. Data and right hand side terms remain labelled by a time level superscript.

As well as the residuals the stabilisation operators are based upon the temporally
discretised equation. The general form of the momentum stabilisation operator which is
considered here is given by

Lstab
M (u, {v, q}) = rG η v + δ

(
−
(
u− uG,n+1

)
·∇v − α 2ν∇ · ε(v) + β ∇q

)
(4.35)

while

Lstab
C (v) = LC(v) = ∇ · v (4.36)

is used on the continuity equation. In contrast to the convective term in (4.36) a bubble
condensation yields a term of the form

−∇ ·
((

u− uG,n+1
)
⊗ v

)
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as it can be observed from (4.29). This term is reformulated to

−∇ ·
((

u− uG,n+1
)
⊗ v

)
= −∇ ·

(
u− uG,n+1

)
v −

(
u− uG,n+1

)
·∇v (4.37)

and the first contribution on the right hand side of (4.37) is added to the zeroth order
term of Lstab

M , i.e. it is included in the effective reaction coefficient rG. However, while
the divergence of the convective velocity u − uG,n+1 helps to ensure stability for ∇ ·(
u− uG,n+1

)
> 0 it may spoil stability if ∇ ·

(
u− uG,n+1

)
< 0. Thus the effective

reaction coefficient rG in (4.35) is defined by

rG = min
(
1− δ∇ ·

(
u− uG,n+1

)
, 1
)
. (4.38)

The influence of rG on the stability of the stabilised problem will be discussed again in
section 4.4.

The parameters α ∈ {−1, 0, 1} and η ∈ {1, 0} within the general operator (4.35) along
with the previously introduced β from equation (3.22) allow to distinguish a variety of
closely related but different stabilisation methods. An overview over the properties of
the different schemes in the case of the stationary Stokes problem has been given by
Bochev in [8]. All of the possible methods are consistent in the sense that sufficiently
smooth solutions of the strong equations (3.15) and (3.16) satisfy the stabilised discrete
form (4.32).

Due to the nonlinearity of the Navier-Stokes equations the stabilisation opera-
tor (4.35) depends on the unknown velocity field u and hence adds to the nonlinearity of
the stabilised equation. As a result all coefficient matrices of the stabilised discrete fluid
equations depend on the velocity.

Two terms of the momentum stabilisation operator (4.35) are of particular impor-
tance. The first one is the gradient of the weighting function for the pressure which pro-
vides pressure stabilisation. A residual based stabilisation of the Stokes problem where
the stabilisation operator is given by ∇q has been termed PSPG, Pressure Stabilised
Petrov-Galerkin method. The second necessarily required contribution of the sta-
bilisation operator is the convective term serving to stabilise convection induced wiggles.
Using this term exclusively to stabilise advective problems yields the SUPG method [136].
The zeroth order term given in the first line of the stabilisation operator (4.35) is of par-
ticular importance in the context of very small time steps and will be considered in
section 5.2. All the remaining terms in (4.35) do not directly contribute to stabilise the
problem and can thus be played around with which yields an entire family of stabilisa-
tion methods. The notation employed within this work to distinguish the single family
members is summarised in Table 4.1.

• Using α = 1, β = −1 and η = 1 on a fixed grid recovers the adjoint L∗
M (u, {v, q}) =

LUSFEM
+ (u, {v, q}) of the original temporally discretised Navier-Stokes momen-

tum operator (3.15). This version of the method which is also termed Unusual Sta-
bilised Finite Element Method (USFEM) was introduced by Franca and Farhat
in [91] and is closely related to bubble functions [6, 92]. Extending this notation
within the present work all methods with α = 1 within the operator (4.35) shall be
denoted by the superscript ‘USFEM’.

• On a fixed mesh the negative of the original operator can be recovered by setting
η = −1, α = −1 and β = −1 which would thus yield the correct GLS version of the
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stabilisation. However, as will be shown in section 5.2 η = −1 further increases in-
stabilities due to dominating zeroth order terms and thus yields an unstable method.
Nevertheless modified GLS versions are of interest with η ∈ {1, 0} where the super-
script ‘GLS’ subsequently denotes all stabilisation methods of the type (4.32) with
α = −1.

• As the required stabilisation of convection and pressure instabilities is indepen-
dent of the zeroth order weighting term within the stabilisation operator it appears
interesting to consider also stabilisation by operators which are derived from the
corresponding stationary problem i.e. η = 0. The subscript ‘+’ or ‘0’ at the stabili-
sation operator or the stabilised form refers to the sign of η and denotes the full or
stationary operator, respectively.

Table 4.1: Notation used to distinguish different versions of the stabilisation operator

notation α η stabilisation operator

LUSFEM
+ 1 1 rGv + δ

(
−
(
u− uG,n+1

)
·∇v − 2ν∇ · ε(v)−∇q

)
LGLS

+ −1 1 rGv + δ
(
−
(
u− uG,n+1

)
·∇v + 2ν∇ · ε(v)−∇q

)
LUSFEM

0 1 0 δ
(
−
(
u− uG,n+1

)
·∇v − 2ν∇ · ε(v)−∇q

)
LGLS

0 −1 0 δ
(
−
(
u− uG,n+1

)
·∇v + 2ν∇ · ε(v)−∇q

)
Remark 4.3.4 It has been shown by Codina that subscale based methods, which in
the present context corresponds to the USFEM version of the stabilisation are superior
in the sense that the stabilisation is invariant with respect to a change of variables when
used for linear systems of convection-diffusion-reaction equations [49].

Remark 4.3.5 An interesting method extending the concept of virtual bubble stabilisa-
tion has recently been proposed by Codina and coworkers [52, 57]. Deriving a stabilised
method for the incompressible Navier-Stokes equations they not only pay special at-
tention to the nonlinear term which opens a door to turbulence but also suggest to track
the fine scale solution, i.e. the bubble part, in time. The approach can be regarded to
be turned over half way from a stabilised method to a full multiscale formulation. On
the price of additional internal variables representing the subscales at previous time levels
this approach offers an elegant way to abolish the dependency of a stationary solution on
the time step size otherwise inherent in stabilised methods and offers the hope for more
temporal accuracy.

Remark 4.3.6 An alternative to deriving a stabilised formulation from elimination of
virtual bubble degrees of freedom is to regard it as a Petrov-Galerkin type of discreti-
sation method where the weighting function for the velocity is ṽ = v−τMeLstab

M (u, {v, q})
rather than v and the modified pressure test function reads q̃ = q + τCeLstab

C (v).

Remark 4.3.7 A comment on equal order interpolation for velocity and pressure in the
context of residual based stabilisation appears appropriate here. It has already been men-
tioned that relaxation of the incompressibility condition yields advantages with respect
to an iterative solution of the resulting system of equations. From the initial discussion of
the present chapter it is further obvious that LBB stable elements might well still require
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stabilisation whenever it comes to highly convective flows. It is thus regarded a particu-
lar advantage of residual based stabilisation methods that both potential instabilities are
treated within a unified framework which is further consistent at least for higher order
elements.

Reconsidering the derivation of residual based stabilisation from virtual bubble func-
tions further shows that the principal difference of the present stabilised finite element
and LBB stable elements is not as fundamental as it might seem at the first sight. A
popular way to stable elements is to enhance an unstable one with internal velocity de-
grees of freedom such as the first order MINI element which is enriched by a cubic bubble.
Static condensation of such internal degrees of freedom yields terms that might be termed
stabilisation.

4.3.4 A comment on conservation in stabilised problems

It appears interesting to reconsider the issue of conservation of linear momentum for
the stabilised discrete problem. Here strict equivalence of convective and divergence
formulation is lost as the continuity equation is relaxed by stabilisation terms rather than
weakly satisfied. Thus conservation of linear momentum in the sense that the acceleration
of a portion of fluid is exactly balanced by the integral forces over the boundaries is
approximated rather than strictly satisfied.

An approach to reestablish conservation in the context of a stabilised method appears
first in a paper by Taylor et al. [211], can be found in the dissertation of Whiting [231]
and is eventually explained in a paper by Hughes and Wells [144]. There it is shown
how global conservation can approximately be preserved through a small residual-based
modification of conventional stabilised formulations. This correction is based on multiscale
considerations and the fact that an elemental fine-scale velocity is approximated by the
negative coarse-scale residual within this element weighted by the stabilisation parameter.
However the additional term which is introduced to reestablish conservation is of advective
type and needs to be stabilised itself. Consequently further higher order stabilisation
terms enter the formulation.

Within the present work the modification of Hughes and Wells has not been used.
Conservation while being desirable is not a crucial matter for viscous flows at low or
moderate Reynolds numbers. Thus the price of further stabilisation terms including an
additional stabilisation parameter appears to high for the gain of a closer approximation
of conservation.

It has also to be mentioned that these additional terms include second derivatives of
the velocity and its weighting function. Consistency of the method including the effect of
largely restored conservation can thus be expected only for higher order elements.

4.3.5 Stabilised equal order elements and discretely divergence
free functions

Prior to proceeding with a matrix notation of the stabilised discrete flow problem a
somewhat un-pleasing issue shall be discussed. It has been mentioned in chapter 2 that
an initial velocity field needs to be divergence free to define a well posed problem. In the
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discrete setting this demands that the initial velocity field has to be discretely divergence
free in the sense imposed by the corresponding Lagrange multiplier space, i.e. the space
of the pressure.

Stabilisation opens the way for a broad variety of velocity and pressure space combi-
nations. However at the same time this complicates the important issue of correct initial
conditions. This question also arises whenever a velocity field has to be mapped from one
mesh to another, i.e. when remeshing takes place. A closely related matter is the deter-
mination of the unavoidable interpolation error on a given mesh or - which is essentially
the same problem - the norm in which a certain discrete solution is optimal.

Whenever LBB stable elements are employed an appropriate discrete initial velocity
field u0,h is obtained from a L2-projection of a known velocity field u0 under the constraint
of incompressibility. This condition is imposed by a Lagrange multiplier field spanned
by the same functions as the discrete pressure. Thus u0,h ∈ Vh

E and λ ∈ P h are determined
from a stationary point of the augmented functional

Π
(
u0,h, λ

)
=

1

2
‖u0,h − u0‖2 −

(
∇ · u0,h, λ

)
, (4.39)

where the discrete space Vh
E contains all those functions that satisfy the normal component

of the velocity boundary condition n ·u0,h = n ·u0 on ΓF,D in an appropriate weak sense.
A variation of the functional (4.39) yields the saddle point problem(

u0,h + ∇λ,v
)
− (n · v, λ)ΓF,N

=
(
u0,v

)
(4.40)

−
(
∇ · u0,h, q

)
= 0,

where v ∈ Vh
0 and q ∈ P h denote the variation of the velocity field and Lagrange

multiplier, respectively.

Equivalently to the incompressible Navier-Stokes equations the mixed problem de-
fined by (4.40) is unstable for combinations of the spaces Vh

E and P h that do not satisfy
the LBB condition. Consequently (4.40) cannot be inverted for equal-order interpolation
of velocity and pressure. A correct way to project a known initial velocity field to a
particular mesh that works for stabilised finite elements with equal order interpolation
could not be found in the literature. Apparently the problem is frequently circumvented
rather than solved. Simulations are started from an incorrect (not discretely divergence
free) initial condition and the corresponding peak in the pressure required to adjust the
incompressibility within the next time step is simply ignored.

However the interpretation of stabilised methods in the virtual bubble context gives
some hints how the problem should be tackled. If the virtual bubble space was known
an admissible projection could be found by projecting onto a velocity in the discrete
polynomial space enriched by bubble functions Vh

B. Such an approach could be formulated
as a ‘stabilised projection’ and would allow to circumvent the LBB condition and to
compute initial conditions which are discretely divergence free in the sense that suits the
discrete spaces of velocity and pressure which are used.

Unfortunately the shape of the virtual bubble remains untold. Consequently the cer-
tainly unsatisfactory start from an ill posed problem has to be chosen whenever an initial
velocity field is required. Most simulations however start from a zero velocity field and
demand a starting phase.
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Nevertheless the issue of correct projection onto a velocity field which is divergence
free in a proper weak sense is of higher interest as it might seem at the first glance. An
L2-projection like (4.40) does not require that the original velocity field u0 is solenoidal.
In order to abbreviate the start phase of a fluid or FSI simulation a function u0 might
thus be constructed that satisfies the Dirichlet boundary conditions and is as close
as possible to an estimated velocity function within the domain. A projection of such a
function onto a discretely divergence free vector field could possibly serve as a good initial
condition and is potentially much faster than accelerating the flow from zero.

4.3.6 Stabilised formulation in matrix notation

Evaluating the weak form (4.32) with discrete finite element spaces Vh
F,n+1 and P h

n+1

spanned by nodal based polynomial functions allows to obtain a discrete matrix represen-
tation corresponding to (3.23) and (3.24) in the unstabilised case. The stabilised discrete
matrix equations read

M
F
(u)u + δ K

F
(u)u + δ N(u) + δ G(u)p = f

F

b + fF
h (4.41)

G
T

Mu + δ G
T

K(u)u− δ Cp = fC, (4.42)

where an top bar indicates that the respective matrix contains contributions emerging
from stabilisation terms. Thus all matrices depend upon the stabilisation parameters τMe

and such on the fluid viscosity, the flow regime and the time step size. Additionally the
stabilisation adds different terms on the two G-matrices and introduces an acceleration
dependent term into the second line altogether destroying the formal symmetry of the
system.

The stabilised mass matrix reads

vTM
F
(u)u = (u,v)Ωn+1

F
− η

∑
e

τMe (u, rGv)Ωe
+
∑

e

τMe

(
u, δ

(
u− uG,n+1

)
·∇v

)
Ωe

+ α
∑

e

τMe (u, δ 2ν∇ · ε(v)Ωe
.

The mass matrix contribution to the continuity equation is given by

qTG
T

Mu = −β
∑

e

τMe (u, δ ∇q)Ωe
,

while the stabilised viscous term is composed by the sum

vTK
F
(u)u = (2νε(u), ε(v))Ωn+1

F
+
∑

e

τCe (∇ · u, ∇ · v)Ωe

+ η
∑

e

τMe (2ν∇ · ε(u), rGv)Ωe

−
∑

e

τMe

(
2ν∇ · ε(u), δ

(
u− uG,n+1

)
·∇v

)
Ωe

− α
∑

e

τMe (2ν∇ · ε(u), δ 2ν∇ · ε(v))Ωe
,
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where the continuity stabilisation has been added. Further the convective part is deter-
mined from

vTN(u) =
(
(u− uG) ·∇u,v

)
Ωn+1

F
− η

∑
e

τMe

((
u− uG,n+1

)
·∇u, rGv

)
Ωe

+
∑

e

τMe

((
u− uG,n+1

)
·∇u, δ

(
u− uG,n+1

)
·∇v

)
Ωe

+ α
∑

e

τMe

((
u− uG,n+1

)
·∇u, δ 2ν∇ · ε(v)

)
Ωe

,

while the discrete gradient operator in the stabilised case reads

qTG
T

K(u)u = −β (∇ · u, q)Ωn+1
F

− β
∑

e

τMe

((
u− uG,n+1

)
·∇u, δ∇q

)
Ωe

+ β
∑

e

τMe (2ν∇ · ε(u), δ∇q)Ωe
.

The stabilised discrete divergence operator is given by

vTG(u)p = − (p, ∇ · v)Ωn+1
F

− η
∑

e

τMe (∇p, rGv)Ωe

+
∑

e

τMe

(
∇p, δ(u− uG,n+1) ·∇v

)
Ωe

+ α
∑

e

τMe (∇p, δ 2ν∇ · ε(v))Ωe
,

and the stabilising pressure matrix is obtained from

qTCp = β
∑

e

τMe (∇p, δ∇q)Ωe
.

Similar to the matrices also the right hand sides in (4.41) and (4.42) contain additional
terms emerging from stabilisation. The right hand side vector of the momentum equation
is a sum of two contributions the first of which stems from body forces and history terms
along with the respective stabilisation and reads

vT f
F

b =
(
rn+1,v

)
Ωn+1

F
− η

∑
e

τMe

(
rn+1, rGv

)
Ωe

+
∑

e

τMe

(
rn+1, δ(u− uG,n+1) ·∇v

)
Ωe

+ α
∑

e

τMe

(
rn+1, δ 2ν∇ · ε(v)

)
Ωe

,

while the second accounts for external tractions

vT fF
h = δ

(
hn+1,v

)
Γn+1

F,N
.

Also the continuity equation gets a right hand side contribution from stabilisation terms
reading

qT fC = −β
∑

e

τMe

(
rn+1, δ∇q

)
Ωe

.
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It remains to remark that all the stabilisation terms have to be integrated over the actual
element domain at time level n + 1.

Within the present work the above terms have been re-implemented into the research
code at the Institute of Structural Mechanics ccarat including a linearisation of the
stabilisation terms except the stabilisation parameters τMe and τCe which have not been
linearised. Consequently quadratic convergence within the flow solver is observed for
problems with almost constant stabilisation parameters.

4.3.7 Stabilisation parameter

The stabilisation parameter is a crucial ingredient of the entire stabilised method. Conse-
quently the method is frequently criticised for requiring a problem dependent parameter.
However stable definitions of τMe and τCe can be found which work well independently of
the problem.

From convergence studies the required order of the stabilisation parameter τM,e has
been obtained. According to the respective limit case τM,e has to satisfy

τMe = O

(
he

|u− uG|

)
for Ree � 1 and τMe = O

(
h2

e

ν

)
for Ree � 1, (4.43)

where Ree denotes the elemental Reynolds number. In the limit of a dominating zeroth
order term, i.e. if very small time steps are considered the stabilisation terms have to be
proportional to δ. Thus for the present formulation which is based on time discretised
operators τMe has to be of order one in δ.

Various definitions in particular for τMe have been proposed in the literature which in
many cases exhibit just slight differences. Recent contributions to the proper evaluation
of stabilisation parameters in the context of USFEM have been made by Franca and
Valentin [96], Barrenechea and Valentin [7], Codina [47, 51, 52, 58] as well as
the group of Tezduyar [1, 214, 215, 216]. In [220] Tezduyar and Osawa propose
to determine stabilisation parameters directly from elemental matrices and vectors, i.e.
circumventing the determination of element lengths.

Further comments on the history of the stabilisation parameter today widely known
as τ can be found in the dissertation of Wall [227]. In every case a useful stabilisation
parameter has to obey the limit behaviour according to (4.43). Numerical simulations
indicate that on meshes up to moderate mesh distortion the influence of the particular
choice of the stabilisation parameter is a minor issue provided that the parameter exhibits
the correct overall assymptotics and excessive over-stabilisation is avoided.

The parameter used preferably within this work is a combination of the stabilisation
parameter derived from bubble condensation by Barrenechea and Valentin for the
linear Stokes problem in [7] and by Franca and Valentin for the reaction-advection-
diffusion equation in [96]. The parameter which has been generalised within the present
work to yield stable formulations in the ALE cases reads

τMe = min

(
h2

e

h2
e ξ1 + 4 δ ν

me
ξ2

, σ0e

)
(4.44)
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where the new elemental parameter σ0e is the lower bound on the generalised reaction
coefficient of the convective ALE formulation

σ0e =

{
1− δ/2 max

(
∇ ·

(
u− uG,n+1

))
for ∇ ·

(
u− uG,n+1

)
> 0

1 for ∇ ·
(
u− uG,n+1

)
≤ 0

. (4.45)

For the fixed grid variant of the method just ∇ · u has to be considered which is close
to zero and so σ0e ≈ 1 and is thus hardly significant in (4.44). For deforming meshes
the divergence is dominated by ∇ · uG,n+1 and thus the first line in (4.45) corresponds
to contracting elements while the second line covers the case of expanding elements.
In this case σ0e will never be relevant in (4.44). On contracting elements, where ∇ ·(
u− uG,n+1

)
> 0 the stability of the method is affected by the mesh motion and the

influence of σ0e has to be considered. Stability of convective ALE formulations with
solenoidal convective velocity is conditional upon (3.52) as shown in section 3.5.1. For
the present case this condition transfers to

1− δ
1

2
max

(
∇ ·

(
u− uG,n+1

))
> 0, (4.46)

i.e. the discretisation error in the divergence of the fluid velocity has to be considered.
From (4.46) it can be observed that the coefficient σ0e is strictly positive.

The stabilisation parameter (4.44) obeys the assymptotics (4.43) and is strictly smaller
than one. This is caused by the fact that discretisation in time was performed prior to
discretisation in space and thus stabilisation is based upon the time discretised residuals
and stabilisation operator.

The parameters ξ1 and ξ2 depend on the effects dominating the flow in a particular
element according to

ξ1 = max(re, 1) ξ2 = max(Ree, 1), (4.47)

where re denotes the ratio of the viscous, second order term to the zeroth order term
introduced by the time integration. The ratios are obtained from

re =
4 δ ν

me h2
e

and Ree =
me |u− uG|he

2 ν
.

The elemental Reynolds number Ree is evaluated at the element centre. The Eu-
clidian norm of the velocity |u − uG| is a measure of the convective term, where the
parameter me carries the influence of the particular discretisation. It is defined by (see
also Franca and Valentin [96])

me = min

(
1

3
, Ce

)
(4.48)

where Ce is the largest constant satisfying the inverse estimate

Ce h2
e ‖∆v‖2

Ωe
≤ ‖∇v‖2

Ωe
for all v ∈ Vh

F,e, (4.49)

and Vh
F,e denotes the restriction of the discrete space Vh

F to the element e. The exact
determination of me and thus the sharp constant Ce is discussed in section 5.3.1.
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According to the estimates presented by Harari and Hughes in [116], me = 1/3
and me = 1/12 is used for linear and quadratic elements, respectively. However USFEM
simulations rely on the correct parameter me according to (4.48) in order to guarantee a
stable method. The determination of the correct constant Ce in (4.49) will be discussed
subsequently in the context of distorted elements in section 5.3.1.

For the stabilisation parameter of the continuity equation τCe the definition presented
by Codina in [52] is adopted reading

τCe = δ

√
4ν2 +

(
c2

c1

|u− uG|he

)2

(4.50)

which has been derived from a Fourier analysis. The constants c1 and c2 satisfy c2
2 ≤ c1

and are explained further in [52]. Within the simulations presented in this work c1 = 2.0
and c2 = 1.0 have been used. Analogously to τMe the parameter τCe is evaluated once at
the element centre and therefore treated as an elemental constant.

As the stabilised method is defined on the temporally discretised equation (3.15) and
residual (4.33) the time discretisation parameter δ enters the stabilisation parameter. In
the case of a stationary operator (i.e. η = 0) the entire stabilisation operator is multiplied
by the factor δ stemming from temporal discretisation. Absorbing this factor into the
stabilisation operator τMe yields a stabilisation parameter of the dimension of a time, the
familiar ‘intrinsic time scale’. However as also the full stabilisation operator containing a
zeroth order term shall be considered the dimensionless stabilisation parameter (4.44) is
preferred here.

4.3.8 Element length definitions

The characteristic element length he has a potentially significant impact on the actual
amount of stabilisation employed as at the viscous limit the stabilisation parameter is
proportional to h2

e while it is linear in the element length at the convective limit. Especially
in the context of mesh distortion or highly elongated elements the element length definition
has to be chosen carefully [181].

Various definitions have been suggested and discussed in the literature. An overview
can be found in [227] where it is suggested to use different element lengths within the
different terms. A geometric ‘isotropic’ element length definition (for example the square
root of the elemental area) is suggested when the viscous terms dominate, while a stream-
length is used for convection dominated flows. In chapter 5 a variety of definitions for
the characteristic element lengths are compared by numerical investigations. The single
definitions are

i. square root of element area, i.e. he =
√

Ae

ii. element length in flow direction according to [227] evaluated once at element centre,

iii. approximate element length in flow direction as defined by Codina in [58] hk =
h0 |u|/|u0|, where the subscript 0 refers to the reference configuration, and

iv. element length for anisotropic meshes as defined by Codina in [58], where the
smallest eigenvalue of the operator B is taken as characteristic element length. B
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stems from the polar decomposition of the Jacobian J of the isoparametric mapping
to the element domain, i.e. J = BZ, where B is symmetric and positive-definite
while Z is orthogonal.

Further an implicit definition of the element length which has been suggested by Taylor
et al. [211] shall also be considered.

v. Employing the covariant coordinates of the metric tensor gij of the mapping from
global Cartesian coordinates to the element parameters the stabilisation parameter
is given by

τMe =
(
4 + δ2

(
uigijuj + c ν2gijgij

))− 1
2 ,

where the constant c is set to 36 and to 60 for linear and quadratic elements,
respectively [231, 232]. The corresponding stabilisation parameter for the continuum
equation is given by

τCe = (8 τMe tr(gij))
−1 .

Additionally the element length definitions investigated by Mittal [181] are considered as
parts of the computations reported in [181] are repeated in section 5.3. These definitions
are

vi. minimal element length given by

he = he,min =

√
2Ae

max(hdiag)
(4.51)

vii. maximal element length defined as the edge length of a square with a diagonal of
max(hdiag)

he = he,max =
max(hdiag)√

2
(4.52)

While the element length definitions i., iv. and v. to vii. are purely geometrical the stream-
length (ii. and iii.) depends upon the velocity and hence adds to the overall nonlinearity.
Consequently the convergence rate of the fluid iterations decreases when these stabilisation
parameters are employed. In complex situations convergence may even be lost. In order
to fix this problem linearisation of the stabilisation parameter with respect to the velocity
could be performed. Numerical observations indicate however that streamlength compu-
tation is not essential and geometrical definitions of the characteristic element length may
work equally well.

4.3.9 Residual based stabilisation and linear elements

The discrete finite element spaces Vh
F and P h within the stabilised form (4.32) can be

of arbitrary polynomial order. Nevertheless the cheapest and most popular version is to
use linear elements. However such elements do not allow to properly represent second
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derivatives contained in the residual. Thus the residual of the momentum equation which
is effectively ‘felt’ within the stabilisation terms of linear elements reduces to

Rlin
M (u, p) = u + δ

((
u− uG,n+1

)
·∇u + ∇p

)
− rn+1.

The incompletely resolved second derivatives are included not only in the residual but
also within the stabilisation operator as soon as USFEM or GLS type of stabilisation
is employed (i.e. α 6= 0). Numerical observations indicate that these derivatives in the
weighting term are an additional source of inaccuracy if bilinear or trilinear elements are
employed.

As the so introduced consistency error scales with the stabilisation parameter τMe it
diminishes at spatial or temporal refinement. While not affecting convergence rates it
is present for particular discretisations with linear elements. Thus in such simulations
a portion of the error is observed which scales directly with the stabilisation parameter.
Consequently it is of particular importance to employ a stabilisation parameter as small
as possible when linear elements are used in conjunction with residual based stabilisation
methods. However a lower bound on the stabilisation parameter is required to prevent
artificial pressure modes resulting from the violation of the inf-sup condition.

Improvements which reintroduce some influence of the viscous part of the residual
have been suggested by Jansen et al. in [147] while such modifications fall into the
category of ‘variational crimes’. One way to cope with linear elements and residual based
stabilisation responsibly could be to control the stabilisation parameter, i.e. to ensure that
the maximal amount of stabilisation within an element is limited to a tolerable amount.
However this would not only require to define the tolerable amount of stabilisation but also
yield frequent mesh refinement as soon as steeper gradients evolve in the solution. It thus
appears worth to pay the price and go for higher order elements instead. The superiority
of biquadratic elements for residual based stabilised problems has already been mentioned
in an early paper on stabilisation by Franca et al. [93] where the advection-diffusion
model problem as well as the Stokes problem are considered.

Higher order finite element methods for flow problems have been used by John [149,
150]. Stabilised finite elements with a hierarchical basis have been developed by Whit-
ing [231] and appear as an interesting choice.

4.4 Stability of a stabilised method on a moving mesh

It remains to show that the stability of the convective ALE formulation obtained for an
unstabilised model problem in section 3.5.1 also applies for consistently stabilised Navier-
Stokes equations on a deforming domain. Stability of the convective ALE formulation of
the model problem is guaranteed if (3.52) is satisfied and thus the reaction coefficient σ0e

is strictly positive.

An upper bound on the time step size to integrate the model problem on a deforming
domain has been obtained. Repeating the analysis of section 3.5.1 for the convective
ALE formulation of the incompressible Navier-Stokes equations shows that with slight
restrictions condition (3.52) also transfers to the present case, where the corresponding
condition (4.46) has to be satisfied. The analysis presented here is restricted to the con-
vective formulation however the results obtained in section 3.5 can similarly be transfered
in the other cases.
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With respect to the form of the stabilisation operator (4.35) two different cases shall
be considered. The first variant is a classical GLS where the parameter in (4.35) are set
to η = 0 and α = β = −1. Additionally a full USFEM version of the stabilisation shall
be of interest the parameters of which are η = α = 1, and β = −1. In particular the
analysis of this latter case is based on the newly introduced parameters rG and σ0e which
depend upon mesh motion. In this latter case the analysis further relies on the additional
condition that rG and σ0e are constant within the single elements. This condition is
clearly not satisfied in the general case. However as the respective analysis is not very
sharp it can be suspected that stability is not lost even when this condition is relaxed.
Nevertheless a prove for the general case could not be found within this work.

As the stabilisation parameter is evaluated once per element it can be treated as an
elemental constant and can thus be taken out of the respective integrals. The analysis is
based on some basic inequalities which are also given in appendix A.2.3.

4.4.1 Coercivity of GLS stabilised ALE formulation

Coercivity of the form BGLS
0 ({u, p} , {v, q}) defined by (4.32) with the parameters η = 0

and α = β = −1 requires that a set of weighting functions v and q can be found such
that the form is bounded from below. Inserting v = u ∈ Vh

F,0,n+1 and q = p ∈ P h
n+1 yields

BGLS
0 ({u, p} , {u, p}) = ‖u‖2

Ωn+1
F

+ δ
((

u− uG,n+1
)
·∇u,u

)
Ωn+1

F
+ δ 2ν‖∇u‖2

Ωn+1
F

+
∑

e

τMe

∥∥δ (u− uG,n+1
)
·∇u− δ 2ν∇ · ε (u) + δ∇p

∥∥2

Ωe

−
∑

e

τMe

(
u,−δ

(
u− uG,n+1

)
·∇u + δ 2ν∇ · ε (u)− δ∇p

)
Ωe

+
∑

e

τCe ‖∇ · u‖2
Ωe

. (4.53)

There are two terms in (4.53) which may have a destabilising effect the first of which is
the convective term in the first line. Similarly to what was done in (3.50) this term can
be integrated by parts yielding

δ
((

u− uG,n+1
)
·∇u,u

)
Ωn+1

F
=− δ

1

2

(
∇ ·

(
u− uG,n+1

)
u,u

)
Ωn+1

F

+ δ
1

2

(
n ·
(
u− uG,n+1

)
u,u

)
Γn+1

F
. (4.54)

The boundary term in (4.54) vanishes at Dirichlet boundaries where the weighting func-
tion is zero. It disappears further at all FSI interfaces and local Lagrangean boundaries
where n · u = n · uG,n+1 applies. At outflow boundaries where n · u > n · uG,n+1 the
boundary term adds stability. Free inflow boundaries where the boundary term in (4.54)
would subtract stability yield ill-posed overall problems and are thus not applicable. Con-
sequently the boundary term can be bound from below by zero, i.e. it can be omitted.

The first term in (4.54) subtracts stability on a particular element e if the divergence
of the mesh velocity is negative, i.e. if the respective element is contracting. Thus the
elemental contribution of the convective term can be estimated by

δ
∣∣((u− uG,n+1

)
·∇u,u

)∣∣
Ωe
≤ δ

1

2

∥∥∇ ·
(
u− uG,n+1

)∥∥
L∞(Ωe)

‖u‖2
Ωe

. (4.55)
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The remaining term in (4.53) which is not necessarily positive can easily be bounded from
above by employing the Cauchy-Schwarz inequality (A.15) and the ε-inequality (A.16).
On every element e

∣∣u,−δ
(
u− uG,n+1

)
·∇u + δ 2ν∇ · ε (u)− δ∇p

∣∣
Ωe

≤ ‖u‖Ωe

∥∥δ (u− uG,n+1
)
·∇u− δ 2ν∇ · ε (u) + δ∇p

∥∥
Ωe

≤ ε‖u‖2
Ωe

+
1

4 ε

∥∥δ (u− uG,n+1
)
·∇u− δ 2ν∇ · ε (u) + δ ∇p

∥∥2

Ωe
(4.56)

holds for every strictly positive ε. Setting ε = 1/2 and using (4.55) and (4.56) in (4.53)
yields

BGLS
0 ({u, p} , {u, p}) ≥

∑
e

(
σ0e −

1

2
τMe

)
‖u‖2

Ωe
+ δ 2ν‖∇u‖2

Ωn+1
F

+
∑

e

τMe
1

2

∥∥δ (u− uG,n+1
)
·∇u− δ 2ν∇ · ε (u) + δ∇p

∥∥2

Ωe

+
∑

e

τCe ‖∇ · u‖2
Ωe

(4.57)

where (4.45) has been employed. Thus with τMe ≤ σ0e the desired lower bound on the GLS
stabilised form is obtained. The estimate (4.57) explains the restriction of the momentum
stabilisation parameter with respect to σ0e that has been introduced in (4.44). However
while being formally necessary to obtain the above stability estimate this restriction is
hardly significant in practical computations.

As a consequence of (4.57) the time step restrictions with respect to the mesh velocity
obtained in section 3.5.1 also apply for the GLS stabilised Navier-Stokes equations if
∇ · uG,n+1 is replaced by −∇ ·

(
u− uG,n+1

)
.

4.4.2 Coercivity of USFEM stabilised ALE formulation

USFEM operator and initial discussion

It turns out to be more difficult to obtain coercivity of the unusual stabilised form
BUSFEM

+ ({u, p} , {v, q}). In this case the influence of a negative divergence of the mesh
velocity entering the stabilised problem via the parameter rG has to be considered.

Using the parameters η = α = 1 and β = −1 and inserting v = u ∈ Vh
F,0,n+1 and
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q = p ∈ P h
n+1 yields

BUSFEM
+ ({u, p} , {u, p}) = ‖u‖2

Ωn+1
F

+ δ
((

u− uG,n+1
)
·∇u,u

)
Ωn+1

F
+ δ 2ν‖∇u‖2

Ωn+1
F

+
∑

e

τMe

∥∥δ (u− uG,n+1
)
·∇u + δ∇p

∥∥2

Ωe

−
∑

e

τMe

(
δ
(
u− uG,n+1

)
·∇u + δ∇p, (rG − 1)u

)
Ωe

(4.58)

−
∑

e

τMe

{
rG‖u‖2 − (1 + rG)δ 2ν (u, ∇ · ε (u))

+δ2 4ν2‖∇ · ε (u) ‖2
}

Ωe

+
∑

e

τCe ‖∇ · u‖2
Ωe

,

where the effective reaction coefficient rG according to (4.38) differs from one only when
local contraction takes place. In the case of rapid loss of element volume rG can be
negative. However due to the general stability condition (3.52) the parameter rG satisfies

|rG| ≤ 1. (4.59)

In (4.58) it has been assumed that rG is constant over an element which means that
the element shrinks or contracts uniformly if one ignores the divergence error of u for
interpretation purpose. This assumption is necessary for the analysis while the result
is not sharp and numerical experience indicates that the method may well be generally
stable even if this could not be shown here.

Considering the obvious zero order contributions in (4.58) the switch in the effective
reaction coefficient rG can be explained. From the Galerkin terms one obtains the
elemental contribution

‖u‖2
Ωe
− δ

2

(
∇ ·

(
u− uG,n+1

)
u,u

)
(4.60)

whereas the stabilisation terms yield an elemental contribution of

−τMe

{
‖u‖2

Ωe
− δ

(
∇ ·

(
u− uG,n+1

)
u,u

)}
(4.61)

if rG contains the derivative of the mesh velocity. Expression (4.61) follows from the first
term in the fourth line of (4.58) and thus the potential destabilising effect of the mixed
terms has not yet been condsidered. As the stabilisation parameter τMe may approach
one for δ > 0 instability would be obtained in the case of expanding elements, i.e. if
∇ ·

(
u− uG,n+1

)
< 0. Consequently rG = 1 is used in this case.

Bounding single terms

In order to show that (4.58) is strictly positive and thus the problem is stable all the
mixed products which potentially subtract stability have to be bounded from above and
subtracted. Thus the single terms are considered in a kind of worst-case scenario.

The product on the third line of (4.58) vanishes for all elements that expand and it is
potentially destabilising in contracting areas. On every element it can be bounded from
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above by means of the Cauchy-Schwarz inequality (A.15) and the ε-inequality (A.16)
with ε = 1/2 according to∣∣∣(δ (u− uG,n+1

)
·∇u + δ∇p, (rG − 1)u

)
Ωe

∣∣∣
≤
∥∥δ (u− uG,n+1

)
·∇u + δ∇p

∥∥
Ωe
|rG − 1| ‖u‖Ωe

≤ 1

2
|rG − 1|

∥∥δ (u− uG,n+1
)
·∇u + δ∇p

∥∥2

Ωe
+

1

2
|rG − 1| ‖u‖2

Ωe
(4.62)

The mixed product within the fourth line of (4.58) is treated in a similar way

(1 + rG)
∣∣δ 2ν (u, ∇ · ε(u))Ωe

∣∣ ≤ (1 + rG)‖u‖Ωe δ2ν‖∇ · ε(u)‖Ωe

≤ ε(1 + rG)‖u‖2
Ωe

+ (1 + rG)
δ2ν2

ε
‖∇ · ε(u)‖2

Ωe
,

for all ε > 0. From (4.59) it can be observed that the coefficient 1 + rG is never negative.
Employing further the inverse inequality (4.49) allows to reformulate

(1 + rG)
∣∣δ 2ν (u, ∇ · ε(u))Ωe

∣∣ ≤ ε(1 + rG)‖u‖2
Ωe

+ (1 + rG)
δ2ν2

ε Ceh2
e

‖∇u‖2
Ωe

. (4.63)

To complete the treatment of the single terms the estimate of the Galerkin convective
term (4.55) is recalled and the inverse inequality is used again to obtain

δ2 4ν2‖∇ · ε (u) ‖2
Ωe
≤ δ2 4ν2

Ceh2
e

‖∇u‖2
Ωe

. (4.64)

Equipped with bounds for all the terms the coefficients of the single norms can be evalu-
ated. Here two cases have to be distinguished the first of which considers elements which
contract within the present step, i.e. which exhibit rG < 1.

Coefficients for contracting elements

First the coefficient of
∥∥(u− uG,n+1

)
·∇u + δ∇p

∥∥2

Ωe
shall be looked at. Using (4.58)

and (4.62) one obtains

τMe

(
1− 1

2
‖rG − 1‖L∞(Ωe)

)
= τMeσ0e. (4.65)

Second the coefficient of the L2-norm of the velocity ‖u‖2
Ωe

is considered. Summarising
the respective terms from (4.58), (4.55), (4.62) and (4.63) the elemental coefficient

1− 1

2
δ‖∇ ·

(
u− uG,n+1

)
‖L∞(Ωe)

− τMe

(
1− δ∇ ·

(
u− uG,n+1

))
− τMe

1

2
δ‖∇ ·

(
u− uG,n+1

)
‖L∞(Ωe)

− τMeε
(
2 + δ∇ ·

(
u− uG,n+1

))
(4.66)

is determined where the first line contains Galerkin terms while the coefficients stem-
ming from stabilisation are given in the subsequent lines. Recalling that here a positive
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divergence of u − uG,n+1 is considered and using (4.45) the coefficient of ‖u‖2
Ωe

can be
reformulated yielding

σ0e − τMe σ0e − 2τMe εσ0e. (4.67)

Expression (4.67) is minimised if the stabilisation parameter takes on its maximal value.
With

τMe ≤
h2

e

h2
e + 4 δ ν

me

(4.68)

and ε = δν/ (meh
2
e) the coefficient of ‖u‖2

Ωe
can be bounded by

τMe σ0e
2 δ ν

me h2
e

. (4.69)

Finally the coefficient of the viscous term has to be evaluated. From (4.58), (4.63) and
(4.64) coefficient of ‖∇u‖2

Ωe
can be determined to

δ 2ν − τMe

(
2− δ∇ ·

(
u− uG,n+1

)) δ2ν2

ε Ceh2
e

− τMe
δ2 4ν

Ceh2
e

(4.70)

using further (4.45) and ε = δν/ (meh
2
e) yields the elemental coefficient

δ 2ν

(
1− τMe σ0e − τMe

δ2 2ν

Ceh2
e

)
which is again minimal for the maximal possible stabilisation parameter (4.68). Thus a
lower bound for the viscous coefficient reads

τMe
δ2 4 ν2

meh2
e

(4.71)

where σ0e ≤ 1 has been used.

Coercivity estimate

According to the definition of the stabilisation operator (4.35) and the coefficient rG (4.38)
the divergence of the mesh velocity within the zeroth order term of the stabilisation
operator is omitted for expanding elements. With rG = σ0e = 1 it can be observed that
the previously obtained estimates also hold for expanding or rigid elements.

Summarising these results for all elements yields the lower bound on the unusual sta-
bilised operator on a moving mesh reading

BUSFEM
+ ({u, p} , {u, p}) ≥

∑
e

τMe σ0e
2 δ ν

meh2
e

‖u‖2
Ωe

+
∑

e

τMe
δ2 4 ν2

meh2
e

‖∇u‖2
Ωe

+
∑

e

τMe σ0e

∥∥δ (u− uG,n+1
)
·∇u + δ∇p

∥∥2

Ωe
(4.72)

+
∑

e

τCe ‖∇ · u‖2
Ωe

.
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The estimate (4.72) shows that the unusual stabilised version of the stabilisation method
can be generalised in an ALE framework when the additional assumption of uniform
expansion or contraction is made. The present work introduces a distinction between
expanding and contracting elements via the parameter rG in (4.38) which also applies to
the closely related elemental parameter σ0e (4.45). This distinction eventually allows that
a coercivity estimate of the form (4.72) can be found.

The present analysis reveals that the conditional stability as obtained in section 3.5.1
which is typical for convective ALE formulations also applies to the residual based sta-
bilised flow formulation. Thus no further restrictions due to the mesh motion have to be
dealt with if the divergence error of the velocity is considered along with the divergence
of the mesh velocity. The discussion about maximal time step sizes given in section 3.5.1
applies to the stabilised incompressible Navier-Stokes problem.

4.5 Summary

Stabilisation is an omnipresent matter in flow simulations which are based on the in-
compressible Navier-Stokes equations. There are two classical needs for stabilisation
the first of which is dominating convective transport while the latter occurs if the LBB
condition shall be circumvented. Various methods can be found to stabilise convection
based wiggles. All those schemes have in common that they can be interpreted as a kind
of upwinding or artificial viscosity introduced basing on a mesh dependent parameter.
Pressure stabilisation can be achieved by some kind of relaxation of the incompressibility
condition. The need for pressure stabilisation can be avoided when LBB stable elements
are employed.

Residual based stabilisation methods are a means to deal simultaneously with both ef-
fects. The stabilisation is consistent and does not affect convergence rates even for higher
order elements. Further it is robust if the correct stabilisation parameter is employed.
For versions of the stabilisation which do not include a zeroth order term within the sta-
bilisation operator stability also on deforming domains is straightforward. If such a term
is used provable stability on moving domains requires a distinction between expanding
and contracting elements as well as the assumption of uniform expansion or contraction
of the elements. However, as the estimate is not sharp the latter assumption may not
be required in practical applications. In particular stabilised formulations without zeroth
order terms within the stabilisation operator can be used safely on deforming domains
as they do not degenerate accuracy or stability properties of the original unstabilised
formulations independently of the mesh motion.



Chapter 5

Stabilised finite element methods at
critical parameters

Within this chapter the behaviour of the stabilised flow solver at very small time steps
is considered and different versions of the stabilising scheme are compared. The effi-
ciency of an ALE flow solver significantly relies on the performance of the mesh motion
scheme. However, successful mesh motion necessarily introduces a significant amount of
mesh distortion. A subsequent numerical investigation thus regards the accuracy of flow
simulations obtained on distorted meshes.

5.1 Introduction

With respect to FSI applications the flow solver does not only need to be stable on a
deforming ALE domain but also needs to offer reliable results at critical parameters.
Unfortunately stability in the sense that the system can be solved does not guarantee
that a smooth approximation is obtained. While a flow simulation may cope with a
wiggly solution which is damped out after a few steps an error once introduced into an
FSI computation has a potentially very significant impact on the coupled dynamics. In
particular very thin structures are highly sensitive to slightly differing fluid forces.

Two very important critical situations shall be considered here. The first one regards
very fine time steps and in particular a high temporal resolution on a mesh with unaltered
spatial mesh size. Temporal refinement on a given mesh may well be of interest especially
in three-dimensional FSI problems where the overall problem size is unfavourably limited
by computational resources. Nevertheless a highly transient behaviour of the structure as
it is observed in limit situations such as snap-through or buckling may well deserve very
fine time steps.

Another crucial issue of ALE methods is the inherent need to solve the flow equations
on a potentially heavily distorted mesh. A number of questions arise in this context that
are hard to access analytically. A first matter is the general problem of how fast a solution
deteriorates at successive mesh degeneration. In the present context of a stabilised flow
formulation it might further be of interest if different versions of the stabilisation exhibit
poorer or better behaviour on a distorted mesh. A special case of mesh distortion are
highly stretched elements as used to resolve boundary layers. An investigation of the
influence of the choice of the element length he within the stabilisation parameter has been
reported by Mittal in [181]. Some of the test cases reported there shall be repeated here
along with a number of additional tests concerning the behaviour of quadratic elements
in the same situation.

81
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5.2 Residual based stabilisation at small time steps

Stabilised flow formulations have shown to work well for a wide variety of applications.
However situations are encountered where unphysical oscillations are obtained within a
fully stabilised formulation. In particular wiggles emerging when the time step is reduced
on a given spatial mesh have been reported.

Such observations contradict the intuitive expectation that temporal refinement im-
proves or at least does not harm a numerical approximation which is obtained with a
consistent method. More importantly these oscillations have to be understood properly
in the context of fluid-structure interaction problems where in critical situations the struc-
ture may experience a highly transient buckling or snap-through phase which dictates very
small time steps and tends to be incredibly sensitive with respect to the flow behaviour.

Motivating example

A typical situation where oscillations occur when small time steps are used is the lid
driven cavity problem at early time as depicted in Figure 5.1. The figure shows the cavity
problem discretised by 20 × 20 linear elements in space and BDF2 in time after 20 time
steps of ∆t = 0.003 and a kinematic viscosity of ν = 0.001. The horizontal top velocity
has been increased linearly in time up to ux = 0.02. The depicted oscillations get worse
when the time step or the viscosity are reduced further. A regular mesh aligned with the
flow direction and perpendicular to the flow eases the occurrence of such instabilities.
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Figure 5.1: Velocity oscillations on driven cavity problem

Similar wiggles are frequently observed in the vicinity of no-slip boundaries if the mesh
refinement towards the boundary does not suffice to resolve the wall gradient.

Potential instabilities at small time steps due to transient stabilisation terms

Bochev et al. investigate potentially destabilising effects at small time steps caused by the
stabilisation terms themselves. Analysing the transient Stokes problem in [21, 22, 24]
these authors argue that residual based stabilisation methods have been developed for
stationary operators which do not contain an inertia term. Applying the same kind of
stabilisation to transient problems requires to include the mass term into the residual
within the stabilisation term in order to retain consistency. While these stabilisation
terms on the mass matrix are necessary they may destabilise the discrete equations. In
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particular it has been shown that the use of a purely spatial momentum stabilisation
parameter which for the present formulation takes the form

τMe =
c1h

2
e

δ
(5.1)

with a positive stability constant c1 yields a stability condition linking the spatial and
temporal discretisation. The stability condition induced by the transient terms then reads

h2
e <

δ

c1

(5.2)

limiting the mesh size depending on the time step. Violating (5.2) while a stationary
stabilisation parameter of the form (5.1) is used yields pressure instabilities. However
employing a stabilisation parameter which at the limit of small time steps is of the order
of one circumvents a condition like (5.2). The only problem remaining is the fact that
at the limit of δ → 0 for fixed element size he the stabilisation terms diminish with δ
eventually recovering the unstabilised Galerkin formulation.

Remark 5.2.1 The spatial parameter in (5.1) has to be normalised by the time constant
δ as in the present formulation of the residual based stabilisation method the stabilisation
operator Lstab

M is defined one order higher in δ than in the cited references.

It has further been shown by Bochev et al. in [23] that SUPG methods used for the
transient advection-diffusion problem do not introduce an instability caused by the mass
terms emerging from stabilisation.

Within the present work a transient definition stabilisation parameter is employed while
a re-entering of unstable pressure modes has not been observed in practical computations.
The destabilising effect of the transient stabilisation terms is therefore regarded a minor
issue.

However there is a further aspect that should be mentioned here. The choice of a
transient stabilisation parameter has the consequence that stationary solutions depend
upon δ and thus upon the time step size as soon as δ drops below a certain limit. Conse-
quently care should be taken to employ time step sizes large enough when steady states
are approached. This goes along with efficiency considerations which also strongly suggest
larger time step sizes when steady state solutions shall be approximated.

A more elegant and more expensive way to avoid this dependency is to utilise time
dependent subscales, i.e. take into account the temporal change of the bubble part of the
solution. This approach which was suggested by Codina in [52] and analysed by Codina
et al. in [57] requires that the actual fine scale solution of the velocity is computed from a
nonlinear equation and stored at the elemental Gauss points. This method which is half
way turned over from a stabilised formulation to a proper multi-scale analysis allows to
recover stability irrespective of the time step size and stationary solutions independent of
the time step.

However in the context of fluid-structure interaction steady state solutions are hardly
ever considered anyway.

Instabilities at small time steps due to dominating zeroth order terms

A more severe problem is due to the dominance of the zeroth order term of the unknown
velocity within the temporally discretised momentum equation (3.15) or also in (3.18)
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which occurs at small time steps. At very small time steps (3.15) can be regarded a
singular perturbed problem where the spatial derivatives of u have lost their influence
compared to the undifferentiated zeroth order term. Solutions of singular perturbed
problems frequently exhibit characteristic steep boundary layers the proper numerical
approximation of which poses a challenge. Indeed the velocity oscillations observed in
figure 5.1 are induced by a dominating zeroth order term.

In order to re-establish control over the derivatives in the context of dominating zeroth
order terms Harari and Hughes [117] proposed to use a GLS approach in conjunction
with a gradient least squares (GGLS) stabilisation. While achieving the desired stabilisa-
tion effects this method introduces not only a further stabilisation parameter but also a
least square form of the gradient of the differential equation of concern and thus turns out
rather cumbersome and expensive. It further requires at least third order finite element
spaces if all the stabilisation shall be consistent.

A more appealing way to deal with dominating zeroth order terms arises in the context
of consistently stabilised methods. A derivation of stabilisation terms from bubble con-
densation as performed in section 4.3.1 yields a zeroth order term within the stabilisation
operator as soon as an undifferentiated term is contained within the original differential
equation. The approach which suggests to subtract Galerkin like terms has been pro-
posed as a method applicable for dominating zeroth order term problems from its early
days on (see e.g. Franca et al. in [91, 92]).

Similar methods containing a zeroth order term within the stabilisation operator, i.e.
η = 1 have been used for problems with zeroth order terms as in Barrenechea and
Valentin [7], Codina [51] and Franca and Valentin [96]. In [113, 114] Harari
suggests to employ stabilisation of the unusual type to damp out oscillations in a discrete
version of a modified Helmholtz problem which emerges from time discretisation of a
transient diffusion equation. In a very recent contribution to the issue by Harari and
Hauke [115] the advection-diffusion-reaction problem is considered and stabilisation of
the time-discretised problem is suggested.

The method has been extended by Hauke [118] to deal with negative reaction terms.
Hauke and Doweidar are concerned with the advection-diffusion-reaction equation also
in [119, 120, 121] where an explicit treatment of the diffusion and advection is proposed
along with an implicit treatment of the lumped mass and zeroth order terms.

However, care has to be taken if this kind of stabilisation is applied along with linear
elements. In this case an immense stabilisation effect is observed which originates from
the inability of linear elements to properly approximate second derivatives and potentially
significantly changes the problem to be solved.

5.2.1 Dominating zeroth order terms

Model problem singular diffusion

The effect of a zeroth order term dominating the differential terms is modelled by the
singular diffusion problem (2.59) which can be interpreted as the temporal discretisation
of the transient diffusion problem

∂φ

∂t
− κ∆φ = 0, (5.3)
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where the right hand side in (2.59) results from temporal discretisation and the parameter
δ is proportional to the time step.

In order to highlight the nature of the instability the one-dimensional numerical ex-
ample used by Harari and reported in [113] is employed. On a domain of the length
L the unknown field φ is interpreted as the temperature of a rod. Perfect insulation at
x = 0 is assumed while zero temperature is prescribed at x = L. The initial temperature
is constant at φ0. Following Harari [113] the TR is used for time discretisation along
with a time step size of ∆t = 1/100 κ. The solution of the fully discretised problem after
one time step obtained from a spatial discretisation with five linear elements is depicted
in figure 5.2 along with the analytical solution of the partial differential equation (5.3)
and the solution of the ODE (2.59) obtained after discretisation in time.

x/L

semidiscrete equation

φ
/φ

0

spatial solution of

analytical solution of PDE

discrete solution with 5 linear elements

0 0.2 0.4 0.6 0.8
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Figure 5.2: Model problem, solutions at different levels of discretisation

The difference between the two smooth curves in the diagram 5.2 can be identified as
the temporal discretisation error within the first time step. As the trapezoidal rule is a
convergent scheme, this error decreases if the temporal discretisation is refined. For the
given time step size, however, the spatial discretisation of (2.59) has to converge to the
solution analytic in space and discrete in time, given by the dotted line. In this context
the overshot apparent in the finite element solution can be interpreted as a necessary
result of the method’s attempt to reproduce both, the function values and its spatial
derivatives on a coarse mesh.

Interestingly the slope of the analytical solution at x = L is almost matched by the
fully discrete approximation, i.e. in the present model problem the spatial and temporal
discretisation error almost cancel with respect to this derivative. However this effect does
not appear to be a reliable base for a numerical method.

If the overshot in the discrete solution shall be removed by a stabilisation there remains
the question for the ideal stabilised solution on the given mesh. An evident goal of
stabilisation is to reproduce nodal exact values. This means, however, correcting the
function values while increasing the errors in the derivatives. For the present example this
has the consequence of an underestimated thermal flow at x = L. For the incompressible
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Navier-Stokes problem the respective stabilisation yields a non-oscillatory solution that
underestimates the viscous tractions.

Remark 5.2.2 The above discussion reveals that it is misleading to blame small time
steps for the occurring oscillations which are initiated by unresolved spatial gradients.
Problems which do not exhibit steep gradients (for example the Kim-Moin problem) can
be solved properly by almost arbitrarily small ∆t.

Remark 5.2.3 A crude way to get rid of this kind of oscillations is mass matrix lumping.
However this means increasing smoothness not accuracy and sacrifices the consistency of
the scheme. Furthermore a mass matrix emerging from a stabilised formulation of the
incompressible Navier-Stokes equations contains terms introduced by the stabilisation
which are not symmetric. There is no straightforward lumping technique applicable in
such cases.

Detection of oscillations induced by zeroth order terms by reaction forces

The wiggles induced by dominating zeroth order terms typically occur close to boundaries
and are induced by unresolved gradients in particular gradients perpendicular to the flow
direction. The flow gradient perpendicular to a no-slip boundary is intimately related to
the respective reaction shear force. Thus shear boundary forces are used as a measure of
the accuracy of a scheme in the small time step regime.

There are two possibilities to compute such shear reaction forces in a FEM setting. A
first one is to determine and integrate the respective shear stresses along the boundary.
However these stresses depend upon velocity derivatives and have to be expected one
order lower in spatial accuracy than the velocity approximation.

A much more elegant way to compute reaction forces in a FEM context is to deter-
mine consistent nodal reaction forces by summarising the elemental node forces along the
boundary. Consistent nodal forces share the order of accuracy of the primary variables
and fit into a node based data structure. These forces are also used for FSI coupling
purpose as described in chapter 6.

Obviously both possibilities of determining the shear forces have to converge to the
same value at mesh refinement. Within the present work the reaction force has been
computed on both ways for some problems. The results obtained indicate that oscillations
within a boundary layer and which are due to dominating zeroth order terms go along
with the two types of reaction forces converging from both sides. In smooth problems
convergence from the same side was observed. Unfortunately this observation could not
yet be confirmed by any theoretical analysis. Clarifying this issue could help to establish
an indicator for local mesh refinement at unresolved gradients. While the difference
between integrated stresses and consistent node forces can generally be regarded an error
indicator it appears to be particularly appropriate to signal insufficient local resolution
in space compared to the time step. In contrast to general relationships of spatial and
temporal resolution such as (5.2) an indicator based on integrated stresses and consistent
node forces would consider the physical configuration, i.e. indicate the need for finer
meshes in the vicinity of steep gradients. This would be useful as small time steps can be
employed safely on smooth problems.
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5.2.2 A closer look at stabilisation for dominating zeroth order
terms

Stabilisation parameters at small time steps

In the limit of δ → 0 and he = const, i.e. when the time step is refined but the spatial
mesh size is retained, the ratio of the viscous forces to the inertia forces represented by the
parameter re decreases with δ. Hence the first switch parameter in (4.47) is ξ1 = 1. Thus
depending on the elemental Reynolds number Ree there are two cases to distinguish for
the stabilisation parameter τMe given in equation (4.44) at the small time step limit. If
significant convection is encountered the stabilisation parameter is given by

lim
δ→0

τMe =
he

he + 2 δ |u− uG|
= 1 (5.4)

while in the other case the limit

lim
δ→0

τMe =
h2

e

h2
e + 4 δ ν

me

= 1 (5.5)

is obtained. The continuity stabilisation parameter (4.50) vanishes at the small time step
limit limδ→0 τCe = 0.

Effect of zeroth order term in the stabilisation operator

The following consideration does not claim to be a rigorous mathematical analysis but
rather a rough calculation giving an impression of the basic effect of the inclusion of a
zeroth order term within the stabilisation operator.

In order to understand the effect of a zeroth oder term within the stabilisation operator,
i.e. η = 1 in (4.35), the stabilised formulation (4.32) is written in its possibly shortest
way. The continuity stabilisation is ignored for brevity of the present discussion and the
full adjoint stabilisation operator LUSFEM

+ is applied such that the stabilised form of the
momentum balance reads

(RM(u, p),v)ΩF
−
∑

e

(
RM(u, p), τMe LUSFEM

+ (v)
)
Ωe

= 0 (5.6)

where the first inner product (after integration by parts) yields the Galerkin terms.
The stabilisation might now be split up into the additional reaction stabilisation term
and one term which uses the stationary stabilisation operator according to

(RM(u, p),v)ΩF
−
∑

e

(
RM(u, p), τMe

(
1− δ∇ ·

(
u− uG,n+1

))
v
)
Ωe

−
∑

e

(
RM(u, p), τMe LUSFEM

0 (v)
)
Ωe

= 0 (5.7)

The stabilisation terms due to the zeroth order weighting function within the stabilisation
operator are Galerkin like terms scaled by the stabilisation parameter τMe and a term
depending on the mesh motion. It shall be assumed for the moment that these terms are
constant and the equal for all elements. If further higher order elements (k ≥ 2) are used
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such that all terms of the residual RM(u, p) can be represented within the stabilised form,
the Galerkin like terms from the first line of (5.7) can be collected and after division
by the term 1− τMe

(
1 + δ∇ · uG,n+1

)
the stabilised problem (5.7) is equivalent to∑

e

(RM(u, p),v)Ωe
−
∑

e

(
RM(u, p), τmod

Me LUSFEM
0 (v)

)
Ωe

= 0 (5.8)

with the modified elemental stabilisation parameter

τmod
Me =

τMe

1− τMe (1− δ∇ · (u− uG,n+1))
. (5.9)

Equation (5.8) shows that the additional reaction stabilisation which subtracts Galerkin
like terms can be reduced to a modified stabilisation parameter. Thus it does not introduce
an new stabilising effect, it rather affects the ratio between Galerkin and stabilising
terms. In particular it can be observed from (5.9) and (5.4) or (5.5) that the modified
stabilisation parameter increases for decreasing time steps. In the limiting case of δ → 0
the weak form (5.8) is dominated by the stabilisation terms while the influence of the
Galerkin terms becomes negligible. Consequently the solution is governed by numerical
damping rather than the physics if small time steps along with reaction stabilisation are
employed.

From (5.9) it can further be observed that the additional amount of stabilisation which
is activated within an element is exclusively governed by the time step size rather than
local solution properties. Thus an increase of stabilisation does not only occur in regions
of unresolved gradients but also where the velocity field behaves smoothly. Thus the
method exhibits a strong tendency to heavily change the physics of the problem at hand.

The situation is even worse when linear elements are used which are unable to represent
the second derivatives included in the residual RM(u, p). While the first term of the
stabilised equation (5.7), the Galerkin term, has been integrated by parts the additional
‘reaction stabilisation’ term has not. Thus in the formulation (5.7) all Galerkin terms
are reduced except the viscous one which contains second derivatives within the original
operator. So the stabilisation increases the viscosity within the Galerkin terms on
an elemental base and thus yields much more smooth solutions. However this effect is
entirely due to the inconsistency of linear elements and does not give a reliable base for
a stabilisation scheme!

5.2.3 Coercivity analysis of advection-diffusion-reaction model
problem

To fully understand the stabilising effect of USFEM and the GLS method in the con-
text of large zeroth order terms the advection-diffusion-reaction equation in a fixed grid
formulation is employed. The results obtained on the scalar advection-diffusion-reaction
equation also hold for the vector valued case which is covered in [88]. Numerical observa-
tions also show that the theoretical predictions are well transferable to the incompressible
Navier-Stokes equations.

An accurate coercivity analysis of a numerical method allows to get an idea of the norm
in which the approximation to the solution is controlled. Thus unphysical oscillations are
indicated by improper balances of different terms within a coercivity estimate.
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The convective ALE formulation of the scalar advection-diffusion-reaction problem
(2.58) is considered reading

Lφ = r in Ω with φ = 0 on ∂Ω, (5.10)

where homogeneous boundary conditions are assumed for clarity. The linear operator L
is defined by

Lφ = φ + δ a ·∇φ− δκ∆φ (5.11)

while analogous to the Navier-Stokes case the stabilisation operator

Lstabω = ηω − δ a ·∇ω − α δκ∆ω (5.12)

is used.

From the coercivity analysis of a Galerkin weak form of the problem (5.10) which was
given in (4.1) not only a potential instability at dominating convection can be observed
but also that the weak unstabilised form of the model problem Bmod is dominated by an
L2-norm at small δ while the control in the H1 sense is gradually lost (4.1). As a result
oscillations induced by high gradients may spoil the solution.

The stabilisation parameter τe is the one proposed by Franca and Valentin [96].

τe =
h2

e

h2
e ξ(re

mod) + 2δκ
me

ξ(Pee)
with ξ(x) = max(x, 1) and (5.13)

re
mod =

2δκ

meh2
e

, Pee =
me|a|he

2κ
.

If small time steps are considered in (5.13) the ratio of viscous and inertia forces re
mod is

small and τe can take two different forms depending on the amount of advection. With
only minor advection the stabilisation parameter accounts for the zeroth order term only
and will be termed by τ 0

e while τa
a includes advection. The parameters read

τ 0
e =

(
1 +

2δκ

meh2
e

)−1

and τa
e =

(
1 +

δ|a|
he

)−1

. (5.14)

The elemental parameter me is the one defined in (4.48).

USFEM – the full operator

The unusually stabilised bilinear form of the advection-diffusion-reaction problem is given
by

BUSFEM
mod,+ (φ, ω) = Bmod(φ, ω)−

∑
e

(
Lφ, τeLUSFEM

mod,+ ω
)
Ωe

, (5.15)

with η = 1 and α = 1

LUSFEM
mod,+ ω = ω − δ a ·∇ω − δκ∆ω (5.16)

according to (5.12) which is the adjoint operator of L.
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Inserting the weighting function ω = φ into (5.15) yields

BUSFEM
mod,+ (φ, φ) = ‖φ‖2 + δκ‖∇φ‖2 (5.17)

−
∑

e

τe

{
‖φ‖2 − δ2 ‖a ·∇φ‖2 + δ2κ2‖∆φ‖2 − 2 (δκ∆φ, φ)

}
Ωe

.

In order to show that (5.17) is strictly positive and to assess the ratio of the different
terms the single contributions to the operator have to be evaluated.

From (5.17) it can be observed that a number of terms introduced within the stabilisa-
tion actually subtract stability. Employing the inverse inequality (4.49) the destabilising
Laplacean term can be bounded by

‖∆φ‖2
Ωe
≤ 1

Ceh2
e

‖∇φ‖2
Ωe

. (5.18)

For purely linear elements the destabilising second derivatives vanish. In all other cases
the estimate is sharp in the sense that within every element a function φ ∈ V h

e along with
a constant Ce can be found such that the inverse inequality (4.49) is an equality.

A potentially destabilising effect is also due to the last term in (5.17). By means of
the Cauchy-Schwarz inequality (A.15) the absolute value of the mixed term can be
bounded from above by ∣∣(δκ∆φ, φ)Ωe

∣∣ ≤ Ccs δκ‖∆φ‖Ωe ‖φ‖Ωe

≤ Ccs δκ√
Ce he

‖∇φ‖Ωe ‖φ‖Ωe , (5.19)

where the inverse inequality (4.49) has been used again. The constant Ccs < 1 is intro-
duced into (5.19) in order to include the sharp case. The Cauchy-Schwarz inequality
is sharp if the terms considered are linearly dependent. The discrete finite element space
on one element V h

e is spanned by polynomial functions and does not contain the eigen-
function of the Laplace operator. Thus the constant Ccs is strictly smaller than one.
Applying further the ε-inequality (A.16) yields∣∣(δκ∆φ, φ)Ωe

∣∣ ≤ ε C2
csδ

2 κ2

Ceh2
e

‖∇φ‖2
Ωe

+
1

4 ε
‖φ‖2

Ωe
for all ε > 0, (5.20)

where the parameter ε allows to shift weight between the L2 norm and the gradient norm.
With the aim of obtaining a correct estimate of the ratio of both terms ε cannot be chosen
arbitrarily. The ε-inequality has a sharp case depending on ε which for the present case
requires the constant to take on the value

εs =

√
Ce he

2 Ccs δκ

‖φ‖Ωe

‖∇φ‖Ωe

. (5.21)

Employing further a second inverse estimate reading

C0e h2
e‖∇φ‖2

Ωe
≤ ‖φ‖2

Ωe
for all φ ∈ V h

e (5.22)

allows to bound the sharp value for ε from below by

εs ≥
√

Ce C0e h2
e

2 Ccs δκ
. (5.23)
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Instead of (5.23)

ε =
Ce h2

e

2 C2
cs δκ

(5.24)

shall be used within the present derivation. Inserting (5.18) and (5.20) back into the
coercivity condition (5.17) yields

BUSFEM
mod,+ (φ, φ) ≥

∑
e

{(
1− τe −

τe

2 ε

)
‖φ‖2

+

(
δκ− τeδ

2κ2

Ceh2
e

− τe 2ε C2
cs δ2κ2

Ceh2
e

)
‖∇φ‖2 + τeδ

2‖a ·∇φ‖2

}
Ωe

Inserting also the parameter ε according to (5.24) and the stabilisation parameter accord-
ing to (5.14) allows to obtain the single coefficients. In the case of minor advection this
yields

1− τ 0
e − τ 0

e

1

2 ε
= τ 0

e

((
τ 0
e

)−1 − 1− C2
csδκ

h2
eCe

)
= τ 0

e δ

(
κ

h2
e

(
2

me

− C2
cs

Ce

))
for the coefficient of ‖φ‖2 and

δκ− τ 0
e

δ2κ2

Ceh2
e

− τ 0
e

2ε C2
csδ

2κ2

Ceh2
e

= δκτ 0
e

((
τ 0
e

)−1 − δκ

Ceh2
e

− 1

)
= δ2κτ 0

e

(
κ

h2
e

(
2

me

− 1

Ce

))
for the coefficient of ‖∇φ‖2.

In the other case when the advection dominates the diffusive term similar results are
computed reading

1− τa
e − τa

e

1

2 ε
= δτa

e

(
|a|
he

− C2
csκ

h2
eCe

)
δκ− τa

e

δ2κ2

Ceh2
e

− τa
e

2ε C2
csδ

2κ2

Ceh2
e

= δ2κ τa
e

(
|a|
he

− κ

h2
eCe

)
.

Due to the definition of the elemental parameter me (4.49) both expressions are positive.
Recalling Ccs < 1 theorem 1 can be concluded immediately.

Theorem 1 If the stabilised bilinear form (5.15) employs the adjoint stabilisation oper-
ator LUSFEM

mod,+ along with the stabilisation parameter (5.13) and the method is formulated
on a fixed grid than there exists a positive element based constant αe such that

BUSFEM
mod,+ (φ, φ) ≥

∑
e

τe

{
αe

(
δ‖φ‖2 + δ2κ‖∇φ‖2

)
+ δ2‖a ·∇φ‖2

}
e
, (5.25)

where the constant is given by

αe =


κ
h2

e

(
2

me
− 1

Ce

)
if Pee ≤ 1

|a|
he
− κ

h2
eCe

if Pee > 1
. (5.26)
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A comparison of (5.25) with the coercivity of the Galerkin weak form (4.1) shows the
well known effect of advection stabilisation. It can also be observed that the order in δ
of the zeroth order term has successfully been reduced. However the estimate (5.25) also
indicates that the order of the derivative terms has been decreased as well. Thus the ratio
of these terms remains unchanged. Nevertheless the order reduction has an important
impact as it ensures that the advection stabilisation term remains comparable to the other
terms which guarantees stable computations in the advection dominated regime even at
small time step sizes.

However the warning should be repeated; the method’s success is based on an amount
of stabilisation increasing as the time step decreases. Thus the risk of over-stabilisation
is rather present whenever η = 1 is used.

Remark 5.2.4 The effect of linear elements on the weak form and stability might be of
interest. Equation (5.17) reveals that the stabilisation also introduces potential sources
of instabilities. The only term within the curly brackets in (5.17) which definitely adds
stability is the advective term. Approximating (5.15) with linear elements incapable of
reproducing second derivatives effectively yields

BUSFEM
mod,+,lin(φ, φ) = ‖φ‖2 + δκ‖∇φ‖2 −

∑
e

τe

{
‖φ‖2 − ‖a ·∇φ‖2

}
e

without the terms containing Laplace operators. Thus two potential sources of insta-
bilities are excluded while full consistency has been sacrificed. Clearly the reduced form
BUSFEM

mod,+,lin is coercive for all τe < 1 which is always satisfied. Thus the inconsistency of
linear elements significantly adds stability and yields the smoothing effect of ‘reaction
stabilisation’.

The price which is payed in terms of accuracy however is potentially immense. From
(5.13) it can be observed that for small δ the stabilisation parameter can be expressed as
τe = (1 + ε)−1 with a small parameter ε. Assuming linear elements which are zero for all
second derivatives the fully USFEM stabilised bilinear form yields

BUSFEM
mod.+,lin(φ, ω) =

∑
e

τe {ε(φ, ω) + εδ(a ·∇φ, ω) + (1 + ε)δκ(∇φ,∇ω)

+δ2(a ·∇φ, a ·∇ω) + δ(φ, a ·∇ω)
}

e

where the first line contains the Galerkin like terms and the second line the remaining
advection stabilisation. Thus the effective residual is a linear combination of the sums

ε φ + ε δa ·∇φ− (1 + ε) δκ∆φ− εr and φ + δa ·∇φ− r

where the contribution of either sum depends on the amount of advection involved. For
small δ and thus small ε the potential loss of accuracy of this approach is obvious.

USFEM – the reduced operator

The stability result of the fully stabilised USFEM given in theorem 1 motivates the use
of the simpler stabilisation operator

LUSFEM
mod,0 ω = −δa · ωφ− δκ∆ω (5.27)
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which is the stabilisation operator for the respective stationary problem. By means
of (5.27) the stabilised bilinear form

BUSFEM
mod,0 (φ, ω) = Bmod(φ, ω)−

∑
e

{(
Lφ, τeLUSFEM

mod,0 ω
)}

e
(5.28)

is defined. Performing an analysis very similar to the previous case yields the following
coercivity result.

Theorem 2 If the reduced stabilisation operator (5.27) along with the previously defined
stabilisation parameter (5.13) are employed the stabilised bilinear form BUSFEM

mod,0 (5.28) is
defined describing a fixed mesh problem which satisfies the coercivity condition

BUSFEM
mod,0 (φ, φ) ≥

∑
e

τe

{
αe

(
‖φ‖2 + δκ‖∇φ‖2

)
+

δ2

2
‖a ·∇φ‖2

}
e

, (5.29)

where the positive elemental constant is given by

αe =

{ 1
2

+ 2δκ
meh2

e
− δκ

Ceh2
e

if Pee ≤ 1

1
2

+ δ|a|
he
− δκ

Ceh2
e

if Pee > 1
. (5.30)

A comparison of the estimate (5.29) and the coercivity result obtained for the operator
that includes a zeroth order term (5.25) clearly shows that the effect of this term is
a reduction of both, the L2 term and the derivative. When the reduced stabilisation
operator is employed, i.e. the estimate (5.29) holds, advection oscillations have to be
expected in the small time step limit.

GLS method – the full operator

It is further of interest to investigate also the stability of the original GLS method applied
to the advection-diffusion-reaction equation in the regime of dominating reaction caused
by very small time step sizes. In contrast to USFEM, the stability of the GLS method
does not depend upon the correctly determined parameter me and the latter method is
thus better applicable to moving mesh schemes. The GLS stabilised form reads

BGLS
mod,−(φ, ω) = Bmod(φ, ω) +

∑
e

(Lφ, τeLω)e . (5.31)

i.e. the original operator is employed for stabilisation purpose. Formal coercivity of this
least-square form is easily shown as

BGLS
mod,−(φ, φ) = δκ‖∇φ‖2 + ‖φ‖2 +

∑
e

τe‖Lφ‖2
e. (5.32)

However a close analysis reveals that this procedure yields a rather unfavourable stability
norm which gives rise to even higher oscillation when the time step is very fine. Thus the
method is not of practical interest.
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GLS – the modified operator

To retain the advection stability in the GLS context

LGLS
mod,+ω = ω − δa ·∇ω + δκ∆ω (5.33)

is used to serve as stabilisation operator. The operator is called modified as in comparison
to the negative of the original operator which yields a complete GLS method the sign of
the zeroth order term is reversed here. This operator cannot be derived from a multi
scale analysis nor does it yield a proper least-squares form. It has rather been combined
by using the stationary least-squares operator and subtracting a zeroth order term in
order to balance the equations in the dominating reaction scheme. By means of (5.33)
the stabilised form

BGLS
mod,+(φ, ω) = Bmod(φ, ω)−

∑
e

(
Lφ, τeLGLS

mod,+ω
)

e
(5.34)

is defined. In this case a coercivity analysis yields the following estimate.

Theorem 3 The stabilised bilinear form BGLS
mod,+(φ, ω) defined in (5.34) satisfies the co-

ercivity condition

BGLS
mod,+(φ, φ) ≥

∑
e

τe

{
αe

(
δ‖φ‖2 + δ2κ‖∇φ‖2

)
+ δ2 Ceh

2
e

δκ + Ceh2
e

‖a ·∇φ‖2

}
e

, (5.35)

where the positive elemental constant is given by

αe =

{ 2κ
meh2

e
if Pee ≤ 1

|a|
he

if Pee > 1
. (5.36)

The stabilised method given by (5.34) shares the stability properties of the full USFEM
formulation (5.15) while being insensitive with respect to the elemental parameter me.
The role of me will be addressed again in the subsection 5.3.1.

Remark 5.2.5 A general comment concerning the above estimates has to be added.
By means of the inverse estimate (5.22) it is in every case possible to transfer stability
from the L2 norm to the derivative. This reflects the fact that on a finite element,
i.e. in a fixed discrete space the function and its derivatives are closely tied together.
Consequently numerical oscillations will necessarily affect both the function itself as well
as its derivatives.

Within the above estimates care has been taken to properly sort the influence of the
particular terms in order to obtain an indication of the norm in which the solution actually
is controlled. And indeed the results can be confirmed numerically as shown by the
subsequent example.

5.2.4 Example at small time steps

The lid driven cavity is used to numerically verify the analytical results. A 2-D cavity
is considered as depicted in figure 5.3. The x-direction of the top velocity is prescribed
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x

u = 0

domain: 1.0 cm× 1.0 cm

u = 0
y

u = 0

ux(x, t) = (sin (4πt− π/2) + 1)
(
−2x2 + 2x

)
cm/s

meshes:
20× 20 linear elements
10× 10 quadratic elements
50× 50 quadratic elements

ρF = 13.57904 g/cm3

νF = 1.14× 10−3 cm2/s
fluid: mercury

for t < 0.25 s later: top flow constant in time
time step size: 1.0× 10−3 s

reference:

Figure 5.3: Problem setting of driven cavity example

parabolic in space and increases with a sin function in time. The parabolic profile in space
serves to avoid corner singularities in the pressure result. Material and discretisation data
is given in figure 5.3.

Different meshes and stabilisation methods are applied to compare the results. The
behaviour of bilinear elements is investigated on a relatively coarse mesh of 20 × 20 ele-
ments. Nine-noded quadratic elements are applied on a discretisation of 10× 10 elements
which yields the same number of unknowns compared to the linear version. To obtain
accurate results for reference purpose the domain is discretised by 50 × 50 nine-noded
quadratic elements. The horizontal reaction force at the top of the cavity is used for
comparison. This force is tangential to the boundary and thus unaffected by the pressure.
It only depends upon the velocity derivatives and is thus an appropriate measure for the
quality of the approximation of the velocity gradient ∂ux/∂y. The total horizontal force
is obtained from the sum of the respective consistent nodal forces.

The problem is chosen such that an initially very steep gradient occurs at the top of
the cavity which cannot be resolved by the coarse meshes used. After the circulating flow
inside the cavity developed and the top velocity does not accelerate further the gradient
significantly decreases and coarse meshes should be able to offer a reasonable solution.

The resulting reaction force obtained by the different meshes and stabilisation methods
is depicted in figure 5.4. From the diagram in figure 5.4a) which has been computed with
linear elements it can be observed that in this case full USFEM stabilisation including the
zeroth order weighting term within the stabilisation operator yields devastatingly wrong
results. The heavily overestimated viscosity yields a reaction force which is much too
large in amplitude even for times later than 0.125 s when a smoother profile is developed
in the original problem. An immense accuracy problem of linear elements used with full
USFEM stabilisation can also be observed in figure 5.5, which show that irrespective of
the low viscosity of mercury a Stokes flow type of behaviour is obtained.

In contrast linear elements stabilised by means of a stationary USFEM operator behave
much better with respect to the horizontal top force as it can be observed from the diagram
in figure 5.4. While they also fail to properly approximate the evolution of the boundary
force during the initially very transient period they catch up as soon as the physics can
be reasonably well resolved. Nevertheless advection type wiggles cannot be removed on
the coarse mesh as figure 5.6 shows.

The diagram in figure 5.4b) displays the results obtained on a mesh of biquadratic
elements. In this case both stabilised versions approximate the reaction force reasonably
well on the coarse mesh confirming that the extra stabilisation effect of the zeroth order
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term within the stabilisation operator is to a large extent due to the inability of linear
elements to approximate second derivatives. Impressions of the velocity and pressure field
obtained on the quadratic mesh are given in figures 5.7 and 5.8.
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Figure 5.4: Temporal evolution of the horizontal top force in 10−5 N obtained a) from the
linear and b) the quadratic elements compared to the reference solution

In the figures 5.5b) to 5.8b) the velocity arrows are plotted on the horizontal velocity
component at time t = 0.15 s. The colour scale for the horizontal velocity is set to −0.05
to +0.65 cm/s in all images. The reference solution obtained on the fine quadratic mesh
is given in figure 5.9b). The corresponding figures 5.5a) to 5.9a) depict the horizontal
velocity profile at t = 0.15 s along a vertical cut in the centre of the corresponding velocity
figure.

All results obtained on the coarse meshes display velocity and pressure oscillations
except the fully USFEM stabilised linear elements in figure 5.5 which gives a perfectly
smooth but inaccurate result as a comparison of figure 5.9 reveals. This confirms that
the major part of reaction stabilisation is due to the inconsistency of linear elements.
A comparison of figure 5.7b) and 5.8b) however reveals that while the fully stabilised
version 5.7 exhibits oscillations only in the vicinity of the top layer, the stationary stabil-
isation operator yields additional convection type instabilities which spread all over the
domain.

This interpretation of the results is also supported by the pressure fields depicted in
figure 5.5c) to 5.8c) and 5.9c) where the solution in the almost stationary regime at
t = 1.0 s is shown. The fully USFEM stabilised linear elements yield a smooth but wrong
result which goes along with a pressure field exhibiting five to ten times higher values
than the reference solution. All other pressure fields use the same colour scale between
−0.1 and +0.24 Pa.

In all figures it can further be observed that velocity oscillations go along with oscil-
lations in the pressure field which in the case of fully stabilised biquadratic elements are
restricted to the vicinity of the steep top gradient. Mesh refinement in this area yields
correct results at lowest possible cost when fully USFEM stabilised quadratic elements
are employed.

The coarse grid results depicted in figure 5.5c) to 5.8c) highlight also a difficulty to
accurately represent the continuity equation (2.35) which can be observed from non closing
streamlines. This is a side effect of a large stabilisation parameter τMk close to one which
yields a significant relaxation of the continuity equation. Thus the user should be warned
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Figure 5.5: Solution obtained with linear elements and full USFEM operator: a) profile
of horizontal velocity in a vertical cut through the centre at t = 0.15 s b) velocity arrows
on horizontal velocity at t = 0.15 s c) streamlines on pressure at t = 1.0 s
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Figure 5.6: Solution obtained with linear elements and reduced USFEM operator: a)
profile of horizontal velocity in a vertical cut through the centre at t = 0.15 s b) velocity
arrows on horizontal velocity at t = 0.15 s c) streamlines on pressure at t = 1.0 s

and reminded to better balance temporal and spatial discretisation when the stabilisation
parameter approaches one too closely.

From the streamlines in figure 5.7c) it can further be observed that the full USFEM
stabilisation also in conjunction with quadratic elements does indeed introduce more
numerical dissipation as the vortex centre is moved towards the centre of the cavity
compared to the reference solution 5.9c).

When GLS type rather than USFEM stabilisation (i.e. α = −1 in (4.35)) is employed
the results are identical to the USFEM ones except that the computation is less sensitive
to the parameter me. On the fine mesh used for reference all stabilisation methods yield
almost identical results.
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Figure 5.7: Solution obtained with quadratic elements and full USFEM operator: a)
profile of horizontal velocity in a vertical cut through the centre at t = 0.15 s b) velocity
arrows on horizontal velocity at t = 0.15 s c) streamlines on pressure at t = 1.0 s
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Figure 5.8: Solution obtained with quadratic elements and reduced USFEM operator: a)
profile of horizontal velocity in a vertical cut through the centre at t = 0.15 s b) velocity
arrows on horizontal velocity at t = 0.15 s c) streamlines on pressure at t = 1.0 s
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Figure 5.9: Solution obtained on fine reference mesh: a) profile of horizontal velocity
in a vertical cut through the centre at t = 0.15 s b) horizontal velocity at t = 0.15 s c)
streamlines on pressure at t = 1.0 s
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5.3 Residual based stabilisation on distorted meshes

ALE methods inevitably come along with mesh motion and thus mesh distortion. Com-
pared to fixed grid flow computations this introduces two additional challenges. The first
one is related to the mesh motion itself and has been covered in chapter 3. A second
problem is caused by the need to solve the flow equations on potentially heavily distorted
meshes.

The sensitivity of stabilised methods with respect to distorted and unfavourably shaped
elements is hard to access analytically. Thus numerical test cases are used here. These
tests which are also reported in [89] are designed to compare the performance of different
elements on typical distortion modes. The shape of the elements enters the residual based
stabilised formulation via the elemental parameter me. In particular for the USFEM
version of the stabilisation method the exact determination of this parameter is crucial
for the stability of the method.

5.3.1 Sensitivity of USFEM stabilisation variant

Influence of the parameter me

Numerical investigations reveal that the USFEM implementation with α = 1 and a fixed
parameter me gets unstable at a certain level of mesh distortion. The observed instability
is caused by a stabilisation term and can easily be shown at the model problem of an
unusual stabilised diffusion problem given by: find φ ∈ V h such that

(κ∇φ,∇ω)−
∑

e

(κ∆φ, τe κ∆ω)Ωe = (f, ω)−
∑

e

(f, τe κ∆ω)Ωe for all ω ∈ V h
0 .

(5.37)

The problem (5.37) represents an unusual stabilised formulation of the Laplace equation
−κ∆φ = f . It defines a symmetric bilinear form B(φ, ω) coercivity of which depends upon
the proper choice of the stabilisation parameter τe. The lowest eigenvalue of this bilinear
form is bounded from below by

B(φ, φ) = κ‖∇φ‖2 −
∑

e

τe κ2‖∆φ‖2
Ωe

.

Employing the inverse inequality (4.49) one obtains

B(φ, φ) ≥
∑

e

(
κ− τe κ2

Ce h2
e

)
‖∇φ‖2

Ωe

yielding the condition

τe κ < Ce h2
e. (5.38)

In the viscous limit of the stationary case the stabilisation parameter given by defini-
tion (5.13) reduces to

τe =
h2

e me

4κ
.
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Together with (5.38) this yields the stability condition

me < 4 Ce. (5.39)

The condition (5.39) is satisfied for me according to (4.48). Thus for a proper use of
the USFEM on distorted meshes it proves essential to employ the correct definition of
the parameter me rather than working with a fixed constant as it is commonly done for
convenience and efficiency.

The parameter me enters the stabilisation parameter in order to account for the ratio
of the first and second derivatives in the finite element space. Element distortion highly
influences this ratio and thus accurate determination of me is required if USFEM shall be
used on ALE meshes.

This potential instability disappears as soon as an SUPG (α = 0) or GLS (α = −1)
method is used rather than the unusual stabilised version. In these cases the destabilising
term is either not present (SUPG) or is added rather than subtracted and hence adds
to the stability (GLS). The unconditional stability of the stabilised method obtained
by setting α = 1, denoted GLS within the present work, has already been noticed by
Douglas and Wang in 1989 [71] and is of particular interest in the context of deforming
meshes.

Determination of the parameter me

The determination of the exact constant Ce satisfying the inverse estimate (4.49) for a
particular element e yields an eigenvalue problem. Estimates of the constant for a variety
of different elements have been provided by Harari and Hughes in [116]. The norms
of the gradient and the Laplacean define symmetric positive definite (or semi-definite)
elemental operator matrices by

‖∇v‖2
Ωe

= vT
e Keve and ‖∆v‖2

Ωe
= vT

e Leve,

where ve denotes the nodal degrees of freedom with respect to the nodal base of Vh
F,e,

the trial space of the element e which has to be free of rigid body modes. The maximal
eigenvalue λe,1 of the generalised eigenvalue problem

det (Le − λe,iKe) = 0 (5.40)

yields the sharp constant Ce = (λe,1 h2
e)
−1

.

As the correct value of the parameter Ce can be crucial in USFEM the solution of one
eigenvalue problem per element is required. In the case of a moving ALE mesh a stable
USFEM implementation is obtained only if Ce is determined for every element after each
mesh motion step which makes the algorithm rather expensive and should be avoided.
Alternatively GLS or SUPG versions of the stabilisation might be used which are stable
irrespective of the parameter me.

5.3.2 Kim-Moin flow

A two-dimensional flow problem for which an analytical solution of the incompressible
Navier-Stokes equations is known dates from Kim and Moin in 1985 [155]. The
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problem is stated by prescribing the exact velocity according to (5.41) and (5.42) along
the boundary of the fluid domain.

The Kim-Moin model problem is solved on the unit square ΩF = [0, 1] × [0, 1] and
compared to its analytical solution which is given by

ux(x, y, t) = − cos(aπx) sin(aπy)e−2a2π2tν (5.41)

uy(x, y, t) = sin(aπx) cos(aπy)e−2a2π2tν (5.42)

p(x, y, t) = −1

4
(cos(2aπx) + cos(2aπy)) e−4a2π2tν . (5.43)

An impression of the flow field is given in figure 5.10 where velocity vectors on the cor-
responding pressure field are depicted. According to (5.41)-(5.43) velocity and pressure
field remain in space and decrease monolithicly in time.

Figure 5.10: Kim-Moin flow - velocity vectors on pressure field

The solution (5.41)-(5.43) is a product of a spatial and a temporal function which
allows easy scaling of the error in order to remove the temporal error decay which is due
to the decay of the solution. The errors reported subsequently are absolute spatial errors
defined by

erru := ‖uh − u‖0 e2a2π2tν

errp := ‖ph − p‖0 e4a2π2tν . (5.44)

Characteristic maximal solution values of the spatial velocity and pressure fields are
‖u‖L∞(ΩF) = 1.0 and ‖p‖L∞(ΩF) = 0.5 such that (5.44) might also be read as relative
errors.

The calculations have been performed with the parameter a = 2.0 and a kinematic
viscosity of ν = 0.01. BDF2 has been used for temporal discretisation with a time step
size of ∆t = 0.01. The errors after 100 time steps are compared in different cases.

Remark 5.3.1 The determination of the spatial error of the Kim-Moin problem opens
the very interesting question of the unavoidable discretisation error on a given mesh.
An approximation of this error could be obtained if an admissible L2-projection to the
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discretely divergence free space would have been found. This issue turns out to be difficult
in the context of stabilised methods as discussed in section 4.3.5. However the problem
goes even further. The numerical solution on a given mesh will not be closest to the
analytical solution in an L2-sense. So does a norm exist in which the error is minimised
and what does it look like? The developer of numerical schemes might also turn around
this question and ask for the norm in which the discrete solution should be optimal.
Unfortunately no satisfying answer to these questions has been found. The problem
remains open.

Sensitivity to mesh distortion – linear and quadratic elements

In a first test case different discretisations with 32 × 32 linear elements and 16 × 16
quadratic nine-noded elements are compared. Both meshes yield the same number of
unknowns.

Within this example no steep gradients occur. Thus the stabilisation methods which
are compared are the ones defined by η = 0, α = −1, β = −1 (GLS) and η = α = 0,
β = −1 (SUPG) both with fixed me. Further an USFEM variant without zeroth order
term, i.e. η = 0, α = 1 and β = −1 is used where me is gradually reduced down to
1/200 in order to obtain a convergent solution. In all cases the stabilisation parameter is
calculated once per element at the element centre.

Two different distortion modes are investigated as depicted in figure 5.11 b) and c).

a) b) c)

Figure 5.11: Meshes used for error evaluation with zoom area a) undistorted mesh for
reference, b) distortion mode 1 and c) distortion mode 2

The first mode degenerates the quadratical elements to trapezoidals while the second
introduces very slender rhombuses which turned out to appear easily when the mesh
moves. The distorted quadratic elements work on the same nodal distributions, i.e. the
quadratic mesh exhibits perfectly placed edge and centre nodes.

An impression of the error distribution in two examples is given in figure 5.12 where the
absolute value of the difference of numerical and analytical solution, i.e. |uh − u| e2a2π2tν

is plotted. The figure shows results obtained with linear GLS stabilised elements with
stabilisation parameter according to definition i. The error distribution on the undistorted
mesh and the mesh in distortion mode 2 is presented. In the latter case the maximal
deviation from the analytical solution is more than 250 times larger than on the regular
mesh. However the error distribution itself appears remarkably similar and closely related
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to the pattern of the solution. This indicates that in both cases the primary error source
is numerical dissipation yielding a faster decay of the flow.

a) b)

0.0

0.4562
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0.0017

Figure 5.12: Distribution of absolute value of normalised velocity error obtained with
linear elements after 100 time steps a) on distortion mode 0 and b) on distortion mode 2

Velocity and pressure errors according to (5.44) have been computed on the three
meshes for the different stabilisation parameters listed in section 4.3.8. A complete table
of these error values is given in the appendix A.3. As the choice of the stabilisation
parameter is of minor influence a graphical comparison of the velocity and pressure error
obtained with the stabilisation parameter (4.44) and the element length i) is given in
diagrams 5.13 and 5.14.
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Figure 5.13: Velocity error obtained on differently distorted meshes with linear and
quadratic elements and GLS, SUPG and USFEM configuration of the stabilisation

The superiority of quadratic elements observed in these diagrams is confirmed if also
gradient errors are considered. In accordance with (5.44) a normalised H1 seminorm of
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Figure 5.14: Pressure error obtained on differently distorted meshes with linear and
quadratic elements and GLS, SUPG and USFEM configuration of the stabilisation

the error can be defined which is independent of the temporal decay

graderru := ‖∇uh −∇u‖0 e2a2π2tν

graderrp := ‖∇ph −∇p‖0 e4a2π2tν . (5.45)

The H1 seminorm of the error calculated with the element length definition i and for
the three different modes of mesh distortion is given in the tables 5.1 and 5.2. These
errors confirm the previous observations and show a particular sensitivity of the pressure
gradient with respect to mesh distortion. Interestingly this sensitivity even increases when
the SUPG version of the stabilisation is employed.

Table 5.1: Velocity and pressure error in normalised H1 seminorm on differently distorted
meshes of linear elements

graderru graderrp graderru graderrp

mode GLS GLS SUPG SUPG

0 0.357003 0.356385 0.356671 0.356563
1 0.455323 0.448726 0.432784 0.431555
2 2.894864 7.005269 2.049585 15.375787

From these results a number of observations can be made.

• With the same number of unknowns quadratic elements perform substantially better
than linear ones.

• On a perfectly squared mesh the performance of linear elements depends upon the
value α within the stabilisation operator. The quadratic element is independent
thereof. This highlights the impact of the inconsistency of linear elements.
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Table 5.2: Velocity and pressure error in normalised H1 seminorm on differently distorted
meshes of quadratic elements

graderru graderrp graderru graderrp

mode GLS GLS SUPG SUPG

0 0.042845 0.082813 0.043054 0.083754
1 0.059931 0.109139 0.058817 0.110863
2 0.405593 0.912929 0.281089 2.893050

• Mesh distortion significantly increases the errors obtained with linear elements. The
mesh distortion of mode 2 has a devastating effect on linear elements.

• Quadratic elements are insensitive to the distortion mode 1 and only slightly affected
by the distortion mode 2.

On the heavily distorted mesh in mode 2 USFEM calculations, i.e. α = 1 are possible only
for some stabilisation parameter and in those cases require very small parameters me. A
side effect thereof is insufficient pressure stabilisation and thus an increased pressure error
for USFEM calculations on the distortion mode 2.

The above allows to draw the conclusion that substantial mesh distortion can be coped
with when higher order elements are employed where the edge and centre nodes are
perfectly placed. Further GLS or also SUPG versions of the stabilisation, i.e. α = −1 or
α = 0, respectively, should be preferred.

Misplaced edge and centre nodes

In a second test case the Kim-Moin problem discretised by 16× 16 nine-noded elements
is used to access the sensitivity of the element with respect to misplaced edge nodes.
Misplacement of edge and centre nodes can have a huge impact on the accuracy reached
with higher order elements. However usually there is no need to allow arbitrary placement
of the non-corner nodes in elements inside the domain. Only at curved boundaries edge
nodes of higher order elements have to be adjusted.

Nevertheless the effect of misplaced edge nodes in the interior of the domain shall be
considered in order to investigate the error sensitivity due to such displacements. The
interest is focused here on edge nodes displaced perpendicular to the undistorted element
edge while still residing on the centre of the now curved edge. The element mid nodes are
placed at the centres of the distorted elements.

The distorted meshes under consideration are depicted in figure 5.15 where the offset
of the edge node perpendicular to the undistorted element edge d is varied between 0 ≤
d ≤ 1.5 h where h denotes the distance of two adjacent nodes in the original mesh, i.e.
half the original element length.

The square root of the elemental area is taken as element length and the errors are
computed according to (5.44). The diagrams in figure 5.16 show the evolution of the time
normalised velocity and pressure error depending on the distortion d and obtained with
GLS or SUPG variants of the stabilisation.

From the diagrams in figure 5.16 it can be observed that small or moderate displace-
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Figure 5.15: Distorted quadratic element meshes with offset edge nodes from left to right:
distortion mode 3 and distortion mode 4

ments of the edge node perpendicular to the straight edge can be done safely without
introducing velocity or pressure errors due to mesh distortion. Huge deflections of the
edge node yield clear deterioration of the results. It is further observed that the SUPG
type of the stabilisation method, i.e. α = 0 yields significantly smaller errors in velocity
and pressure than GLS when high edge node offset are considered. Badly approximated
second derivatives are able to affect quadratic elements also if high distortion has to be
considered. In most practical cases, however, good geometry approximation should be
possible by placing the edge node with −0.5h ≤ d ≤ 0.5h, i.e. with an offset of up to a
quarter of the element length and using SUPG or GLS.
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Figure 5.16: Evolution of the normalised error depending upon the offset d of the edge
nodes in distortion a) mode 3 and b) mode 4

A different behaviour is observed if an USFEM version of the stabilisation is employed,
i.e. if α = 1 (where still η = 0 is used). In this case an elemental constant me determined
according to (5.40) has to be employed. The errors obtained on the two meshes depicted
in figure 5.15 are displayed in figure 5.17 along with the evolution of the parameter me.

The diagram in figure 5.17 shows that the errors obtained for USFEM and the distortion
mode 3 are much larger than those of all other cases. Additionally the pressure error here
significantly exceeds the corresponding velocity error. This effect is due to the necessary
drop in the parameter me. Along with a reduced me the stabilisation parameter τM,e

decreases and so does the influence of the stabilisation terms. Consequently a limit is
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Figure 5.17: Evolution of the normalised error obtained with USFEM stabilisation for
distortion modes 3 and 4 along with the parameter me

reached at which insufficient pressure stabilisation occurs and zero pressure modes begin
to spoil the solution. However, such pressure modes are highly mesh dependent and thus
only observed for the distortion mode 3 where all elements exhibit the same distortion.
In practical situations this will rarely be the case. Nevertheless these results confirm
that SUPG or GLS simulations are somewhat preferable compared to USFEM which may
require a determination of me within every time step when the mesh is moving.

5.3.3 Flow past cylinder

Incompressible flow past a rigid cylinder at a Reynolds number of Re = 100 is a classical
test case. The problem has been used e.g. by Brooks and Hughes [35] for the validation
of the SUPG method and it has been investigated with respect to linear elements of high
aspect ratio by Mittal [181]. The present investigation particularly refers to that latter
paper. Parts of the computations reported in [181] are repeated here and some further
test cases are considered. Thus comparisons of the behaviour of linear and quadratic
elements can be presented.

The geometry and the mesh data used is depicted in figure 5.18. Three different
meshes of linear four-noded elements are employed differing only in the region close to
the cylinder. The number of elements along the diagonal line a is 36, 48 and 90 yielding
a total number of elements of 4424, 5192 and 7880 for the linear meshes A4, B4 and C4,
respectively. The elements along a are concentrated towards the cylinder such that a
maximal aspect ratio of the order of magnitude of 101, 103 and 105 results for the three
respective meshes A4, B4 and C4.

A second set of three meshes A9, B9 and C9 of quadratic nine-noded elements is defined
in the same way by taking half the number of elements compared to the linear case along
every edge yielding in total a quarter of the respective linear elements.

The fluid has a viscosity of ν = 0.005 and a density of ρF = 1.0. A horizontal inflow
velocity of u∞ = 0.5 is prescribed. At the top and bottom boundary the flow is allowed to
slip frictionless along the wall. Following Mittal in all cases a time step of ∆t = 0.125
has been used. GLS stabilisation, i.e. η = 0.0, α = −1.0 and β = −1.0 is employed.

For very stretched elements the element definitions given in section 4.3.8 significantly
differ. In order to access these differences the element length definitions according to i, vi
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Figure 5.18: Flow past cylinder, geometry and mesh data

and vii, i.e. based on the square root of the elemental area and the minimal and maximal
element lengths, respectively, are compared. In table 5.3 the Strouhal numbers for the
different cases are presented. The Strouhal number is defined by

St =
d

tcu∞
(5.46)

and represents a dimensionless frequency. The duration of a period in the oscillations of
the lift force is the characteristic time tc employed to evaluate (5.46). The maximal and
minimal obtained Strouhal number differs less than 3% which is just half the variation
obtained by Mittal on the Q1Q1 mesh in [181].

Table 5.3: Strouhal number for different element length measures and on different
meshes

number number aspect element length element length element length
mesh of of ratio vi vii i

elements nodes Strouhal Strouhal Strouhal
number number number

A4 4424 4558 10 0.16949 0.16878 0.16913
B4 5192 5326 103 0.16807 0.16701 0.16736
C4 7880 8014 105 0.16878 0.16807 0.16842
A9 1106 4558 10 0.17131 0.17131 0.17167
B9 1298 5326 103 0.17094 0.17058 0.17058
C9 1970 8014 105 0.17131 0.17131 0.17131

It is further observed that quadratic elements in all cases yield a slightly higher
Strouhal number indicating that even for the very fine meshes employed around the
cylinder quadratic elements are able to offer more accurate results. Also the mean value
of the drag coefficient on the cylinder obtained with quadratic elements is higher than
when linear elements are used.

The temporal evolution of the coefficients of lift and drag according to

Cl =
2Fl

ρF u∞d
and Cd =

2Fd

ρF u∞d
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where Fl and Fd denote the lift and drag force, respectively, obtained with different
element length definitions are compared in the diagrams 5.19 to 5.22 for the meshes A4
and C9. The respective results obtained on the meshes B4, C4, A9 and B9 are given in
the appendix A.4. In figure 5.22 the pressure profile obtained on the mesh C9 and with
minimal element length vi is given to highlight the slight oscillation obtained in this case.
This was the only sign of an ‘instability’ that could be found in this investigation. Using
the other two definitions for the element length hk on the mesh C9 yields very similar
results. The legend in figure 5.19 also applies to all the following diagrams.
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Figure 5.19: Lift coefficient obtained on mesh A4 with three different element length
definitions within the stabilisation parameter
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Figure 5.20: Drag coefficient obtained on mesh A4 with three different element length
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Additionally the normalised pressure distribution along the cylinder is given for every
case. The normalised pressure is computed from

Cp =
2(p− p0)

ρu2
∞

+ 1



110 Chapter 5. Critical parameters

-1.5

-1

-0.5

0

0.5

1

-2
-1 1-0.5 0

x

C
p

0.5

Figure 5.21: Pressure profile along the cylinder obtained on mesh A4 with three different
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where p0 denotes the pressure at the leading point of the cylinder. Following Mittal
in [181] the pressure distribution is projected to the horizontal, i.e. x-direction. The
pressure distribution is evaluated at a time instant when the lift coefficient reaches its a
maximum value.
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Figure 5.22: Slightly oscillating pressure profile with close-up view obtained on Mesh C9
with minimal element length vi

The results give rise to a number of observations.

• The influence of the element length within the stabilisation parameter is only minor
even in the case of highly stretched elements.

• When linear elements are employed a deviation in the lift coefficient for the element
length he,max is observed. This indicates slight over-stabilisation.

• In contrast to the results reported in [181] no instabilities are observed. Even the
pressure profile remains correct apart from a tiny disposition to oscillations between
corner and edge node pressure values when the minimal element length is used on
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Figure 5.23: Lift and drag coefficients obtained on mesh C9 with three different element
length definitions within the stabilisation parameter

a quadratic mesh.

• Quadratic elements yield even better results. They are surprisingly insensitive to
the choice of the element length as long as sufficient pressure stabilisation is ensured.

While still offering very good results highly stretched elements yield badly conditioned
matrices and thus the solution may require particular consideration. The iterative solver
package AZTEC has been used for the meshes A4, B4, C4 and A9 while a direct solver
had to be employed for the remaining cases B9 and C9. However as the condition problem
is related to single nodes or degrees of freedom of highly stretched elements appropriate
scaling of the respective lines of the overall system of equations could be introduced
removing the problem if such elements have to be used.

In [181] Mittal draws the conclusion that the use of a minimal element length works
best. It is thus supposed here that the inaccuracy at high aspect ratio observed by Mittal
is mainly due to the inconsistency of linear elements. This effect increases the amount of
numerical dissipation along with the increase of the stabilisation itself.
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5.4 Summary

Stable FSI algorithms require a flow solver which is reliable also at critical parameters.

At very small time step sizes and steep velocity gradients perpendicular to the flow
numerical oscillations are observed in simulations with stabilised finite fluid elements.
These oscillations are due to a dominance of the inertia term compared with viscous
effects and indicate a singular perturbed problem. Compared to the dominating mass
term the convection stabilisation becomes insufficient allowing convection type of wiggles
to enter the simulation.

Using a stabilisation variant which contains a zeroth order term within the stabilisation
operator reduces the dominating term which has a revitalising effect on the convection
stabilisation. However, this stabilisation variant must not be used in conjunction with
linear elements where it may have a devastating effect on the accuracy.

As a second critical parameter distorted meshes are considered. Consistently stabilised
finite elements are potentially very insensitive to mesh distortion provided that quadratic
and higher order elements with perfectly placed edge nodes and mid nodes are used.
The method further shows insensitive to the actual choice of the element length within
the stabilisation parameter. Even when highly stretched elements are used very little
influences are observed in particular when higher order elements are employed. For linear
elements an error which scales with the amount of stabilisation has to be expected due
to the inherent inconsistency of such elements.



Chapter 6

FSI coupling

This chapter is devoted to an investigation of the solver for the coupled problem including
the structural field, the fluid field and the interaction of the two which appears as an
additional challenge. Building upon the work of Mok [182] and Wall [227] (also [183,
228]) some improvements of the FSI coupling algorithm are presented here. The main
part of this chapter is intended to clarify the artificial added mass effect. This effect is
responsible for an inherent instability of sequentially coupled FSI algorithms applied to
systems of light-weight structures and incompressible flows.

6.1 Introduction

A variety of schemes has been proposed and used to solve FSI and other surface coupled
problems. An overview over recent developments can be found in the special issue on
FSI [187] where various approaches are discussed. A summary of different FSI problems
treated by reduced models can be found in the encyclopedia article by Ohayon [186]
where the structural-acoustic problem but also sloshing in elastic structures is treated.

Monolithic schemes which require that the entire coupled problem is eventually cast
into one system of equations have been reported for example by Hübner et al. [130, 226]
and Heil [123]. However such schemes suffer from the disadvantage that potentially rather
badly conditioned overall matrices may be obtained. A possibly even more important
drawback lies in the fact that such schemes do not allow to couple existing fluid and
structural solvers but rather require a specified overall framework.

A higher popularity has been gained by partitioned schemes which allow to use specif-
ically designed codes on the different fields. Smaller and better conditioned subsystems
are solved instead of one overall problem. Among others the group of Tezduyar [208,
221, 224], Dettmer and Perić [63, 64], Matthies et al. [179, 180], Piperno [193, 194]
and Rank et al. [199, 200] employ partitioned approaches to compute surface coupled
systems. A significant amount of work in the field of partitioned coupling schemes is due
to Farhat and his group [77, 195].

Sequentially staggered schemes are a particularly appealing subclass of partitioned
algorithms. However these schemes exhibit an inherent instability when used on fluid-
structure interaction problems where incompressible flows are considered. Surprisingly
the instability depends upon the densities of fluid and structure and also on the geometry
of the domain [38, 182, 183, 228]. Clearly sequential coupling introduces an explicit
flavour into the computation even if both partitions themselves are solved implicitly.
Thus restrictions on the time step have to be expected. Observations however show
that decreasing the time step size causes an increase of the instability. The instability

113
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is inherent in the scheme itself and has been named ‘artificial added mass effect’ since
major parts of the fluid act as an extra mass on the structural degrees of freedom at
the coupling interface. In sequentially staggered schemes the fluid forces depend upon
predicted structural interface displacements rather than the correct ones and thus contain
a portion of incorrect coupling forces. It is this ‘artificial’ contribution to the coupling
which yields the instability.

Already in 1977 Felippa et al. reported an upper limit on the time step size for acoustic
FSI [79]. The maximal time step size obtained there depends on the ratio of structural and
fluid mass density but it is independent of the temporal discretisation scheme. Applying
the results of Felippa et al. to the limit case of incompressible flow which goes along
with an infinite speed of sound, predicts immediate instability irrespective of the time
step size.

It shall be shown in the subsequent analysis that the problem posed by the artificial
added mass effect is not quite as bad as that.

6.2 Partitioned FSI algorithm and its details

The present work is exclusively concerned with partitioned FSI approaches. Within such
schemes it is the task of the coupling algorithm to ensure that the kinematic coupling
condition (2.51) as well as the dynamic continuity (2.52) are satisfied.

Partitioned strong coupling schemes converge to the solution of the monolithic scheme
and are thus able to satisfy discrete versions of the kinematic and dynamic coupling
conditions exactly. However these schemes require sub-iterations and thus in terms of
efficiency weak or loose coupling partitioned schemes could be preferred. The latter
approach manages with just one solution of either field per time step but it consequently
lacks accurate fulfilment of the coupling conditions.

Subsequently an unified approach for a general partitioned algorithm is described which
can be specified to a loosely or strongly coupled version. The strongly coupled or iterative
scheme of the algorithmic framework for FSI has been proposed by Le Tallec et al. [166].

6.2.1 A general partitioned algorithm

The algorithm of consideration is restricted to synchronous time discretisations with equal
time step size ∆t on both fields. Additionally to the time step superscript n the subscript i
denoting the iteration number in the strongly coupled version of the scheme is introduced.

The algorithm is based on the temporally and spatially discretised equations of struc-
ture and fluid given by (2.23) and (4.41), (4.42) respectively. The subscript Γ denotes
the restriction of a vector of nodal values to those lines referring to interface degrees of
freedom.

Starting from known solutions up to the time level tn the following algorithmic steps
have to be taken in order to compute the new coupled solution at tn+1. Specifications of
the single steps are given in subsequent sections.

1. Start step. Compute structural predictor dn+1
Γ,P = dn+1

Γ,0 in ΩS for the interface
displacements at tn+1, set i = 0.
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2a. Mesh step. Solve fluid mesh on mesh domain ΩG for new positions rn+1
i+1

(
dn+1

Γ,i

)
.

2b. Compute new grid velocity uG,n+1
i+1

(
dn+1

Γ,i

)
according to (3.33).

3a. Fluid step. Derive a new fluid velocity along wet surface un+1
Γ,i+1

(
dn+1

Γ,i

)
to be used

as Dirichlet boundary condition on the fluid domain according to section 6.2.3.

3b. Integrate fluid vectors and matrices on Ωn+1
F and solve nonlinear discrete flow equa-

tions iteratively for new fluid velocity un+1
i+1

(
dn+1

Γ,i

)
and pressure field pn+1

i+1

(
dn+1

Γ,i

)
.

Consider external fluid forces if present.

3c. Determine fluid forces on the interface fn+1
Γ,i+1

(
dn+1

Γ,i

)
.

4. Structural step. Solve structural equations (2.23) iteratively for new structural

displacement d̃
n+1

i+1 where the fluid forces fn+1
Γ,i+1

(
dn+1

Γ,i

)
and external loads are exerted

on the structure.

5. For iterative schemes only: Determine relaxation parameter ωi ∈ R+ according to
the methods reported in [183, 228].

6. For iterative schemes only: Compute relaxed update of predicted interface position.

dn+1
Γ,i+1 = ωid̃

n+1

Γ,i+1 + (1− ωi)d
n+1
Γ,i (6.1)

7. For iterative schemes only: Check convergence. If not converged, then set i → i+1
and continue with 2.

8. Proceed to next time step by setting n → n + 1

In iteratively staggered schemes the predicted interface displacement dn+1
Γ,P can be regarded

the zeroth iteration and is thus also termed dn+1
Γ,0 in step 1 of the above algorithm. With

regard to the analysis of the artificial added mass effect in loosely coupled schemes the
former notation is preferred in the sequel.

6.2.2 Structural predictor

A variety of predictors can be employed to find a starting guess for the interface displace-
ment in the new time step. The easiest version is given by the simple choice

dn+1
Γ,P = dn

Γ, (6.2)

which is zeroth order accurate in time and has been proposed for partitioned FSI pro-
cedures by Felippa et al. in [78, 79]. In sequentially staggered schemes the accuracy is
determined by the lowest order ingredient and thus a predictor of higher order than the
above is highly desirable.

A first order accurate prediction which has been suggested by Piperno in [192] is
obtained from

dn+1
Γ,P = dn

Γ + ∆t ḋn
Γ. (6.3)

A second order accurate predictor reading

dn+1
Γ,P = dn

Γ + ∆t

(
3

2
ḋn

Γ −
1

2
ḋn−1

Γ

)
(6.4)
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can also be found in [192].

While the actual choice of the predictor does not influence the solution when sub-
iterations are performed it has a significant impact on sequential staggered schemes. There
it does not only determine the order of temporal accuracy but also highly influences the
actual onset of the instability due to the artificial added mass effect. A detailed analysis
of this effect is presented in section 6.3.

6.2.3 Fluid velocity boundary condition

The structural interface displacement obtained in step 1 of the above algorithm needs to
be transformed into an interface velocity in order to provide the Dirichlet boundary
condition for the fluid field. With an interpolation which is first order accurate in time
this velocity is obtained from

un+1
Γ =

dn+1
Γ,P − dn

Γ,P

∆t
. (6.5)

Equation (6.5) is a backward Euler discretisation of the fluid velocity at the coupling
interface Γ. Accurate conservation of the size of the fluid domain ΩF requires to employ
a velocity which is consistent with the time discretisation scheme of the fluid field. The
time discretisations schemes one-step-θ method (3.13) and BDF2 (3.14) can be cast into
the general form

ā =
un+1 − un

∆t
, (6.6)

where ā is an average acceleration within the time step from time level n to n + 1 which
is assumed constant in both discretisation schemes while being approximated differently
in either case. Thus the interface displacement of the fluid field can be obtained from
integrating ā according to∫ tn+1

tn

(∫ t

tn
ā dτ + un

)
dt = rn+1 − rn (6.7)

where kinematic continuity requires that the fluid and structural motion coincide within
the time step, i.e. rn+1 − rn = dn+1

Γ,P − dn
Γ,P. Evaluating (6.7) and using (6.6) yields a

second order discretisation of the fluid boundary velocity reading

un+1
Γ = 2

dn+1
Γ,P − dn

Γ,P

∆t
− un

Γ. (6.8)

Equation (6.8) can be interpreted as a trapezoidal rule for the interface velocity and it
correctly preserves the size of the fluid domain, i.e. it extends geometric conservation
to the boundary of the domain. Consequently (6.8) poses the preferable fluid boundary
condition which should be used whenever possible. Despite the desirable property of
geometrical correctness (6.8) exhibits the tendency of the trapezoidal rule to oscillations
and has thus to be replaced by the dissipating condition (6.5) in some sensitive cases.
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6.2.4 Structural force boundary condition

Care has also to be taken to obtain the fluid forces which are transfered to the structure.
For flows with very low viscosity the coupling is occasionally performed by just exerting
the fluid pressures on the structure according to

Fp = −
∫

Γ

p̄n dγ. (6.9)

For low and moderate Reynolds number flows which are considered here the flow friction
along the structure should not be neglected and thus

Fσ =

∫
Γ

(2µε(u)− p̄I) · n dγ (6.10)

should be evaluated rather than (6.9). However (6.10) suffers from several drawbacks.
As the velocities are approximated by C0 continuous finite element shape functions the
viscous tractions exhibit jumps at the element borders and consequently the evaluation
of (6.10) does not fit very well into the nodal based data structure of a finite element code.
Due to the need to calculate spatial derivatives of the velocity u the forces Fσ further
exhibit an order of accuracy in space which is one order lower than the approximation of
the velocity.

Much more accuracy can be squeezed out of the fluid solution by evaluating consistent
nodal forces which are also strongly recommended by Gresho and Sani in [107]. Nodal
forces are defined in the discrete setting. In the fully stabilised case given in (4.41) these
forces can be obtained from

fF
Γ =

1

δ
M

F

Γ(u)u + K
F

Γ(u)u + NΓ(u) + GΓ(u)p− 1

δ
f
F

b,Γ, (6.11)

where the subscript Γ denotes the restriction of the respective matrix or vector to the
lines corresponding to the interface degrees of freedom. It is worth noting that the nodal
fluid force vector fF and also fF

Γ as defined in section 4.3.6 expresses the right hand side
of the discrete flow equations normalised by the fluid density ρF. Consequently it has the
unit force per density and needs to be multiplied by the fluid density in order to obtain
the physical coupling forces which will be denoted by fΓ.

Forces according to (6.11) have a number of desirable properties.

• Consistent nodal forces share the order of accuracy of the pressure and velocity
approximation.

• Forces according to (6.11) fit into an element based data structure and are easy to
implement.

• Consistent nodal forces account for the influence of the stabilisation and thus the
effect of the virtual bubble enriching the approximation space.

When no stabilisation is applied an equivalent expression to (6.11) can be found by con-
sidering (3.23).
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6.3 Artificial added mass effect

6.3.1 Introduction

Sequential staggered schemes applied to incompressible flows interacting with light-weight
structures exhibit an instability which has been named artificial added mass effect. This
effect already mentioned by Wall et al. in [228] and Le Tallec and Mouro in [166]
has been investigated by means of a reduced model problem in [38] where it is shown that
the onset of the instability can be predicted well within the simplified problem. In [38]
Causin et al. reformulate the continuous fluid problem and perform their analysis on
a simplified version of the Pressure-Poisson equation which reduces to −∆p = 0 with
appropriate boundary conditions. They eventually give a discrete added mass operator
in terms of the discretised Pressure-Poisson equation.

The analysis presented subsequently follows [87] and shows how to obtain an expression
of the discrete added mass operator in terms of matrices which are usually computed
within fluid codes solving the incompressible Navier-Stokes equations for the primary
unknowns u and p. It further shows why more accurate time discretisation yields an
earlier onset of the instability. Also the effect of residual based stabilisation for elements
not satisfying the inf-sup condition is considered.

According to the properties of the instability the following observations have repeatedly
been reported.

• With decreasing ∆t the instability occurs earlier.

• The mass ratio between fluid and structure has a significant influence on the stability
of the staggered system. The larger the mass ratio ρF/ρS the worse the instability
gets.

• Numerical observations indicate that increased fluid viscosity increases the instabil-
ity while increased structural stiffness causes a light decreasing effect.

• The actual onset of unconditional instability depends upon the particular combina-
tion of temporal discretisation items where the most inaccurate combination yields
best stability properties.

6.3.2 Added mass operator for LBB stable fluid elements

Basic discrete equations

In order to perform a general stability analysis of the coupled problem the spatially
discretised flow equations still continuous in time are required. The influence of the
particular time discretisation shall be considered subsequently. For inf-sup stable elements
where no stabilisation is applied the time continuous matrix equations read

MFu̇ + N(u) + KFu + Gp = fF
Γ (6.12)

GTu = 0 (6.13)

where the matrices and vectors are defined in section 3.3.2. In view of the intended
analysis no body forces and tractions are considered in (6.12). Thus the right hand side
exclusively consists of FSI-coupling forces along Γ. Equivalently the structural system of
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equations reads

MSd̈ + FS
int(d) = −fΓ (6.14)

where the damping term has been neglected. The structural interface forces pose the only
load on the structure. As the structural equations were discretised directly its right hand
side consists of real, physical forces.

Simplifications required for the analysis

Some further simplifications are made in order to ease the analysis.

• The discretisation of fluid and structural field is assumed conforming along the
interface Γ.

• Both field equations are regarded as linear.

• The influence of mesh motion and thus the change of all coefficient matrices is
negligible.

• The structural density ρS remains constant.

• No physical structural damping is assumed.

The first one of the above assumptions simply eases the presentation while the others are
reasonable as the instability of consideration is observed very early in the computation
when no significant nonlinearity has been built up. In order to perform an eigenvalue
analysis of the amplification operator of the coupling procedure the assumption of linearity
is further crucial as nonlinear eigenvalues for nonlinear operators are not defined. However
the insight obtained from the analysis also transfers to the nonlinear problem.

To simplify further the fluid stiffness and convective term in (6.12) are omitted. This is
reasonable at very small time steps where the behaviour of the flow is governed by inertia
and incompressibility. Thus this simplification allows to highlight clearly the reason of
the instability.

The added mass operator

The assumption that the coefficient matrices do not change in time allows to use the ALE
time derivative of the divergence equation (6.13) yielding

∂
(
GTu

)
∂t

∣∣∣∣∣
χ

=
˙

GTu = GT u̇ = 0. (6.15)

The simplified fluid system of equations is now split up into degrees of freedom belong-
ing to the interior of the fluid domain and others at the interface. The split matrices
and vectors are labelled by the subscripts I and Γ indicating the interior and interface,
respectively. Replacing (6.13) by (6.15) and using the simplifications the fluid system of
equations reads MF

II MF
IΓ GI

MF
ΓI MF

ΓΓ GΓ

GT
I GT

Γ 0

 u̇I

u̇Γ

p

 =

 0
fF
Γ

0

 . (6.16)
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In (6.16) the interface acceleration is prescribed according to the structural predictor.
Thus the problem can be solved for the remaining accelerations and pressures which
depend on u̇Γ and are given by

p =
(
GT

I

(
MF

II

)−1
GI

)−1 (
−GT

I

(
MF

II

)−1
MF

IΓ + GT
Γ

)
u̇Γ, (6.17)

u̇I =−
(
MF

II

)−1
MF

IΓ u̇Γ +
(
MF

II

)−1
GI

(
GT

I

(
MF

II

)−1
GI

)−1 {
GT

I

(
MF

II

)−1
MF

IΓ − GT
Γ

}
u̇Γ.

(6.18)

Employing the second line of the system (6.16) the normalised interfacial coupling force
vector fF

Γ can be expressed in terms of the interface acceleration reading

fF
Γ =

{(
MF

ΓI

(
MF

II

)−1
GI − GΓ

)(
GT

I

(
MF

II

)−1
GI

)−1 (
GT

I

(
MF

II

)−1
MF

IΓ − GT
Γ

)
− MF

ΓI

(
MF

II

)−1
MF

IΓ + MF
ΓΓ

}
u̇Γ. (6.19)

Due to the normalisation of the flow equations the discrete operator in curly brackets has
the dimension of a volume. It can be normalised by a characteristic volume of the support
of a fluid node vF to recover a discrete representation of the added mass operator.

MA : =
1

vF

(
MF

ΓI

(
MF

II

)−1
GI − GΓ

)(
GT

I

(
MF

II

)−1
GI

)−1 (
GT

I

(
MF

II

)−1
MF

IΓ − GT
Γ

)
− 1

vF
MF

ΓI

(
MF

II

)−1
MF

IΓ +
1

vF
MF

ΓΓ (6.20)

Employing the added mass operator (6.20) yields the physical fluid forces at the coupling
boundary

fΓ = ρF vFMAu̇Γ = mFMAu̇Γ (6.21)

where mF denotes a characteristic mass of a fluid node, i.e. mF = ρF vF. The added
mass operator MA contains the condensed fluid equations and maps a dimensionless
interface acceleration onto an also dimensionless force vector at the interface Γ. Thus the
operator is purely geometrical. It can be observed from (6.20) that the discrete added
mass operator is symmetric and positive.

A further interesting simplification is to use a lumped fluid mass matrix. Then the off-
diagonal blocks of the mass matrix vanish and assuming a regular mesh the main blocks
are replaced by

MF
II = 2 vF III and MF

ΓΓ = vF IΓΓ (6.22)

yielding the simple expression

MAl = IFΓΓ + 2GΓ

(
GT

I GI

)−1
GT

Γ (6.23)

for the lumped added mass operator. Expression (6.23) indicates that the eigenvalues of
the added mass operator exceed one. It can further be observed that the discrete gradient
operator matrix GI needs to have full rank if the added mass operator exists, i.e. if the
flow equations have a unique solution.
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6.3.3 Added mass operator for stabilised finite elements

Stabilised discrete equations

A matrix representation of the stabilised flow problem still continuous in time replac-
ing (6.12) and (6.13) reads

M
F
(u)u̇ + N

F
(u) + G(u)p = f

F

Γ (6.24)

G
T

Mu̇ + G
T

K(u)u− Cp = 0, (6.25)

where the single matrices are defined in section 4.3.6. As in the unstabilised case the fluid
momentum balance equation (6.24) has been normalised by the fluid density ρF.

Some simplifications

In order to perform an analysis simplifications similar to the unstabilised case have to be
made. Thus the system (6.24) and (6.25) is considered in the limit of very small time step
size. Recalling the limit of the stabilisation parameter lim∆t→0 τMe = 1 from section 5.2.2
it can be observed from (6.25) or also (4.42) that in the regime of small time steps the

leading terms of G
T

M and G
T

K are of the same order of magnitude in ∆t. While for very
small time steps the stiffness terms in (6.24) are of minor influence compared to the mass
terms this is not the case in (6.25). In order to still reduce the system (6.24), (6.25) to
one relating pressures and accelerations the continuity equation

∇ · u = 0 is replaced by δ∇ · u̇ = 0, (6.26)

which can be done provided that a divergence free initial velocity field is used. The
substitution (6.26) does not change the system but rather somewhat anticipates the effect
of temporal discretisation.

Along with the restriction to stabilisation variants with η = 0, i.e. no additional ze-
roth order term within the stabilisation operator, this allows to write the system (6.24)
and (6.25) in the small time step limit in terms of nodal accelerations u̇ and nodal pressure
values p and to obtain the simplified system

MFu̇ + Gp = fF
Γ (6.27)

G
T
u̇− Cp = 0 (6.28)

where the bar has been dropped on the matrices of the first line indicating that the
stabilisation terms here are of higher order in ∆t and thus of minor influence. In (6.28)

the matrix G
T

represents the sum

qTG
T
u̇ = q

(
G

T

M + GT
)

u̇ = −β
∑

e

τMe (u̇, δ∇q)Ωe
− βδ (∇ · u̇, q)Ωn+1

F
. (6.29)

The matrices G
T

M and GT have been defined in section 4.3.6 and section 3.3.2, respec-
tively. As the parameter β scales the pressure test function and thus the entire matrix
equation (6.28) β = 1 might be assumed here without loss of generality.
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Added mass operator in the stabilised case

Analogous to (6.16) the systemMF
II MF

IΓ GI

MF
ΓI MF

ΓΓ GΓ

G
T

I G
T

Γ −C


 u̇I

u̇Γ

p

 =

 0
fF
Γ

0

 (6.30)

is obtained which yields the fluid acceleration and pressure depending on a prescribed
interface acceleration u̇Γ according to

p =

(
G

T

I

(
MF

II

)−1
GI + C

)−1(
G

T

Γ − G
T

I

(
MF

II

)−1
MF

IΓ

)
u̇Γ (6.31)

u̇I = −

((
MF

II

)−1
MF

IΓ +
(
MF

II

)−1
GI

(
G

T

I

(
MF

II

)−1
GI + C

)−1

(
G

T

Γ − G
T

I

(
MF

II

)−1
MF

IΓ

))
u̇Γ. (6.32)

Inserting (6.31) and (6.32) into the second line of the split system (6.30) and multiplying
by the fluid density ρF yields the physical fluid force at the coupling interface Γ

fΓ = ρFvFMAstabu̇Γ = mFMAstabu̇Γ (6.33)

with the added mass operator in the stabilised case given by

MAstab : =
1

vF

(
MF

ΓI

(
MF

II

)−1
GI − GΓ

)(
G

T

I

(
MF

II

)−1
GI + C

)−1

(
G

T

I

(
MF

II

)−1
MF

IΓ − G
T

Γ

)
(6.34)

− 1

vF
MF

ΓI

(
MF

II

)−1
MF

IΓ +
1

vF
MF

ΓΓ.

With a lumped mass matrix the operator reduces to

MAl,stab = IFΓΓ + 2GΓ

(
G

T

I GI + vFC

)−1

G
T

Γ . (6.35)

The expression (6.35) suggests that some of the eigenvalues of the added mass operator
might exceed one. While a strict mathematical prove of the positivity of the second
term in (6.35) appears difficult or even impossible the operator (6.35) physically describes
the same as (6.23) and maps an interface acceleration u̇Γ onto an interface force vector.
Corresponding to the composition of the added mass operator this interface force vector
consists of two parts. The first ones are forces due to nodal inertia which are obtained from
the first term in (6.35). The second part of these forces are forces due to incompressibility

resulting from the second term of (6.35). If 2GΓ

(
G

T

I GI + vFC

)−1

G
T

Γ was strictly non-

positive, i.e if one would obtain

u̇T

(
2GΓ

(
G

T

I GI + vFC

)−1

G
T

Γ

)
u̇ ≤ 0 for all possible u̇ (6.36)
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this would be equivalent to exclusively negative energies generated by the incompressibility
at the interface. In other words (6.36) would imply that all possible interface accelerations
result in either no interfacial forces or such of the opposite direction to the interface
acceleration. This is physically strongly unreasonable. It is thus not far-fetched to assume
that the second term in (6.35) exhibits at least some positive eigenvalues and the overall
eigenvalue of the added mass operator in the stabilised case exceeds one.

As the largest eigenvalue of the added mass operator governs the stability limit the
added mass operator in the stabilised case deserves a closer look.

Discussion of the influence of stabilisation

While seemingly very similar to the added mass operator obtained in the unstabilised
case (6.23) the operator (6.35) exhibits some significant differences. A first difference is
the presence of the stabilisation matrix C which is required as the matrix G is not of full
rank. Thus the positive matrix C ensures that the term in brackets can be inverted. If C
is chosen too small this expression exhibits very small eigenvalues which might increase
the maximal eigenvalue of the added mass operator. Thus the properly chosen amount
of stabilisation is crucial. An alternative interpretation is that due to stabilisation the
incompressibility condition is relaxed an effect which is caused by the presence of the
matrix C. In this sense fluid stabilisation to same extent also stabilises the artificial
added mass effect. However there is no direct influence of the time step size in (6.34)
or (6.35) as all the over-lined matrices depend linearly on δ while the remaining matrices
are independent of the time step size. Consequently the onset of a dramatic instability at
reduced time step size may well have further reasons.

A second important difference to the unstabilised case is the now obtained unsymmetry

of the added mass operator caused by G 6= G. A closer look at (6.29) reveals

qG
T
u̇ = −

∑
e

{
τMe (u̇ · n, δq)∂Ωe

+ δ(1− τMe) (∇ · u̇, q)Ωe

}
= qG̃

T
u̇ +

∑
e

δ(1− τMe)qGT
e u̇, (6.37)

where GT
e denotes the contribution of element e to GT . Thus for δt → 0 and τMe → 1

the stabilised version of the continuity equation yields a matrix G
T

which contains a
contribution of the original operator matrix GT that vanishes for very small time steps

where τMe → 1. It further contains a boundary integral term G̃
T

emerging from integration
by parts. From (6.37) it can be observed that the continuity equation within the domain
is cancelled at the small time step limit while the remaining boundary term demands
global mass conservation by balancing the amount of inflow and outflow with the changes
of the domain due to a displacement of the interface Γ.

Stability of the stabilised flow problem (4.32) has been shown in section 5.2.3 by means

of a model problem. This stability now implies that the expression G
T

I GI + vFC in (6.35)
can be inverted. However due to the unsymmetry of this matrix which increases with
decreasing time step size the minimal eigenvalue might be rather small compared to the
unstabilised case. This yields a possibly large maximal eigenvalue of the overall added
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mass operator. An increased eigenvalue of the added mass operator however results in an
earlier onset of the instability as it will be shown in section 6.3.4.

Numerical investigations confirm the above interpretation. As the matrix G
T

M is re-
quired for the consistency of the stabilisation method in the transient case and does not
contribute to the stabilising effects of the stabilisation terms it can be omitted without
sacrificing stability of the fluid equations. In particular it has been observed that remov-

ing the matrix G
T

M and thus introducing a consistency error restores the stability for small
time step sizes at least for some time discretisation schemes. However this omission is not
meant to be used for practical computations but rather understood as a means to clarify
the effect of stabilisation on the artificial added mass effect.

A derivation of a discrete representation of the added mass operator reveals that while
in an unstabilised case this operator is purely geometrical in the stabilised case it depends
upon the time step size.

6.3.4 Influence of the discretisation in time

Introducing the physical coupling force (6.21) or (6.33) into the discrete linearised struc-
tural equation (6.14) which has been split into interface degrees of freedom at Γ and
remaining ones yields[

MS
II MS

IΓ

MS
ΓI MS

ΓΓ

] [
d̈I

d̈Γ

]
+

[
KS

II KS
IΓ

KS
ΓI KS

ΓΓ

] [
dI

dΓ

]
=

[
0

−mFMA u̇Γ

]
, (6.38)

where within the staggered scheme the fluid interface acceleration u̇Γ is obtained from a
structural prediction of the new interface displacement. The matrix KS denotes the struc-
tural tangent stiffness obtained from a linearisation of the internal structural forces NS(d).

Equation (6.38) reveals why MA is named ‘added mass operator’. Identifying the
fluid interface acceleration u̇Γ with the structural interface acceleration d̈Γ shows that the
product mFMA works as an additional mass on the interface degrees of freedom.

In the context of the coupled FSI problem the overall time discretisation scheme is
composed of the single schemes applied on the fluid and structural field, the structural
predictor and the way of determining the fluid Dirichlet boundary condition. For the
subsequent analysis the time discretisation schemes employed to solve a temporally dis-
cretised version of (6.38) are distinguished into two main classes. One class of such overall
time discretisation methods yields fluid and structural interface accelerations depending
upon a limited number of previous interface positions. These schemes shall be termed
schemes with limited recursion. On the other hand there are schemes which yield expres-
sions for the accelerations of the two fields which depend upon all previously computed
interface positions. Those formulations will be called recursive or also fully recursive.

Within the subsequent analysis discretisation items of different order of accuracy are
combined. Clearly the lowest order contribution governs the overall order of accuracy
making some of the considered schemes rather unattractive. However the combinations
serve to enhance understanding rather than being applicable schemes. It can further be
observed that a combination of higher order discretisation items worsens the stability
problems.
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Schemes with limited recursion

The stability or instability of the scheme (6.38) solved in a sequentially staggered manner
depends upon the particular time discretisation employed. The most stable version of the
structural generalised-α time discretisation scheme is obtained when maximal numerical
dissipation is involved, i.e. when the spectral radius of the scheme is set to ρ∞ = 0.0. This
yields the parameter

αm = −1, αf = 0, β = 1, γ =
3

2
.

Using these parameters in (2.21), (2.22) and (2.26) to (2.24) allows to obtain an expression
for the structural acceleration in terms of displacements reading

d̈
α

=
1

∆t2
(
2dn+1 − 5dn + 4dn−1 − dn−2

)
. (6.39)

The fluid acceleration u̇Γ is also expressed in terms of structural displacements. Using
backward Euler time integration, the zeroth order interface predictor (6.2) and the first
order interpolation of the boundary condition at the interface yields

u̇n+1
Γ =

1

∆t2
(
dn

Γ − 2dn−1
Γ + dn−2

Γ

)
. (6.40)

Inserting (6.39) into the discrete linearised structural system of equations gives

MS 1

∆t2
(
2dn+1 − 5dn + 4dn−1 − dn−2

)
+ KSdn+1 = fn+1, (6.41)

where fn+1 represents forces on the structure at the new time level n + 1. For very
small time steps (6.41) is dominated by the structural mass term while the stiffness looses
influence. Omitting the stiffness and lumping the mass term in a temporally discretised
version of (6.38) allows to reduce the system to the interfacial degrees of freedom according
to

mS
(
2dn+1

Γ − 5dn
Γ + 4dn−1

Γ − dn−2
Γ

)
+ mFMA

(
dn

Γ − 2dn−1
Γ + dn−2

Γ

)
= 0. (6.42)

As the added mass operator MA is a real positive matrix all vectors in (6.42) can be
expanded in terms of the eigenvectors vi of MA, i.e. dn

Γ =
∑

i d
n
i vi. The scalar coefficients

di have to satisfy

2dn+1
i − 5dn

i + 4dn−1
i − dn−2

i + µi
mF

mS

(
dn

i − 2dn−1
i + dn−2

i

)
= 0, (6.43)

where µi represents the ith eigenvalue of MA. Inserting the amplification factor λi with
dn+1

i = λid
n
i into (6.43) yields the characteristic polynomial of (6.43) associated with µi.

2λ3
i − 5λ2

i + 4λi − 1 + µi
mF

mS

(
λ2

i − 2λi + 1
)

= p(λi) = 0 (6.44)

All solutions λi of (6.44) have to satisfy |λi| ≤ 1 if the scheme (6.42) is stable. The diagram
in figure 6.1 shows an array of curves p(λi) for an increasing maximal eigenvalue of the
added mass operator and fixed mass ratio of mF/mS = 1. The curve exhibits a double
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increasing µi
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Figure 6.1: Polynomial p(λi) according to (6.44) for different values of µi

root at λi = 1 which is a typical behaviour of polynomials obtained from extrapolations.
It can be observed that increasing µi (or equivalently increasing the mass ratio) shifts the
lowest root further left increasing its absolute value.

Using the double root λi;1,2 = 1 a third root is found by solving the remaining linear
equation

2λi;3 − 1 + µi
mF

mS
= 0,

yielding λi;3 ≤ 1/2. The system is unstable if λi;3 < −1 which gives the instability
condition

mF

mS
max

i
µi > 3. (6.45)

While the third order polynomial (6.44) allows to be solved exactly this is no longer
possible when more complicated time discretisation schemes are employed. Observing
that the potential instability is found for λi < −1 rather than λi > 1 the approach in [38]
is pursued noting that p(−∞) = −∞ and p(−1) = −12 + 4 mF/mS µi. A change in sign
between p(−∞) and p(−1) indicates a solution p(λ∗) = 0 with λ∗ < −1 which again
yields the instability condition (6.45).

As all the ingredients of the above scheme are very good-natured in the sense that
high numerical damping on both the structural and fluid part is involved, (6.45) is a
very permissive result. Repeating the analysis by using BDF2 (3.14) rather than BE to
discretise the fluid part in time yields

u̇n+1
Γ =

1

2 ∆t2
(
3dn

Γ − 7dn−1
Γ + 5dn−2

Γ − dn−3
Γ

)
. (6.46)

In this case the characteristic polynomial is given by

4λ4
i − 10λ3

i + 8λ2
i − 2λi + µi

mF

mS

(
3λ3

i − 7λ2
i + 5λi − 1

)
= p(λi) = 0
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and yields the instability condition

mF

mS
max

i
µi >

3

2
. (6.47)

Changing from first order accurate BE to BDF2 on the fluid part of the problem results in
an instability condition which is twice as restrictive. In table 6.1 the instability constants
Cinst of the instability condition

mF

mS
max

i
µi > Cinst (6.48)

obtained with generalised-α time integration (with ρ∞ = 0) of the structural domain, first
order interpolation at the interface Γ (6.5) and the different structural predictors (6.2)-
(6.4) are summarised.

Table 6.1: Instability constant Cinst in condition (6.48) obtained for sequentially staggered
fluid-structure interaction schemes depending upon the structural predictors (6.2)-(6.4)
and the fluid time discretisation scheme

predictor BE BDF2

0th order 3 3
2

1st order 3
5

3
10

2nd order 1
3

1
6

It shows that increased accuracy results in a significantly earlier onset of the instability.
Another remarkable result is that switching from BE to BDF2 on the fluid domain results
in an instability condition twice as restrictive.

Remark 6.3.1 More accurate extrapolation in time yields a closer restriction of the sta-
bility constant. Similar observations have been made by Hund in [145] where higher
order predictors eventually caused divergence of an iterative approach used for multiscale
structural analysis. This effect appears to be inherent in polynomial extrapolation and
reminds of the well known shrinking stability domain for higher order backward differen-
tiation formulae [112].

Remark 6.3.2 In the present context one might be interested in the general behaviour
of characteristic polynomials resulting from time discretisation schemes with limited re-
cursion. Apparently such polynomials do always exhibit a double root at λ = 1 which
is related to the fact that a constant displacement corresponds to zero velocity and also
zero acceleration.

Schemes with fully recursive characteristics

Coupling schemes which employ the TR for fluid time integration or use the geometrically
correct version for the Dirichlet boundary condition on the fluid structure interface (6.8)
are a little more difficult to treat than the previous ones. Such algorithms do not exhibit
an expression for the predicted fluid interface acceleration in terms of a limited number
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of previous interface displacements comparable to (6.40) but rather require all previous
interface positions to be considered, i.e. cycle down to the initial conditions.

To sample the following scheme is considered:

• structure: generalised-α with ρ∞ = 0

• fluid:

– time discretisation: TR

– predictor: zeroth order (6.2)

– Dirichlet boundary condition: first order (6.5)

Here the particular influence of the trapezoidal rule employed on the fluid domain shall be
investigated. The results obtained for a fully second order scheme with TR and a second
order accurate predictor and boundary condition are even more restrictive.

While the structural acceleration is given by the expression (6.39), the fluid acceleration
is obtained from

u̇n+1
Γ =

1

∆t2
(
2dn

Γ − 4dn
Γ + 2dn−1

Γ

)
− u̇n

Γ,

which cannot be expressed exclusively in interface displacements. The amplification of
the scheme thus depends upon the actual time step. Assuming that the initial condition
includes zero acceleration of the interface, i.e. u̇0

Γ = 0 the first step (n = 0) yields

2d1
Γ − 5d0

Γ + MA
mF

mS
2d0

Γ = 0

and the characteristic polynomial

2λ− 5 + 2µi
mF

mS
= p(λ) = 0.

With p(λ = −∞) = −∞ and p(λ = −1) = −7 + 2µi m
F/mS one obtains the instability

condition for the first step which is unstable if

max
i

µi
mF

mS
>

7

2
(6.49)

is satisfied. With n = 1

2d2
Γ − 5d1

Γ + 4d0
Γ + MA

mF

mS

(
2d1

Γ − 6d0
Γ

)
= 0

is obtained and so is

2λ2 − 5λ + 4 + µi
mF

mS
(2λ− 6) = p(λ) = 0.

As p(λ = −∞) = ∞ and p(λ = −1) = 11 − 8µi m
F/mS the corresponding instability

condition reads

max
i

µi
mF

mS
>

11

8
. (6.50)
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Analogously the next (n = 2) step gives

2d3
Γ − 5d2

Γ + 4d1
Γ − d0

Γ + MA
mF

mS

(
2d2

Γ − 6d1
Γ + 8d0

Γ

)
= 0,

which by means of the characteristic polynomial

2λ3 − 5λ2 + 4λ− 1 + µi
mF

mS

(
2λ2 − 6λ + 8

)
= p(λ) = 0

yields the instability limit of the third step reading

max
i

µi
mF

mS
>

3

4
. (6.51)

The instability conditions of all further steps n is obtained accordingly. It is given by

max
i

µi
mF

mS
>

12

8 n
for n > 1, (6.52)

which shows that the scheme with fixed geometry and mass ratio becomes unstable after
a limited number of steps irrespective of the mass ratio or the added mass operator
themselves. Similar results can be obtained when the coupling condition (6.8) is employed.
Additionally, the combination of higher order ingredients (time discretisation scheme,
predictor, coupling condition) and a recursive scheme destabilises even faster.

Thus a fluid time discretisation scheme which employs the trapezoidal rule (or also
the one-step-θ scheme with θ 6= 1) or the geometrically correct coupling condition (6.8)
cannot be employed in a sequentially staggered scheme if stable long-time simulations are
to be guaranteed.

6.3.5 Consequences of the artificial added mass effect

Summarising the previous results it can be stated that sequentially staggered schemes
yield an instability condition of the form (6.48) where the maximal eigenvalue of the
added mass operator maxi µi is larger than one. The constant Cinst on the other hand is
smaller than one for all schemes with an accuracy which is of interest. With respect to
the mass ratio different cases can be considered.

• Fluid mass density larger is than structural mass density. This is the case for inter-
actions of water with light structures able to swim such as foils from synthetics. A
wide variety of technical fluid-structure interaction processes falls into this category.
Such problems simulated by a simple sequentially staggered scheme will definitely
be unstable.

• Fluid and mass density are of comparable magnitude. Typical applications in-
clude biological or physiological flows like blood flow-vessel interaction. Sequentially
staggered simulations of such problems are typically unstable. In fact instabilities
observed in sequential blood flow simulations were one driving force for the investi-
gation of the artificial added mass effect [38, 80].

• The structural mass density is significantly larger than the fluid one. This is the case
for most interactions of structures with airflow. Here conditionally stable sequential
computations might be possible. Additionally these applications frequently require
compressible flow where the artificial added mass effect has not been observed.
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Altogether it has to be concluded that the artificial added mass effect excludes sequential
partitioned schemes for a wide range of interesting applications.

6.3.6 General instability

It remains the question if by intelligently tuning the discretisation items a scheme can be
defined which is stable irrespective of the mass ratio. In [193, 194] modifications at the
load- and motion transfer in the context of coupled aeroelastic problems are suggested
to improve the accuracy and stability of the overall scheme which show beneficial in
particular for compressible flow.

However it turns out that when incompressible flow is considered these modifications
might postpone the onset of the instability while being unable to actually prevent it.
Irrespective of the particular time discretisation schemes the sequential staggered coupling
scheme itself carries an inherent instability as stated by the following theorem.

Theorem 4 For every sequentially staggered scheme constructed as described in section
6.2.1, a mass ratio mF/mS exists at which the overall algorithm becomes unstable.

Proof. For every sequentially staggered scheme the structural predictor for the dis-
placement of the interface Γ at time level n + 1 contains previous structural information
up to time level n only. Thus the general appearance of the scheme is

n+1∑
j=0

ajd
j
Γ + MA

mF

mS

n∑
k=0

bkd
k
Γ = 0, (6.53)

where aj, bk ∈ R are the coefficients defining the particular time discretisation scheme.
Equation (6.53) yields the characteristic polynomial

pS(λ) + µi
mF

mS
pF(λ) = p(λ) = 0, (6.54)

where the polynomial defined by the time discretisation of the structure is denoted by
pS(λ) =

∑n+1
j=0 ajλ

j while the polynomial pF(λ) =
∑n

k=0 bkλ
k contains the temporal dis-

cretisation of the fluid partition, the type of the structural predictor and Dirichlet coupling
velocity. The polynomial pS(λ) is one degree higher in λ due to the sequential structure
of the problem. Thus one obtains

pS(λ = −∞)

pF(λ = −∞)
< 0,

i.e. both polynomials are of different sign in the infinite negative. As the polynomials are
continuous this implies that a point λ∗ < −1 can be found which satisfies

pS(λ∗)

pF(λ∗)
< 0.

Consequently there exists a positive coefficient a such that

pS(λ∗) + a pF(λ∗) = 0.

Hence for a = maxi µim
F/mS the characteristic polynomial (6.54) exhibits a solution with

|λ∗| > 1 and the underlying scheme is unstable. �
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6.3.7 Further influences on the artificial added mass effect

For a simplified coupled model problem an added mass operator can be defined the eigen-
values of which precisely predict the onset of instabilities as shown by Causin et al.
in [38]. Real fluid structure interaction problems however introduce a significant number
of additional influences. There are physical effects which bring more complexity.

• First of all fluid viscosity and structural stiffness the latter possibly including contri-
butions from geometric nonlinearities cannot be ignored within such applications.
Using implicit time discretisation on both fields results in an stabilising effect of
structural stiffness on the added mass instability. Viscous fluid forces however in-
crease the influence of the instability. Clearly both effects depend upon the time
step ∆t as a reduced time step size decreases the influence of the stiffness terms
compared to the mass matrices.

• Further there are nonlinearities due to the convective fluid term and also material or
geometrical nonlinearities of the structural behaviour. Typically simulations start
from a reference configuration and zero velocities. Nonlinearities not dominating
within the first few steps build up and preclude the existence of a linear added mass
operator the eigenvalues of which could precisely predict the stability or instability
of a calculation for the entire simulation time.

• Additional nonlinearities also emerge from the geometrical changes due to the dis-
placement of the interface Γ. Changing geometry means changing integration do-
main and thus a change of all coefficient matrices encountered.

• Frequently compressible structures are employed where a change of the effective
structural density ρS has to be expected which may also influence potential insta-
bilities.

Thus the physical fluid-structure interaction problem is highly nonlinear. However the
insight gained by considering a linearised version and the stability thereof significantly
helps to understand the instability of the problem at hand. While the analysis performed
does not necessarily allow to predict the onset of the instability precisely it explains why
stable schemes for the interaction of incompressible flow and light-weight structures have
not been found.

6.3.8 Numerical investigation

The classical driven cavity problem equipped with a thin flexible bottom is used to nu-
merically investigate the added mass instability within a full fluid structure interaction
environment. The example which is taken from [182, 183, 228] is depicted in figure 6.2.
The fluid domain is discretised by 32 × 32 stabilised bilinear elements. The structure is
modelled by 32× 1 geometrically nonlinear wall elements.

The influence of different parameters and discretisation schemes on the onset of the
instability within the time interval t ∈ [0 s; 100 s] shall be examined. To diagnose stability
or instability the history of the vertical component of the FSI coupling force at node A is
monitored. Oscillations in the coupling force indicate instability.
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free outflow structure density: ρS = 500 kg/m3

A flexible bottom

fluid viscosity: νF = 0.01 m2/s

fluid domain: ΩF = 1m× 1 m

inflow

ux(t) =
(
1− cos 2πt

5

)
m/s

fluid density: ρF = 1.0 kg/m3

structure thickness: t = 0.002 m

Poisson’s ratio: νS = 0.0
Young’s modulus: E = 250N/m2

y

x

Figure 6.2: Geometry and material data of driven cavity example with flexible bottom

The default algorithm is the most stable scheme to be found. Generalised-α time
integration of the structure with zero spectral radius and BE on the fluid domain is
used. Further the simple predictor (6.2) and Dirichlet boundary condition (6.5) are
employed. At a time step of ∆t = 0.1 s the problem can stably be integrated in time up
to at least 1000 time steps.

The influence of the structural density ρS is compared for BE and BDF2 time
discretisation on the fluid domain. From the prediction summarised in table 6.1 it is
expected that roughly half the structural density required to stably integrate with BDF2
suffices if BE is used on the fluid domain. Starting from the default parameter setting and
decreasing the structural density ρS the simulation becomes unstable towards the end of
the investigated time interval at ρS = 321 kg/m3. The onset of this instability is depicted
in the diagram in figure 6.3.

reduced ρS = 321 kg/m3
default ρS = 500 kg/m3
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Figure 6.3: Evolution of the vertical coupling force at point A for the default configuration
of parameters and a problem with lower structural mass density both evaluated with BE
time discretisation of the fluid

A similar procedure is repeated with BDF2 time discretisation on the fluid domain. In
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this case the problem is unstable at ρS = 500 kg/m3 and the structural density is increased
until the simulation remains stable within the time interval of interest. Results are shown
in the diagram in figure 6.4. Increasing the structural mass density from ρS = 500 kg/m3

to ρS = 550 kg/m3 delays the onset of the instability and also slightly damps the instability
itself. At ρS = 590 kg/m3 no instability is observed within the time interval of interest.

BDF2, ρS = 590 kg/m3

default, BE ρS = 500 kg/m3 BDF2, ρS = 550 kg/m3

BDF2, ρS = 500 kg/m3
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Figure 6.4: Evolution of the vertical coupling force at point A obtained with the default
parameter setting and problems with different structural mass densities obtained with
BDF2 time discretisation on the fluid field

The influence of the structural stiffness shall be considered next. Departing again
from the default configuration with BE, ∆t = 0.1 s and ρS = 500 kg/m3 the structural
stiffness is reduced aiming at a scheme which becomes unstable within the time interval
of interest. However, this is not to be reached, indicating that the default parameter
configuration is actually stable even without the help of the structural stiffness.

The influence of the structural predictor is also worth to be investigated. Employ-
ing the first order accurate predictor (6.3) rather than (6.2) yields an immediately unstable
scheme at ρS = 500 kg/m3 even if BE is used to integrate the fluid equations in time. Us-
ing the second order accurate predictor (6.4) the behaviour gets even worse as shown in
the diagram 6.5. From table 6.1 an estimate of the structural density necessary to stabilise
the simulation can be obtained by using the ratio of the stability constants calculated with
different predictors. The zeroth order predictor is stable down to ρS = 322 kg/m3, thus the
first order predictor should be stable for structural densities exceeding ρS = 1610 kg/m3.
This prediction fits very well as the first stable simulation with the first order predictor is
obtained at ρS = 1635 kg/m3. Similar observations can be made when the second order
accurate predictor is used which yields an instability condition nine times as rigorous as
the zeroth order one. Thus the smallest structural density which should allow a stable
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computation is ρS = 2898 kg/m3. Actually at ρS = 2300 kg/m3 no oscillations are ob-
served within the time interval of interest while oscillations occur within the next few
time steps.

default algorithm: zeroth order predictor
first order predictor
second order predictor
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Figure 6.5: Evolution of the vertical coupling force at point A evaluated with default pa-
rameter setting and different predictors: within the first few time steps violent instabilities
are observed if higher order predictors are employed

The influence of the time step size is investigated by starting again from BE time
integration on the fluid domain and ∆t = 0.1 s with ρS = 500 kg/m3. Stable computations
up to t = 100 can be obtained for all ∆t ≥ 0.005 s where rapidly growing instabilities
are observed for smaller time steps. The temporal evolution of the vertical component
of the coupling force at point A is depicted in diagram 6.6. Due to the previous test
regarding the structural stiffness it is suspected that the sudden onset of the instability is
not caused by the decreasing influence of the structural stiffness but rather by an increase
of the maximal eigenvalue of MAstab caused by a dominating influence of the stabilisation

operator G
T

M.

The effect of stabilisation at small time steps is considered by removing the sta-

bilisation operator G
T

M. This causes a consistency error within the stabilisation which
scales with the influence of the transient term. Removing this term apparently restores
temporal stability for schemes which have been stable for larger time steps thus stressing
that the instability at very small time steps is caused by the influence of the stabilisation
terms. A simulation with a time step size of ∆t = 0.0001 s which gets unstable immedi-
ately for the correctly stabilised formulation can be performed when BE, the zeroth order
predictor (6.2) and the first order boundary condition (6.5) are employed.
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instability at ∆t = 0.003 s
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Figure 6.6: Evolution of the vertical coupling force at point A evaluated with different time
step sizes and zoom on the regions where instabilities occur; temporally stable integrations
are obtained for all ∆t ≥ 0.005 s

Some results are depicted in the diagram in figure 6.7 where the solid line represents a
computation with default parameter setting but a time step of ∆t = 0.003 s and without

the influence of the stabilisation matrix G
T

M. The simulation has been stopped after
10000 stable steps without any sign of an instability. Interestingly the same computation

including G
T

M gets unstable before the absolute time t = 0.4 s is reached as it can be
observed in diagram 6.6. A significantly different behaviour is observed if the fluid is
integrated by the trapezoidal rule. In this case a scheme with instationary characteristics
is obtained which gets unstable irrespective of the maximal eigenvalue of the added mass

operator. Removing the stabilisation matrix G
T

M slightly delays the onset of the instability
but cannot prevent its onset.
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Figure 6.7: Evolution of the vertical coupling force at point A for consistently stabilised

fluid and removed stabilisation matrix G
T

M

6.4 Stable partitioned schemes

For the applications considered here the artificial added mass effect excludes the use of
simple sequentially staggered schemes. In order to derive a convergent method which
is highly parameter independent further effort has to be made. Within this work an
accelerated iteratively coupled scheme is employed which has shown to be robust and
reliable.

6.4.1 Iteratively staggered schemes and the need for relaxation

The use of sub-iterations allows to converge the overall solution within every time step to
the solution of the respective monolithic scheme. Thus, dynamic and kinematic continuity
are satisfied up to a discretisation error. However, it has been observed that convergence
of the iterative scheme is not always guaranteed [182, 183]. In particular Causin et al. [38]
have shown that the artificial added mass effect present in sequentially staggered schemes
also influences the convergence properties of the corresponding iteratively staggered ap-
proach. The analysis in [38] reveals that relaxation with a relaxation parameter ω < 1
is required in the limit of ∆t → 0 to obtain convergence of the iteration over the fields.
And indeed even for transonic aeroelastic analysis convergence problems at small ∆t are
reported as for example in a recent paper by Massjung [174].

Consequently relaxation serves to do two important jobs. Firstly it enables conver-
gence making the scheme feasible. By choosing an optimal or nearly optimal relaxation
parameter it secondly accelerates convergence increasing the efficiency of the numerical
method. This is an important feature as iterations over the fields of fluid and structure
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tend to be rather time consuming.

A heuristic and user-input dependent way to get convergence has been reported by
Tezduyar et al. in [222]. Within the ‘block-iterative coupling’ approach described
in [222] the iteration between the fluid and structural field is performed in the core loop,
i.e. the coupling conditions are satisfied for iterates of the fluid and structural solution.
Thus convergence over the fields can be achieved by an artificial increase of the structural
left hand side mass matrix. The structural residual vector is left unchanged ensuring that
a converged solution is correct. Thus convergence difficulties of the coupled problem are
shifted onto the structural equations while the amount of shift required remains a-priori
unknown.

Methods to obtain an appropriate relaxation parameter automatically have been de-
veloped by Mok et al. in [182, 183, 228]. Within the present work the Aitken method
is used preferably. This cheap and easy approach to determine ω is based upon Aitken’s
acceleration scheme for vector sequences according to Irons and Tuck [146]. While no
rigorous analysis of the convergence properties of the Aitken method is available it has
shown to work very well in various numerical applications.

The Aitken method provides a possible specification of step 5. in section 6.2.1 where
the following sub-steps have to be performed.

5a. Determine the difference of the present and previous interface position according to

∆dn+1
Γ,i+1 = dn+1

Γ,i − d̃
n+1

Γ,i+1.

5b. Compute Aitken factor

µn+1
i = µn+1

i−1 +
(
µn+1

i−1 − 1
) (∆dn+1

Γ,i −∆dn+1
Γ,i+1

)T
∆dn+1

Γ,i+1(
∆dn+1

Γ,i −∆dn+1
Γ,i+1

)2 for i > 0,

where the initial Aitken factor of a new time step is given by µn+1
0 = µn

max and the
very first factor of a simulation is µ1

0 = 0.

5c. Obtain relaxation parameter from

ωi = 1− µn+1
i .

The above steps involve global vector operations only and are thus cheap in terms of CPU
and memory. It can further be observed that the Aitken method is easy to implement.

An alternative to the Aitken relaxation parameter is the method of steepest descent
or gradient method which can be found in [183]. This approach involves the solution
of an auxiliary coupled problem to determine the relaxation parameter ω and is thus
considerably more expensive. A strong advantage of the gradient method is the availability
of a convergence analysis.

6.4.2 Projection based semi-implicit scheme

While sub-iterations with proper relaxation allow to integrate the FSI problem stably in
time an iteratively staggered scheme requires a significant number of fluid and structure
field solutions per time step. More efficient formulations are thus desirable.
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The artificial added mass instability is intrinsically related to the incompressibility
condition. The fluid pressure is highly sensitive with respect to the correctly determined
fluid-structure interface position and yields heavily wrong coupling forces for slightly
incorrect predictions of the structural interface motion. Thus implicit coupling of the
pressure is unavoidable.

Motivated by this fact Fernández et al. propose a semi-implicit FSI coupling scheme
in [80]. Solving the flow equations using a Chorin type projection scheme decouples
the pressure solution from the inversion of the remaining operator. Thus the viscous and
convective terms are solved once per time step while the projection step which yields
the pressure has to be repeated iteratively until convergence of the fluid and structural
solution is obtained. Conditional stability of the scheme is proven by Fernandez et al.
in [80].

6.5 Summary

A partitioned FSI algorithm is used which can be formulated in an efficient sequentially
partitioned version and a stable iteratively staggered variant. Accurate exchange of cou-
pling data requires that a fluid interface condition is used which is consistent with the
fluid time discretisation. Nodal fluid forces are exerted on the structure rather than inte-
grated stresses. These forces exhibit the order of accuracy of the primary variables and
fit very well into a nodal based data structure.

The artificial added mass effect which is an instability of the sequential version of
the partitioned algorithm is closely related to the incompressibility of the flow. From an
analysis of the coupled system instability conditions are deduced. These conditions show
that the instability depends upon the maximal eigenvalue of the added mass operator and
the time discretisation schemes used on the fluid and structure. Even more important
the instability is highly influenced by the ratio of the fluid and structural mass density.
Whenever fluid and structural densities are comparable the instability is almost unavoid-
able. Only in cases where the fluid is much lighter than the structure conditionally stable
schemes might be possible.

The analysis further reveals that higher temporal accuracy necessarily yields earlier
instability. It is also shown that there are discretisation schemes for the fluid field as for
example the trapezoidal rule which yield an instability condition that gets increasingly
restrictive with every further time step. Such schemes necessarily fail to work.

Extending the idea which yields the instability condition it can also be shown that no
unconditionally stable staggered algorithm can be designed. Consequently stable parti-
tioned schemes have to be iteratively staggered where at least the coupling forces due to
fluid pressure have to be treated implicitly.
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Numerical Examples

In addition to the academic examples used in the previous chapters to highlight par-
ticular numerical effects a number of applications of the entire FSI interaction scheme
are presented within this chapter. These examples are not only designed to demonstrate
the capability of the algorithm but also to present some characteristics of FSI problems
including modelling and simulation issues.

7.1 Introduction

7.1.1 General algorithmic information and modelling

Throughout residual based stabilised finite elements with equal order interpolation of ve-
locity and pressure have been used on the fluid domain. The structural field is discretised
by geometric nonlinear wall elements or nonlinear, three-dimensional shell elements for
two-dimensional and three-dimensional problems, respectively. In all cases the interaction
of the fluid and structural field is achieved by subiterations where the Aitken relaxation
strategy has been employed. Typically four up to maximal ten iterations over the fields
are required to converge the coupled problem.

The examples described here are given with the full data required to rerun the prob-
lems. This not only includes geometry and full material data along with discretisation
information but also details of the modelling process. These ‘tricks’ usually not published
are however closely related to the coupled nature of FSI problems and offer further insight
into the complexity thereof. It also appears likely that the modelling information given
here might help and inspire the solution of similar difficulties.

7.1.2 A few comments on computational tools

All applications have been simulated using the research code of the Institute of Structural
Mechanics called ccarat. Contributions to this code and improvements thereof have been
made in the progress of this work. The research finite element program of the institute
had been relaunched in the programming language C in 2002 as a much wider framework
than the parent FORTRAN code. The major work has been done by Gee who provided
an excellent computational environment which is gratefully acknowledged. Almost every
FSI example which was simulated during the course of this work also highly relied on the
restart facility which is based on a binary input and output module. This restart offers
an immense flexibility by allowing not only a modification of material parameters or time
step sizes but also a change in Neumann and also Dirichlet boundary conditions or the

139
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number of processors used to run the problem in parallel. This core module was added
to ccarat by Küttler who also provided a highly valuable support.

The design of the new ccarat allows to compile a sequential or a parallel MPI based
version. In particular the three-dimensional examples have been run in parallel on two to
four processors.

Iterative solvers and preferably the solver package AZTEC (see [225] for product de-
tails) have been employed to solve the resulting fluid system of equations. In particular
a stabilised biconjugate gradient (BiCGSTAB) method along with a symmetric Gauss-
Seidel preconditioner or an incomplete LU preconditioner have been used within most
examples. Alternatively a GMRES method also available within the AZTEC package has
been employed.

The mesh and structural system of equations tends to be smaller and much less de-
manding. Here a direct solver or for larger problems a conjugate gradient method available
within the AZTEC package have done a good job.

The program GID of CIMNE in Barcelona [46] has been used for preprocessing and
mesh generation and to some extent also in the postprocessing stage, in particular for the
three-dimensional problems. For two-dimensional problems the visualisation tool visual2
has been employed [110].

7.2 Bridge cross section in laminar flow

This example is designed to simulate the fundamental behaviour of the flow around a plate
girder bridge cross section. The problem geometry is inspired by the Tacoma Narrows
bridge which is famous for its collapse in 1940.

It was a finding of the studies initiated by this collapse that vortex-shedding excitation
and flutter instability of a suspension bridge can be represented by a spring-supported
model of the cross section. Compared to a coupled analysis of the entire bridge and the
surrounding three-dimensional flow this offers substantial savings while still exhibiting the
advantages of a numerical simulation. In contrast to wind tunnel tests numerical analysis
may be performed much faster and at lower expenses. In particular preliminary studies
of general shapes might efficiently be performed numerically.

7.2.1 Geometry and material data

The geometry and boundary conditions of the two-dimensional problem which are adopted
from the work of Hübner [129] are depicted in figure 7.1. A section of 1 m of the bridge
profile is fixed at its centre in x-direction and supported by a spring with a linear stiffness
of ky = 2.467 kN/m in y-direction. Additionally a torsional spring of kα = 126.33 kNm
is attached. As fluid-rigid body interaction is not directly supported within the present
code the cross section is modelled by a very stiff structure with Young’s modulus of
Eart = 5 × 109 kN/m2 and supported by two vertical linear springs of a stiffness of ky/2
and a horizontal distance of d = 14.31 m. Two additional truss members of Eart and unit
area introduced on either side of the bridge profile allow to reach this distance. This
corresponds to a linearisation of the torsional stiffness as described in the diploma thesis
of Hilchenbach [126]. With a structural mass density of ρS = 823 kg/m2 the total mass
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Figure 7.1: Geometry of bridge cross section in flow field

of the cross section per meter length of the bridge is 4000 kg/m and a total moment of
inertia of about 80000 kg m2/m can be obtained.

The corresponding eigenfrequency of the vertical cross sectional mode is fy = 0.125 Hz
while a free rotation would take place at an eigenfrequency of fα = 0.20 Hz. These
frequencies are close to those of the Tacoma Narrows bridge reported in [165]. The fluid
is rather viscous with a kinematic viscosity of ν = 0.08 m2/s and the mass density of air
ρF = 1.25 kg/m3.

Altogether this example is very good-natured and an immediate convergence of the
iteration over the fields is obtained.

7.2.2 Modelling and discretisation

Using the width of the bridge L = 12 m as a characteristic length of the flow a Reynolds
number of Re = 1500 results for the problem. Clearly wind passing a bridge corresponds to
much higher Reynolds numbers and has to be treated as highly turbulent flow. However,
due to the sharp edges of the present cross section the flow pattern is governed by the
bridge deck geometry and the influence of the actual Reynolds number is minor. It is
thus reasonable to expect that the fundamental coupled behaviour and the self-excitation
of the system can be modelled while an accurate prediction of a wind flow pattern will not
be achieved. This expectation is also supported by studies reported in [126, 129] where
vortex-shedding at different cross sections is compared. The dimensionless characteristics
such as the Strouhal number as well as lift and drag coefficients of the flow across the
present profile fit very well to values obtained for much higher Reynolds numbers as
reported by Larsen in [165]. In [165] also comparisons to wind tunnel section model
tests are presented.

A total of 16028 bilinear four-noded elements is used to discretise the flow field and 208
structural elements are employed. The discretisation of the moving mesh manages with
15127 bilinear elements as a part of the fluid domain is modelled in Eulerian formulation.
Particular care has been taken to assure a regular mesh in the direct vicinity of the bridge
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profile.

A time step size of ∆t = 0.02 s is used which allows a high resolution of the coupled
dynamics. Starting the simulation the inflow velocity is accelerated according to

ux = u∞
1

2

(
sin

(
π t

2 s
− π

2

)
+ 1

)
,

is employed where the surrounding flow speed is given by u∞ = 10 m/s. This start-up
generates a smooth flow acceleration within the first two seconds.

7.2.3 Results

The inflow velocity of 10 m/s suffices to cause an increasing excitation of the bridge deck
which eventually yields failure if no additional damping occurs. The temporal evolution
of the total vertical fluid force upon the profile is shown in diagram 7.2. Accordingly
the overall fluid moment is given in diagram 7.3. Both diagrams show an apparently
stable phase from about 50 s to 100 s where the lift force as well as the fluid moment
of momentum exerted on the bridge deck is very similar to that of the respective fixed
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Figure 7.2: Temporal evolution of the total vertical fluid force exerted on the bridge cross
section

cross section. But as soon as the vortex shedding has fully developed a second frequency
corresponding to the torsional oscillation of the bridge cross section sets in. While the
initial structural motion is a slight vertical translation, the rotational mode dominates
soon after. After about 150 s this effect eventually takes over and an increasing torsional
oscillation is observed. The rapid growth of the peak fluid force and angular momentum
prior to the end of the simulation is caused by the linearisation of the torsional spring.

The transition in the dynamics caused by the fluid-structure interaction can also be
expressed in the Strouhal numbers. Using the height of the cross section as character-
istic length scale, i.e. L = 2.4 m the initial Strouhal number St1 = 0.112 equals that
of the fixed cross section (see [126, 129]). After the coupled system has developed the
Strouhal number is St2 = 0.048.

Images of the flow field along with the displaced structure are given in figure 7.4 as well
as in the colour chart in figure 7.5. In figure 7.4 stream lines are plotted on the pressure
field and the pressure scale of figure 7.5 applies also here. The time instants depicted
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Figure 7.3: Temporal evolution of the total angular fluid momentum exerted on the bridge
cross section

correspond to peak values in the lift force and the torsional moment as it can be observed
from the diagrams 7.2 and 7.3.

t = 75.0 s t = 125.0 s

t = 175.0 s t = 200.0 s

Figure 7.4: Stream lines on pressure field

The horizontal velocity at different time instants is presented on the left hand side of
figure 7.5. It nicely highlights the significant influence of the structural motion on the
flow field. The horizontal velocity increases in the course of the simulation. This effect
can also be observed for the pressure where in particular zones of negative pressure grow
in strength as a result of the rotation of the cross section. The mutual excitation of cross
section and intensity of the vortices is shown in figure 7.5. The close up views on the
right hand side of figure 7.5 further give an impression of the mesh and its motion. These
results agree well with those obtained by Hübner reported in [129].
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Figure 7.5: Snapshots of bridge deck at different instants in time: Horizontal velocity
with isolines (left) close-up view of cross section area with velocity arrows on pressure
field (right)
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7.3 Channel with backward facing step and mem-

brane

The present numerical example has been designed for several purposes. It demonstrates
the capability of the fluid-structure interaction scheme to simulate the highly transient
dynamics of a membrane structure interacting with air flow. It is also used to compare
a simulation computed with linear elements to one performed with quadratic elements of
the Serendipity type.

7.3.1 Geometry and material data

The geometry of the initial problem is depicted in Figure 7.6. In order to relax the mem-
brane and thus allowing pure bending deformation without inducing membrane stresses
the structure is relaxed in a preliminary step by moving the point A 0.1 cm to the left.
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Figure 7.6: Initial geometry of backward facing step problem

The fluid has the material data of dry air at about 25o C, i.e. a kinematic viscosity of
ν = 0.146 cm/s and a density of ρF = 0.0012 g/cm3. The deformation of the slack mem-
brane passed by the flow is governed by bending and thus small strains which justifies the
assumption of a linear St.Venant-Kirchhoff material law. The structural Young’s
modulus is E = 1.0×108 g/s2cm representing a soft rubber like material while Poisson’s
ratio has been set to νS = 0.2. The structural mass density is ρS = 0.5 g/cm3.

The inflow velocity is increased linearly in time within the first 0.048 s of the compu-
tation. Eventually the air enters the domain with a maximal velocity of 120 cm/s at the
centre of the inflow boundary line. No-slip boundary conditions are applied at the top
and bottom of the channel.

7.3.2 Discretisation and initial membrane relaxation

Discretisation in space and time

In order to avoid an initially curved structure the bottom membrane is created as a
plane. Five or two elements are used in thickness direction of the membrane with linear
or quadratic elements, respectively. This largely reduces shear locking. The quadratic
structural elements of the Serendipity type are under-integrated by 2×2 Gauss points.
Overall 21200 linear or 5280 quadratic Serendipity elements are employed on three fields
yielding a total of 21908 or 16547 nodes, respectively. Prior to the actual computation
the membrane is relaxed by moving the point A to the left.
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Initial set-up

The moving action of point A consists of two preliminary steps with differing boundary
conditions and material parameters. These steps are not used to model any real physical
action but rather supply the initial state for the simulation. The inflow boundary condi-
tion is fixed to zero during these steps. Within a first preliminary step point A moves to
the left at constant velocity. At the same time a constant external pressure at the out-
side of the membrane ensures that the structure buckles towards the inner part forcing
some fluid to leave the domain. After a few large time steps a static situation is reached.
The problem is restarted from this state for a second preliminary step where the external
pressure is removed. This causes the fluid domain to enlarge again and thus inflow at the
free outflow boundary condition. Despite being ill posed the step can be run with fingers
kept crossed to a steady state and provides the initial shape of the membrane.

The initial steps are made good-natured by evoking artificial damping. To this end
BE is used on the fluid and a very low spectral radius on the structural domain which
causes significant numerical damping in both fields. Further an increased fluid viscosity
of 5.146 cm/s is initially employed.

After adjusting the viscosity to the value of air and selecting less dissipative time
discretisation schemes the simulation of the physical problem is started. The slack mem-
brane interacts with the flow exhibiting almost exclusively bending deformation. Thus the
structure is extremely soft and sensitive to the fluid forces. The highly transient nature
of the problem requires a time step of ∆t = 1.0× 10−4 s.

The dynamic behaviour of the present membrane problem exhibits an initial snap-
through which is damped by the action of the flow but nevertheless highly transient.
Consequently it is necessary to increase the inflow velocity fast enough to avoid negative
pressures due to the sudden enlargement of the fluid domain. This would cause an inflow
at the free outflow boundary and thus an ill-posed problem.

7.3.3 Results on two meshes

Dynamics of a physically very sensitive system

An impression of the highly transient dynamics of the coupled problem is given in the
figures 7.7 and 7.8 where the absolute value of the velocity field is depicted. These results
are obtained on the linear and quadratic Serendipity meshes, respectively. It can be
observed that the dynamic behaviour computed on the two different discretisations is ini-
tially very similar while the two evolutions separate soon after the initial phase of 0.048 s.
This separation is also obvious from the vertical displacement of the membrane centre
point as depicted in diagram 7.9. At the latest after 0.125 s the two simulations predict
a different behaviour. In particular a comparison of the close-up view of the membrane
area as presented in figure 7.10 reveals a smoother flow behaviour obtained with linear
elements. As far as the flow field is concerned this additional smoothness is caused by
numerical damping induced by the inconsistency of linear elements. The discretisation by
quadratic Serendipity elements admits the development of more vortices which govern
the overall dynamics. However different structural stiffnesses seem to play a significant
role, too. The results suggest that five linear elements used in membrane thickness direc-
tion might not suffice to remove shear locking effects in particular as those elements are
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very stretched due to restrictions imposed by the resolution of the fluid field along the
interface.

In a sense these distinctly disjoint results are unfavourable and indicate that at least
one of the solutions is not converged. The results suggest that a better approximation
is obtained by quadratic elements while even here a finer mesh would be beneficial. A
convergence study verifying the coupled dynamics has not yet been performed due to
limitations in the available computational resources. However the suggestion shall be
made here that even with finer resolutions in space and time a unique solution will be
hard to obtain. It is the characteristic of the physics governing the dynamics of the present
problem that it is highly nonlinear. It is thus also due to the physical sensitivity of the
coupled system that small perturbations immensely effect the temporal evolution of the
system.

Computational effort

The computational effort required on both discretisations is comparable. The reduced
number of unknowns resulting from quadratic Serendipity elements does not pay off. It
is rather balanced by an increased number of non zero values within the overall coefficient
matrix. Thus the time consumed by the solver on either mesh is comparable. On a
personal computer with Intel core 2 duo processor T7200 with 2.0 GHz the simulation of
one time step took about 530 s. Consequently the overall computing time for one of the
discretisations simulated for more than 4500 time steps on the same machine amounts
about a month.

Performance of the partitioned solver

Due to the very thin and flexible structure the present membrane problem poses a special
difficulty for the partitioned solver. Even if the fluid mass density is much smaller than
the structural one this example can by no means be treated by a sequentially staggered
scheme. A considerable artificial added mass effect is observed which also harms the
iteratively staggered procedure, i.e. a large number of iterations is needed in every time
step. Up to 15 or even 20 iterations over the fields are required to obtain a converged
coupled solution while a non monotone convergence behaviour is observed in this iteration.
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Figure 7.7: Evolution of absolute value of the fluid velocity |u| obtained on linear elements
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Figure 7.8: Evolution of absolute value of the fluid velocity |u| obtained on quadratic
Serendipity elements
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Figure 7.9: Temporal evolution of vertical displacement of membrane mid point
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Figure 7.10: Close-up view of membrane area; streamlines on absolute value of velocity
obtained on the linear (left) and quadratic (right) mesh
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7.4 Vibrating U-pipe

Coriolis flowmeters are an elegant way to measure the mass flow rate in a pipe. The
measuring unit inside such a flowmeter is a flexible tube which in its classical form is
U-shaped, clamped at both ends and passed by the flow. The pipe is subject to a forced
vibration in the cantilever mode at angular frequency ωf . This oscillation induces opposite
and time dependent Coriolis forces within the fluid in the inflow and outflow part of
the tube. Thus the resulting vibration is not just the enforced bending but accompanied
by an amount of torsion depending upon the frequency ratio ft/ff where ft denotes the
eigenfrequency of the torsional mode.

7.4.1 Geometry and material data

Geometry and material parameters of the sample tube are given in figure 7.11 where the
tube is fully clamped at the in- and outflow boundaries.
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Figure 7.11: Geometry and material of flowmeter tube

In contrast to technical flowmeters which are made of metals here the tube material is
a rubber like compressible neo-Hookean type of material which yields large deflections
of the overall system and thus allows to highlight the physical effect. Gravity points in
negative z-direction. Graviatational forces of the water inside the tube are considered
while effect of gravitation on the shell itself is neglected. The inflow velocity of the water
inside the tube is prescribed to uy = 15 cm/s.
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7.4.2 Modelling and discretisation

The mesh of the tube itself consists of 5120 linear four-noded shell elements enriched
by means of the enhanced assumed strain method (EAS) to remove locking inherent
in linear elements [15]. Further the Assumed Natural Strains (ANS) method is used
to avoid parasitic transverse shear strains, i.e. removing shear locking. Scaled director
conditioning as described in [99, 100] with a scaling factor of C = 10.0 is employed to
improve the conditioning of the resulting structural system of equations.

The fluid domain is meshed by 11520 stabilised trilinear hexahedral elements. A major
part of the fluid domain is accompanied by a deformable mesh field consisting of 10240
pseudo structural elements. Thus the overall mesh while still being quite coarse for
the problem consists of 26880 elements yielding a total of 94924 degrees of freedom on
three fields. To resolve the higher frequencies of interest adequately a small time step of
∆t = 0.005 s is used.

A harmonic force of a frequency of ff = 7.685 Hz close to the eigenfrequency of the
torsional mode ft is applied on the tip of the clamped tube pointing in z-direction. The
force is distributed over the area of the part of the pipe which is parallel to the x-axis.

In this example the choice of suitable boundary conditions for the fluid field poses an
interesting challenge. Clearly at the inflow boundary the fluid velocity is prescribed in a
classical Dirichlet type of boundary condition. At the outflow, however, the velocity
cannot be prescribed as this would implicitly determine the volume of the fluid and
pose a problem that an unmodified partitioned procedure cannot handle. An escape for
this so-called incompressibility dilemma has been given in [164]. Specifying an adequate
Neumann boundary condition at the outflow would be an easy workaround. However,
due to gravity pointing in z-direction the pressure distribution at the end cross section of
the structure is unknown. A priori determination of the stress distribution at the outflow
boundary surface also fails due to the transient nature of the problem. Circumventing all
these difficulties the fluid domain is extended as depicted in figure 7.12. An additional
bent part of the pipe which is rigid allows to end the computational domain at a level
of constant gravity potential which is chosen to z = 2 cm. Thus a Neumann boundary
condition can be prescribed here and determines the pressure level inside the tube.

inflow

gravity

?

free
outflow

Figure 7.12: Isometric view on fluid (left) and structural domain (right); extension of the
fluid domain allows to state correct boundary conditions
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7.4.3 Results

The resulting tube oscillation is not just the expected bending but also an increasing
torsional replay which is due to the Coriolis forces induced in the two arms of the pipe
during the up and down cycles. In figure 7.13 the evolution of the vertical displacements
at the reference corner points A and B is depicted along with the displacement difference.
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Figure 7.13: Vertical displacement at the two points A and B along with displacement
difference between those points

In order to ensure the well-posedness of the problem the flow passing the tube as well
as the gravitational forces have to be built up over a period in time. This startup was
finished at 4.0 s when the system oscillated in the first bending mode and its corresponding
eigenfrequency as it can be seen in the first part of the diagram in figure 7.13. At 5.5 s
the periodic vertical tip force is switched on. This initiates a forced vibration on the first,
the bending eigenmode of the structure. The evolution of the increasing contribution of
the torsional mode can be observed from the increasing displacement difference of the two
reference points A and B of the shell. In every cycle a portion of the bending energy is
transfered to the torsional mode resulting in an increasing torsional oscillation.

As a consequence of physical as well as numerical damping the torsional oscillation
eventually reaches a constant amplitude and the overall system remains stable.

A zoom into the diagram 7.13 is given in the first part of colour chart 7.14 where five
time instants are marked indicating the configurations depicted subsequently. The view
on the deformed shell clearly shows the torsional displacement caused by the Coriolis
forces. A U-pipe filled with water at rest does not excite the unsymmetric part of the
structural response. Correspondingly the vertical fluid velocity is depicted on cutting
surfaces in the second column of figure 7.14. High velocity in z-direction at the point B
can be observed for those configurations which show almost no torsional displacement.
In the third column of figure 7.14 the absolute value of the velocity is depicted on cuts
of the deformed configuration. It can be observed that the velocity due to the torsional
oscillation well dominates the longitudinal flow velocity inside the tube.
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Figure 7.14: Detail of diagram 7.13 and deformed structure viewed in z-direction, vertical
fluid velocity on undeformed configuration and absolute value of fluid velocity on deformed
configuration (from left to right)
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Summary and Conclusions

8.1 Summary

This work is devoted to improvements of a partitioned fluid-structure interaction algo-
rithm which is based on an ALE flow formulation with stabilised finite elements and a
nonlinear structural solver. In a sense the objective has been twofold. In the first in-
stance a detailed theoretical revisit of the fundamentals of the flow solver and to some
extent also the coupling algorithm has been made in order to establish and confirm its
accuracy and stability properties. As a result of these methodological considerations a
number of changes within the code itself arose enhancing convergence and stability of the
formulation.

The most important ambition of this work is to increase the understanding of the nu-
merical algorithm and details thereof. In particular the matter of geometric conservation
and its connection to stability of flow simulations on deforming domains appeared as a
key question for stable and reliable algorithms. Within this work a stability criterion
in terms of a maximal allowable time step size depending upon the mesh velocity could
be confirmed and interpreted. In particular the interpretation reveals why the potential
instability of convective ALE schemes has been suspected but not been found in practical
applications. It has further been shown how a flow solver on a deforming domain has to
be constructed such that it is stable independently of the mesh velocity.

Another key problem regarding the understanding of the theoretical fundamentals of
the algorithm is the so-called artificial added mass effect. This is an inherent instabil-
ity of sequentially coupled partitioned FSI algorithms used with incompressible flows.
Especially the combination of light-weight structures and incompressible flows yields an
almost immediate blow-up of weak coupling schemes. Within this work an analysis could
be established explaining the instability and identifying the parameters it is influenced
by. This analysis confirms the numerical observations described in the dissertation of
Mok [182]. It shows why more accurate time discretisation accelerate the instability and
it highlights the role of the fluid and structural mass density ratio. Consequences of the
use of a stabilised FEM for the fluid field in the context of the artificial added mass effect
at very small time steps have been considered. Instability conditions for various combina-
tions of discretisation schemes could be established. It has been proved that there is no
possibility to construct a sequentially staggered scheme which would be stable irrespective
of the mass density ratio of fluid and structure.

Additionally the stabilised finite element formulation for fluid elements on deforming
domains was revisited within this work. Here some modifications could be introduced
which guarantee that the stability with respect to the motion of the reference system
is not influenced by the stabilisation terms. Consequently the stability properties of
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the model problem can be transferred to the stabilised Navier-Stokes equations on
deforming domains.

Further considerations regard the behaviour of the stabilised finite element method
for incompressible flows in critical situations such as highly distorted meshes and steep
gradients. Numerical test cases were employed to gain the desired experience required to
answer questions which are hard to be accessed analytically.

The methodological considerations brought a number of changes within the code.
Along with the modifications parts of the code have been rewritten in order to derive
and implement a fully linearised version of the stabilised fluid element. The computa-
tion of the elemental right hand side vector has been reformulated. Both these changes
resulted in a significantly faster convergence of the nonlinear iterations within the fluid
field. Extra accuracy for the coupled problem has been gained by introducing consistent
nodal forces and a correctly obtained flow velocity boundary condition as coupling data.
Additionally the introduction of second order accurate time discretisation schemes for the
flow equations opened the door for a fully second order FSI algorithm.

Altogether the iteratively staggered FSI algorithm based on an ALE flow formulation
of the incompressible Navier-Stokes equations with stabilised finite elements and a
nonlinear structural finite element solver is regarded as settled and theoretically sound.
In particular the stability issue of the flow solver on deforming domains could be clarified
and an analysis of the artificial added mass effect has been presented.

8.2 Prospectus

The focus of the present work is to improve an existing approach and to deepen the
understanding of the methodological fundamentals. Now a very general partitioned FSI
solver for incompressible flow and highly flexible structures is available which is second
order accurate, stable and offers reliable results for a broad variety of problems.

However a work like the present project will never be finished in the sense that all
questions would have been answered and all problems solved. It is rather interrupted
by the fact that time has passed. So a variety of interesting issues remains. Continuing
the present investigations one might wish to clarify the exact interaction of the artificial
added mass effect with the stabilisation of the fluid elements. Or one might well wonder
if there is an intelligent way to higher order fluid elements. And what would such an
element look like? Is there anything like ‘optimal stabilisation’?

And an even higher need for further progress is found away from the fundamentals. It
is still most urgent to speed up the entire algorithm which would allow larger examples
closer to realistic applications to be simulated at an acceptable accuracy. In particular
the simulation of large scale three-dimensional problems are currently quite at the limit.
Modifications of the coupling approach are presently investigated and shall make the
simulation more efficient. In this context it appears interesting to work out in which
range of parameters, i.e. for which applications semi-explicit coupling schemes might work
well. Additional speed-up could also be gained by optimising the solver of the resulting
nonlinear system of equations. A matter which has not been touched at all within this
work.

As the overall FSI algorithm runs stably a very interesting challenge would be the
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implementation of adaptivity with respect to the temporal but also the spatial resolution.
As a prerequisite a stable overall algorithm would have to be established which allows
different time step sizes within the single fields. Analogously non-matching grids at the
interface would have to be treated.

Another very important direction of future work is the extension of the class of problems
that can be dealt with. It appears very promising to customise the algorithm to special
applications such as building wind interaction, particular pipe flow problems or biological
flows. Such a specialisation to a class of sub-problems appears to be twofold. On the one
hand the derivation and implementation of additional models or nonlinear material laws
is required which would increase the complexity of the model. On the other hand the
restriction to a particular type of application would very likely allow to built in some a-
priori knowledge about the problem. This could possibly reduce the computational effort
and at the same time increase the accuracy of the simulation.

In any case the present approach appears to be promising and worth to built on.





Appendix A

Some further information

A.1 The kinematic formulae in a deforming frame of

reference

Two kinematic formulae the first of which is the geometric conservation law (3.5) and the
second is the Reynolds transport theorem are used within this work without derivation.
However the basic coordinate transformations and required ALE equations heavily rely
upon these formulae and thus a derivation shall be given here.

A.1.1 Geometric conservation law

The derivation for the geometric conservation law or Euler formula follows [230] and
starts from an expression of the mesh determinant reading

Jtδij =
∂xi

∂χα

ajα, (A.1)

where ajα is the cofactor of ∂xi/∂χα and a summation over α ∈ 1, 2, 3 is applied. In a
three-dimensional case one obtains this factor to

ajα =
∂xk

∂χβ

∂xl

∂χγ

− ∂xk

∂χγ

∂xl

∂χβ

,

where {j, k, l} = {1, 2, 3} and {α, β, γ} = {1, 2, 3} and cyclic permutations thereof. From
(A.1) one obtains the possible expressions for the Jacobian determinant with i = j

Jt =
∂x1

∂χα

a1α =
∂x2

∂χα

a2α =
∂x3

∂χα

a3α

Thus a time derivation of Jt at a fixed point of reference can be expressed by

∂Jt

∂t

∣∣∣∣
χ

=
∂uG

k

∂χα

akα,

where ∂x/∂t|χ = uG has been used. Applying further the chain rule yields

∂Jt
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χ
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∂uG
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∂xj

∂xj

∂χα

akα (A.2)

=
∂uG

k

∂xj

Jtδjk (A.3)

= Jt ∇ · uG, (A.4)

i.e. the desired geometric conservation law.
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A.1.2 Reynolds transport theorem

The Reynolds transport theorem allows to express the time derivative of the spatial
integral of a time dependent function with respect to a spatially moving system of reference

∂

∂t

∣∣∣∣
χ

∫
Vt

f(x, t) dVt,

where Vt is a volume fixed in the reference system χ.

In order to derive the theorem the differential volume element is transfered back to the
reference system and the relation x = x(χ) is employed yielding

∂
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∫
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The time derivative in the first term of (A.5) can be evaluated by the chain rule
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(A.6)

Inserting (A.6) into (A.5) yields
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Jt dV0,

where (A.4) and the definition of the mesh velocity has been used. This equation can be
reformulated as an integral over the time dependent domain Vt
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and yields the Reynolds transport theorem in an ALE frame of reference reading
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In the special case of an Eulerian frame of reference the theorem allows to express the
material time derivative of the integral over a function f(x, t) and thus the arbitrary
system χ is identified with the material coordinates X yielding the well known expression
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f(x, t)u · n dΓt (A.9)

which is the Reynolds transport theorem in an Eulerian frame of reference.
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A.2 Some mathematical background

A.2.1 The scalar product

The notation (a, b)Ω is used short for

(a, b)Ω =

∫
Ω

ab dΩ, (A.10)

where a and b may represent tensors of first or second order.

A.2.2 Lax-Milgram lemma

The lemma named after the Hungarian mathematician Peter David Lax and Artur Norton
Milgram guarantees the solvability of a variational problem of the form

a (u, v) = (f, v) for all v ∈ V. (A.11)

In (A.11) a(u, v) denotes a bilinear form and v can be regarded a test or weighting function
in a weak formulation. The problem (A.11) has a unique solution if the bilinear form a is
bounded, i.e.

|a (u, v) | ≤ C‖u‖ ‖v‖ (A.12)

and coercive which means that

a(u, u) ≥ c‖u‖2 (A.13)

with 0 < c < C < ∞ is guaranteed. For symmetric positive definite operators a the
constant c is an lower bound on the lowest eigenvalue of a thus ensuring that the left
hand side of (A.11) is bounded away from being singular. Further the inequality

c‖u‖ ≤ sup
0 6=v∈V

(f, v)

‖v‖
(A.14)

holds.

In more general cases coercivity requires that for every admissible solution u ∈ V at
least one test function v can be found, such that a(u, v) > 0. For further reference one
might consult for example [4].

A.2.3 Some inequalities

Some inequalities are required in coercivity analyses and shall thus be summarised here.

Cauchy-Schwarz inequality

For two terms a and b

(a, b)Ω ≤ ‖a‖Ω ‖b‖Ω (A.15)

is satisfied. This Cauchy-Schwarz inequality follows from geometrical considerations.
It is sharp in the case that a can be expressed as a = λ b where λ is a positive constant.
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The ε-inequality

The ε-inequality states that for any a and b and for any strictly positive ε

ε a2 +
1

4 ε
b2 ≥ ab (A.16)

is satisfied. It can easily be derived from a binomial formula. The inequality becomes an
equality in the case of a > 0 and b > 0 when the parameter ε satisfies ε = b/(2 a).

Inverse inequalities

The inverse inequalities required within the present work are related to a particular spatial
discretisation or rather, valid on a single element. In a discrete space it is possible to bound
higher derivatives by lower ones, i.e.

C0e h2
e‖∇v‖2

Ωe
≤ ‖v‖2

Ωe
for all v ∈ Vh

e (A.17)

with a positive elemental constant C0e which depends upon the order and geometry of the
element. Likewise an inequality one order higher can be stated which is used to adjust
the stabilisation parameter to the element order and geometry. The inequality stated in
section 4.3.7 reads

Ce h2
e‖∆v‖2

Ωe
≤ ‖∇v‖2

Ωe
for all v ∈ Vh

e . (A.18)

The constants in (A.17) and (A.18) satisfy C0e > Ce as shown in [116]. The sharp constant
within a particular element can be obtained from the solution of an elemental eigenvalue
problem. For more information on inverse inequalities consult for instance the textbook
by Brenner and Scott [30].

A.3 Errors in Kim-Moin flow

The L2 errors obtained on three differently distorted meshes with a variety of stabilisa-
tion parameters and variants of the stabilisation operator are given here. These values
complete the Kim-Moin problem as presented in section 5.3.2.

On the heavily distorted mesh in mode 2 no convergent USFEM solution could be
obtained for most of the stabilisation parameters.
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Table A.1: L2 error in velocity and pressure on undistorted meshes of linear elements for
different choices of the stabilisation parameter

τ erru errp erru errp erru errp

GLS GLS SUPG SUPG USFEM USFEM

i 0.005130 0.002877 0.004614 0.002460 0.004212 0.002287
ii 0.005267 0.002919 0.004729 0.002505 0.004319 0.002360
iii 0.005130 0.002877 0.004614 0.002460 0.004212 0.002287
iv 0.005130 0.002877 0.004614 0.002460 0.004212 0.002287
v 0.004815 0.002885 0.004524 0.002676 0.004274 0.002552
vi 0.005130 0.002877 0.004614 0.002460 0.004212 0.002287
vii 0.005130 0.002877 0.004614 0.002460 0.004212 0.002287

Table A.2: L2 error in velocity and pressure on undistorted meshes of quadratic elements
for different choices of the stabilisation parameter

τ erru errp erru errp erru errp

GLS GLS SUPG SUPG USFEM USFEM

i 0.002624 0.002560 0.002617 0.002544 0.002631 0.002597
ii 0.002623 0.002562 0.002616 0.002546 0.002627 0.002543
iii 0.002624 0.002560 0.002617 0.002544 0.002631 0.002597
iv 0.002624 0.002560 0.002617 0.002544 0.002631 0.002597
v 0.002631 0.002561 0.002624 0.002546 0.002612 0.002526
vi 0.002624 0.002560 0.002617 0.002544 0.002631 0.002597
vii 0.002624 0.002560 0.002617 0.002544 0.002631 0.002597

Table A.3: L2 error in velocity and pressure on mode 1 distorted meshes of linear elements
for different choices of the stabilisation parameter

τ erru errp erru errp erru errp

GLS GLS SUPG SUPG USFEM USFEM

i 0.007613 0.005044 0.006514 0.004266 0.005650 0.003835
ii 0.007695 0.004969 0.006593 0.004199 0.005752 0.003802
iii 0.007513 0.004839 0.006460 0.004083 0.005620 0.003638
iv 0.007376 0.004821 0.006444 0.004207 0.005667 0.003829
v 0.006994 0.004825 0.006353 0.004376 0.005777 0.004045
vi 0.007422 0.004913 0.006456 0.004251 0.005654 0.003840
vii 0.007785 0.005177 0.006575 0.004321 0.005679 0.003908



164 Appendix A. Appendix

Table A.4: L2 error in velocity and pressure on mode 1 distorted meshes of quadratic
elements for different choices of the stabilisation parameter

τ erru errp erru errp erru errp

GLS GLS SUPG SUPG USFEM USFEM

i 0.002638 0.002581 0.002637 0.002587 0.002655 0.002662
ii 0.002636 0.002581 0.002635 0.002590 0.002691 0.002886
iii 0.002638 0.002580 0.002637 0.002587 0.002656 0.002662
iv 0.002642 0.002583 0.002641 0.002589 0.002663 0.002670
v 0.002648 0.002584 0.002644 0.002588 – –
vi 0.002642 0.002583 0.002641 0.002589 0.002662 0.002670
vii 0.002635 0.002579 0.002634 0.002586 0.002647 0.002656

Table A.5: L2 error in velocity and pressure on mode 2 distorted meshes of linear elements
for different choices of the stabilisation parameter

τ erru errp erru errp

GLS GLS SUPG SUPG

i 0.232357 0.185340 0.043555 0.084645
ii 0.134009 0.120765 0.055546 0.058709
iii 0.108969 0.102256 0.057660 0.061274
iv 0.087337 0.085032 0.058018 0.057737
v 0.087531 0.087089 0.058085 0.059084
vi 0.087356 0.085038 0.058027 0.057756
vii 0.419851 0.272936 0.043516 0.155843

Table A.6: L2 error in velocity and pressure on mode 2 distorted meshes of quadratic
elements for different choices of the stabilisation parameter

τ erru errp erru errp

GLS GLS SUPG SUPG

i 0.006558 0.009451 0.004198 0.010419
ii 0.006135 0.008265 0.004601 0.010309
iii 0.005910 0.008046 0.004624 0.010148
iv 0.004953 0.007794 0.004212 0.006309
v 0.005621 0.008779 0.004048 0.004463
vi 0.004952 0.007793 0.004212 0.006316
vii 0.006916 0.010307 0.004510 0.018528



A.4. Flow around rigid cylinder 165

A.4 Flow around rigid cylinder

The subsequent diagrams complete the results obtained from Re = 100 flow around a
rigid cylinder reported in section 5.3.3. The lift coefficients and drag coefficients for the
meshes B4, C4, A9 and B9 are given here.
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Figure A.1: Lift and drag coefficients and pressure profile obtained on mesh B4 with three
different element length definitions within the stabilisation parameter



166 Appendix A. Appendix

-0.32
-0.24
-0.16
-0.08

0
0.08
0.16
0.24
0.32
0.4

C
l

-0.4

time
500 5 10 15 20 25 30 35 40 45

1.392

1.4

1.408

1.416

1.424

C
d

0 5
1.384

10 5015 20
time
25 30 35 40 45

-1.5

-1

-0.5

0

0.5

1

-2

x

C
p

-1 -0.5 0 0.5 1

element length i, he =
√

Ae

element length vi, he,min

element length vii, he,max

Figure A.2: Lift and drag coefficients and pressure profile obtained on mesh C4 with three
different element length definitions within the stabilisation parameter
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different element length definitions within the stabilisation parameter
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[226] Walhoern, E., Hübner, B., Kölke, A., Dinkler, D. (2003): ‘Fluid-structure coupling within
a monolithic model involving free surface flows’, in: Computational Fluid and Solid Mechanics,
K.J. Bathe (ed.), Vol. 2, pp. 1560–1563.

[227] Wall, W. A. (1999): Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen, Ph.D. The-
sis, Institut für Baustatik, Universität Stuttgart.

[228] Wall, W. A., Mok, D. P., Ramm, E. (1999): ‘Partitioned analysis approach of the tran-
sient coupled response of viscous fluids and flexible structures’, in: W. Wunderlich (Ed.), Solids,
Structures and Coupled Problems in Engineering, Proceedings of the European Conference on Com-
putational Mechanics ECCM ’99, Munich.

[229] Wall, W. A., Ramm, E. (1998): ‘Fluid-structure interaction based upon a stabilized (ALE)
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ε-inequality, 162
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added mass operator, 119, 122
advection-diffusion equation, 21, 50, 53, 60
advection-diffusion-reaction equation, 22
ALE

formulation, 7, 23–27
reference system, 24

artificial added mass effect, 113, 118

Bubnov-Galerkin scheme, 52
backward Euler method, 28
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of angular momentum, 9
of linear momentum, 10

BB condition, see inf-sup condition
BDF2, 29, 32, 35, 36, 42, 82, 101, 116, 126
boundary conditions, 10, 18
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condensation, 59
functions, 59

Cauchy stresses, 9
Cauchy-Schwarz inequality, 161
changing domain, 23
characteristic Galerkin procedure, 53
coercivity, 42, 45, 50, 75–80, 88–161
conservation

laws, 33
of energy, 17, 38
of linear momentum, 16, 34
of mass, 15

consistent
nodal forces, 117
stabilisation, see residual based stabili-
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consistent nodal forces, 86
continuum mechanics

of fluids, 14

of structures, 8
convection

dominated problem, 50
induced oscillations, 50
instability, see induced oscillations
stabilisation, 52

convective
formulation, 16, 26
term, 14, 54

coupling
conditions, 20
forces, 117

crosswind diffusion, 52

deforming domain, 24, 60
differential-algebraic problem, 27
discrete geometric conservation laws, 38
discretisation, 12, 27
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divergence formulation, 16, 26

Eulerian formulation, 7, 14
element length, 72
equal order interpolation, 55, 57, 66

finite
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increment calculus, 53
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flow
conditioned based interpolation, 54
equations, 14

flowmeter, 151
fundamental ALE equation, 26

Galerkin weak form, see weak formulation
Galerkin/Least-Squares method, see GLS
generalised-α method, 13, 125
geometric conservation, 25, 34, 116
GLS, 53, 65, 75
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Helmholtz decomposition, 55
higher order elements, 66, 74, 102, 146
horizontal method of lines, 27

incompressibility, 49, 55, 56
incompressible Navier-Stokes equations,

see Navier-Stokes equations
inf-sup condition, 49–54, 57
initial conditions, 10, 18
instability, 52
inverse inequality, 162

Lagrangean formulation, 7
LBB condition, see inf-sup condition
linear elements, 73, 84, 88

material time derivative, 9, 25
mesh

distortion, 72, 99–107
velocity, 35

method of lines, 27
model problems, 20

Navier-Stokes equations, 16
Newtonian fluid, 15
nonlinearity, 64
numerical

accuracy check, 36
diffusion, 50
example, 36, 94, 100, 107, 131, 153

one-step-θ method, 28, 30, 32, 35, 36, 42,
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operator splitting, 55
orthogonal subscales, 59

Peclet number, 21, 50, 52
Petrov-Galerkin scheme, 52
partitioned algorithm, 114
predictor, 115
pressure

oscillations, 51
projection, 57
projection method, 55
stabilisation, 54

principle of virtual work, 11
projection, 66, 102
PSPG, 64

Reynolds number, 14, 18, 70

reference configuration, 8
relaxation, 136
residual

based stabilisation, 52, 53, 55, 58, 73
free bubbles, 62

Stokes problem, 21, 51, 56, 58
Strouhal number, 18
second

Dahlquist barrier, 28
order backward differencing, see BDF2

shear forces, 14
singular diffusion equation, 22
small time steps, 82
stabilisation, 49, 52

parameter, 70, 87, 89, 107
stability

of ALE formulations, 40, 74
unconditional, 46

stiff partial differential equation, 27
structural material, 9
SUPG, 53
system of reference, 7

time
dependent sub scales, 65
step size limit, 42, 45

trapezoidal rule, 28

unresolved gradients, 50
upwinding, 51, 52
USFEM, 59, 64, 76, 106

variational multiscale method, 62

weak formulation, 11
weighted residual method, 52
wiggles, 49
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