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Kurzfassung

Kurzfassung

Die vorliegende Arbeit befasst sich mit der Entwicklung einer hierarchischen Familie
von Schalenmodellen und deren Diskretisierung basierend auf NURBS (Non-Uniform
Rational B-Splines) Funktionen fiir die numerische Analyse von Schalenstrukturen.
Als mechanisches Basismodell wird eine mittelflachenparametrisierte 3-Parameter-For-
mulierung mit Kirchhoff-Lovescher Schalenkinematik verwendet. Diese eignet sich im
Besonderen fiir die Modellierung von diinnen Schalen, deren Deformationsverhalten
mafgebend durch Biege- und Membranverformungen bestimmt wird. Einflisse aus
Querschubverformungen und Dickendnderungen der Schale werden folglich nicht beriick-
sichtigt. Fiir die Beschreibung der Kinematik gentigen somit drei unabhéngige Para-
meter, welche bei diesem Modell den drei Verschiebungskomponenten eines Materi-
alpunktes der Mittelflache entsprechen. Es werden keine zusatzlichen Rotationsfrei-
heitsgrade eingefiihrt, so dass die Schalenformulierung rotationsfrei ist.

Die verwendeten kinematischen Gleichungen beruhen auf der Annahme kleiner Ver-
formungen. Zudem werden die Materialeigenschaften als linear-elastisch und isotrop
definiert und tiber das Hookesche Konstitutivgesetz eine lineare, algebraische Beziehung
zwischen den auftretenden Spannungen und Verzerrungen beschrieben. Fiir die asymp-
totische Korrektheit des Modells wird in den Materialgleichungen die Spannungsan-
nahme ¢ = 0 zur Elimination von £33 mit Hilfe statischer Kondensation verwendet.
Die auf A.E.H. Love beruhende Hypothese, die Kriimmungsanteile tiber die Dicke der
Schale zu vernachldssigen, wird nicht beriicksichtigt. Biege- und Membrananteile sind
somit infolge der Nebendiagonalblocke in der Materialmatrix gekoppelt. Desweiteren
erfolgt keine Vorabintegration der konstitutiven Gleichungen, wodurch die auftretenden
statischen und kinematischen Variablen in den Schalengleichungen den Spannungen und
Verzerrungen und nicht deren Resultierenden entsprechen.

Mit zunehmender Schalendicke ist der Einfluss von Querschubdeformationen auf die
Gesamtverformungen und damit auf die gesamte Verzerrungsenergie des Systems als
wesentliche zusétzliche Grofie zu beachten. Fir das in dieser Arbeit entwickelte Schalen-
modell mit Reissner-Mindlin-Kinematik, werden die Annahmen der kirchhoff-loveschen
Schalenkinematik durch Einfithren zusitzlicher, von den Verschiebungsableitungen un-
abhangigen Parametern erweitert. Das Einbringen dieser Parameter in die kinemati-
schen Gleichungen erfolgt durch einen hierarchischen Differenzvektor und ermoglicht
somit die Abbildung von Querschubeffekten. Aufgrund der Inextensibilitdtsbedingung
fiir den Schalendirektor in der aktuellen Konfiguration ist lediglich die Einfithrung von
zwel zusatzlichen Parametern nétig. Um zu gewdhrleisten, dass die Reissner-Mindlin-
Schale in Dickenrichtung wihrend der Deformation weder gestaucht noch gedehnt wird,
werden die Komponenten des Differenzvektors als Funktion der Basisvektoren der Scha-
lenmittelflache in der Referenzkonfiguration beschrieben.

Fiir die Berticksichtigung der Dickenénderung der Schale wird in dieser Arbeit zudem ein
7-Parameter-Schalenmodell entwickelt, welches einer Erweiterung des Reissner-Mindlin-
Modells mit finf Parametern entspricht. Das 7-Parameter-Modell erméglicht eine Dehn-
barkeit des Schalendirektors und besitzt sowohl konstante, als auch lineare Spannungs-
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und Verzerrungskomponenten iiber die Schalendicke. Zudem entféllt die Notwendigkeit
der Modifikation der Konstitutivgesetze. Dreidimensionale Materialgesetze konnen di-
rekt verwendet werden.

Die wesentliche Neuerung und Innovation in dieser Arbeit ist die hierarchische Parame-
trisierung der Familie von 3-, 5- und 7-Parameter-Schalenmodellen, welche signifikante
Vorteile im Hinblick auf Modelladaptivitdt und Elementtechnologie mit sich bringt.
Ublicherweise wird bei schubweichen Reissner-Mindlin-Schalenelementen der Differenz-
vektor auf den Direktor der unverformten Konfiguration addiert. Dies fiithrt zu gerin-
geren Kontinuitdtsanforderungen an die verwendeten Funktionsrdume gegeniiber jenen
von Kirchhoff-Love-Schalenelementen. Im Fall einer reinen Verschiebungsformulierung
tritt gleichzeitig Querschublocking auf, was in mehreren numerischen Beispielen veri-
fiziert wird. Neben dieser in der Arbeit angewendeten Standardvorgehensweise wird eine
hierarchische Parametrisierung des Reissner-Mindlin-Schalenmodells entwickelt. Eine
vektorielle Grofle, die physikalisch nur dem Schubanteil entspricht wird dabei auf die
gedrehte Normale des Kirchhoff-Love-Modells addiert. Die kinematischen Gleichungen
nach Kirchhoff-Love werden somit lediglich um den Schub erweitert, ohne dass eine
komplette Neuformulierung, wie bei der nicht-hierarchischen Reissner-Mindlin-Schale,
erforderlich ist.

Beide genannten Parametrisierungen beschreiben dasselbe Schalenmodell. Der hie-
rarchische Ansatz folgt im Wesentlichen den Ausfiihrungen von BASAR AND KRATZIG
(1985) und wird fiir Reissner-Mindlin-Schalenelemente in dhnlicher Form in LONG ET AL.
(2012) angewendet. Die urspriingliche Absicht in BASAR AND KRATzIG (1985) war,
iiber eine hierarchische Parametrisierung der Gesamtverformung mit unabhéngigen Bie-
ge- und Schubanteilen aus Reissner-Mindlin-Schalenmodellen durch Vernachléssigen des
Schubvektors Kirchhoff-Love-Theorien zu generieren. Im Hinblick auf das diskreti-
sierte Modell fithrt die hierarchische Parametrisierung dazu, dass Reissner-Mindlin-
Schalenelemente bereits bei einer reinen Verschiebungsformulierung durch die Entkopp-
lung von Biege- und Schubdeformationen kein Querschublocking aufweisen.

Die hierarchische 7-Parameter-Formulierung stellt eine Erweiterung der hierarchischen
5-Parameter-Variante dar. Fir die Berticksichtigung der Dickendnderung, sowie kon-
stanter und linearer Normalverzerrungen in Dickenrichtung, wird das Reissner-Mindlin-
Modell um einen sechsten und siebten Verschiebungsparameter angereichert, was zu
einem quadratischen Verschiebungsverlauf tiber die Dicke fithrt. Durch systematisches
Deaktivieren der sechsten und siebten Verschiebungsparameter kann andererseits aus
der Kinematik des hierarchischen 7-Parameter-Modells jene der hierarchischen Reissner-
Mindlin-Formulierung generiert werden. Wird dariiber hinaus zusatzlich der hierarchi-
sche Differenzvektor entfernt, erhélt man die kinematischen Schalengleichungen nach
Kirchhoff-Love. Dies erméglicht das gleichzeitige Verwenden aller drei Elementtypen in-
nerhalb eines Finite-Elemente-Netzes je nach Bedarf und stellt somit eine ideale Grund-
lage fiir Modelladaptivitat dar. In numerischen Experimenten kann zudem gezeigt wer-
den, dass fiir die hierarchischen 7-Parameter-Schalenelemente dieser Arbeit, im Gegen-
satz zu den nicht-hierarchischen Schalenelementen, bei einer reinen Verschiebungsfor-
mulierung neben Querschublocking auch Kriitmmungs-Dicken-Locking automatisch ver-
mieden wird.
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Im Gegensatz zu den verminderten Kontinuitatsanforderungen an die Verschiebungs-
funktionen der nicht-hierarchischen 5- und 7-Parameter-Schalenformulierungen, miissen
alle hierarchischen Varianten die Anforderungen der schubstarren Kirchhoff-Love-Schale
erfillen, welches das Basismodell der hierarchischen Formulierungen ist. Ansatzfunkti-
onen mit C'-Kontinuitéit lassen sich jedoch ohne groBen Aufwand mit den in dieser Ar-
beit verwendeten hoher-kontinuierlichen NURBS Funktionen definieren. NURBS sind
der im Bereich des CAD am weitesten verbreitete Funktionstyp und werden hier als
Ansatzfunktionen der isogeometrischen Methode nach HUGHES ET AL. (2005) und COT-
TRELL ET AL. (2009) verwendet. Neben dem Erfiillen der Kontinuitatsanforderungen
entsprechend dem Schalenmodell, erlaubt die Anwendung von NURBS mit héherer Kon-
tinuitdt zudem eine eindeutige und punktweise exakte Definition des Schalendirektors
im gesamten Gebiet.

In numerischen Experimenten wird der Einfluss von NURBS Diskretisierungen mit
hoherer Ordnung und Kontinuitdt auf die Genauigkeit der diskreten Losungsfunkti-
onen untersucht. Die dabei ermittelten Berechnungsergebnisse weisen gegeniiber den
C%-kontinuierlichen Losungen geringere Fehler auf. Des Weiteren werden die bei ver-
schiebungsbasierten isogeometrischen finiten Schalenelementen am héufigsten vorkom-
menden Lockingphdnomene einzeln untersucht. Neben dem bereits erwahnten Quer-
schublocking und Kriimmungs-Dicken-Locking, tritt bei allen entwickelten Elementfor-
mulierungen Membranlocking auf. Um dies zu vermeiden, werden zwei neue Strategien
entwickelt, welche sich fir NURBS Diskretisierungen mit beliebiger Kontinuitit und
Polynomordnung eignen. Zum einen wird die auf BLETZINGER ET AL. (2000) beruhende
DSG-Methode fiir den Membrananteil der NURBS-basierten Schalenelemente weiterent-
wickelt, um sowohl Membran- als auch in-plane Schublocking zu vermeiden. Das zweite
Verfahren basiert auf einem gemischten Verschiebungs-Spannungs-Ansatz auf Grund-
lage des Hellinger-Reissner-Zweifeldfunktionals. Die mit beiden Methoden modifizier-
ten Kirchhoff-Love- und hierarchischen 5- und 7-Parameter-Schalenelemente sind vollig
frei von geometrischen Lockingeffekten. Infolge kontinuierlicher Verzerrungs- und Span-
nungsfunktionen kann die NURBS-DSG-Methode zur Kopplung von Freiheitsgraden
fithren, was die Recheneffizienz negativ beeinflusst.

In mehreren Benchmarkbeispielen wird die Leistungsfahigkeit der neu entwickelten hi-
erarchischen Schalenelemente gezeigt. Die Ergebnisse der Verschiebungsformulierungen
stimmen dabei gut mit den Berechnungsergebnissen aus der Literatur tiberein, siehe
zum Beispiel KIENDL ET AL. (2009). Durch das zusitzliche Beseitigen von Mem-
branlocking kann zudem ein deutlich schnelleres Konvergenzverhalten der numerischen
Schalenlosungen zu den Referenzergebnissen erzielt werden. Fiir komplexe Geometrien,
welche die Definition mehrerer NURBS Fliachenpatches erfordern, wird zur Kopplung
von Patchen die in KIENDL ET AL. (2010) entwickelte “bending strip”-Methode verwen-
det. Beztiglich geeigneter Steifigkeitsparameter der bending strips wird auf die Auswer-
tungen in KIENDL (2011) zurtickgegriffen.

Bei der isogeometrischen Analyse von stark gekriimmten beziehungsweise dicken Schalen-
strukturen lassen sich deutliche Unterschiede in den Berechnungsergebnissen der ver-
wendeten Schalenmodelle (3-, 5- und 7-Parameter) feststellen. Der Einfluss aus Quer-
schub und mechanischen Effekten hoherer Ordnung nimmt jedoch mit zunehmender
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Schlankheit der Schale schnell ab. Im Hinblick auf modelladaptive Diskretisierungen
werden auflerdem bei den hierarchischen Reissner-Mindlin-Schalenelementen jene Frei-
heitsgrade deaktiviert, welche zum Schubvektor gehoren. Die dabei erhaltenen Berech-
nungsergebnisse stimmen exakt mit denen der schubstarren 3-Parameter-Schalenelemen-
te tiberein.
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Abstract

The present work addresses the development of a hierarchic family of shell models and
accompanying discretization schemes with NURBS (Non-Uniform Rational B-Splines)
functions that are suitable for the analysis of both thick and thin shell structures.

The hierarchy in the shell mechanics is based on a minimalistic 3-parameter formu-
lation, which mechanically corresponds to the shear-rigid Kirchhoff-Love shell model.
It is particularly suitable for modeling thin structures with predominantly membrane
and bending action. Transverse shear effects and extensibility of the shell in thickness
direction are not accounted for. The assumed linear kinematics of the thin shell can
be described with three independent parameters, which correspond to the mid-surface
displacement components of a material point. No rotations are defined as additional
degrees of freedom such that the formulation is rotation-free.

Linear-elastic and isotropic material properties are assumed. For asymptotic correct-
ness of the model the constitutive law is modified by implementing the stress condition
03 =0 to eliminate £33 via static condensation. Additionally, Love’s first approxima-
tion, neglecting contributions with regard to curvature in thickness direction of the shell
is not considered. Consequently, membrane and bending action are coupled due to
nonzero off-diagonal blocks in the constitutive matrix. No pre-integration of the ma-
terial law is performed. The static and kinematic variables of the shell equations are
therefore stresses and strains.

With increasing thickness of the structure, transverse shear effects become more pro-
nounced, thus significantly contributing to the total strain energy of the system. For
the Reissner-Mindlin shell model developed in this work, the Kirchhoff-Love assumption
is relaxed by introducing additional parameters, which do not depend on the gradient
of the mid-surface displacement field and thus allow for extra transverse shear effects.
These parameters are introduced via a hierarchic difference vector. The inextensibility
of the director in the deformed configuration reduces the number of additionally required
parameters to two. In the geometrically linear case, the inextensibility constraint is con-
structed by expressing the components of difference vector with respect to the in-plane
base vectors of the reference shell mid-surface.

In order to account for changes in thickness direction additionally, a 7-parameter shell
formulation is derived, which represents an extension of the Reissner-Mindlin-type model
with five parameters. The 7-parameter shell model incorporates extensibility of the di-
rector in thickness direction and enables the application of three-dimensional constitu-
tive laws without the need of modifications.

The main innovation of this thesis is based on the hierarchic parametrization of the
family of 3-, 5- and 7-parameter shell formulations, which results in significant benefits
both with regard to model-adaptivity and finite element technology. The common ap-
proach in FEA consists of adding a difference vector on the director of the undeformed
configuration. As a result, continuity requirements on the applied function spaces are
reduced. It represents the first Reissner-Mindlin-type shell formulation to be used in
this work. Equal-order interpolation of both the mid-surface displacement field and the
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difference vector, however, results in transverse shear locking which is verified in sev-
eral numerical plate bending experiments. Alternatively, a hierarchic parametrization
is derived for the Reissner-Mindlin model that imposes a shear vector on the rotated
director of the 3-parameter Kirchhoff-Love formulation. The procedure of adding the
extra parameters is defined so that the kinematic equations of the basic Kirchhoff-Love
model are gradually enhanced to obtain the shear flexible 5-parameter model, without
the need of a complete new description of the shell kinematics.

Although exactly representing the same shell model, with regard to finite element dis-
cretization, the hierarchic parametrization of the current director avoids transverse shear
locking already in a pure displacement formulation. The ansatz to split the total de-
formation of the Reissner-Mindlin shell model into independent components related to
bending and shear in principal follows BASAR AND KRATZIG (1985) and was used
in a similar way for shear-deformable subdivision-based shell finite elements in LONG
ET AL. (2012). In BASAR AND KRATZIG (1985) the authors applied the decomposition
of the rotation of the shell director into the contribution of the deformed shell normal
(Kirchhoff-Love) and rotations related to shear. This allows to derive Kirchhoff-Love
theories from shear deformation formulations by simply removing the transverse shear
contribution. For FEA, this approach, moreover, offers the significant advantage of an
independent parametrization of the transverse shear and consequently avoids incom-
patibilities of the discrete function spaces in the corresponding kinematic equations.
For a decreasing shell thickness the solution asymptotically converges to the Kirchhoff-
Love solution, whereas removal of the shear vector directly recovers the 3-parameter
Kirchhoff-Love model.

The hierarchic 7-parameter shell formulation represents an extension of the hierarchic
5-parameter Reissner-Mindlin shell model. In order to account for extensibility of the
director and linear transverse normal strains, the kinematics of the Reissner-Mindlin for-
mulation is enriched with a 6th and 7th displacement parameter, which ultimately yields
linear and quadratic displacement, contributions across the thickness. By switching off
the linear and quadratic displacement contributions in thickness direction, the kine-
matics of the hierarchic 5-parameter Reissner-Mindlin model can be obtained, whereas
further elimination of the difference vector yields the kinematic equations of the 3-
parameter Kirchhoff-Love shell. This consequently allows for a straightforward combi-
nation of these three element types within one mesh and thus serves as an ideal basis
for a model adaptive approach. Numerical experiments in this thesis demonstrate that
besides transverse shear locking also curvature thickness locking is by default avoided
in pure displacement-based 7-parameter shell finite elements due to the concept of a
hierarchic parametrization. The non-hierarchic 7-parameter shell elements with pure
displacement formulation and difference vector to be imposed on the director of the
undeformed configuration are sensitive to both transverse shear and curvature thickness
locking on the contrary.

The continuity requirements on the displacement functions for the proposed hierarchic
5- and 7-parameter shell models are identical to those of the 3-parameter Kirchhoff-Love
formulation, i.e. C'. The demand for shape functions with square integrable partial
derivatives of order two, however, can be naturally satisfied with the higher-continuity
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NURBS discretizations used in this work. NURBS which represent the standard func-
tions of computer-aided engineering design are applied as shape functions in an isopara-
metric finite element concept following the isogeometric method of Hughes and coworkers
(HUGHES ET AL. (2005), COTTRELL ET AL. (2009)). Their higher continuity property
additionally enables a pointwise exact definition of the shell director in the entire patch
domain.

The effect of higher-order and higher-continuity NURBS discretizations on the accuracy
of the discrete solution functions is investigated and analyzed in several numerical exper-
iments. Computational results of higher-continuity NURBS are provided to demonstrate
the superior accuracy compared to C°-continuous discretizations. Additionally, analy-
sis of the most prominent locking effects that may show up for the displacement-based
isogeometric shell finite elements reveals that the in-plane part of all shell elements de-
veloped in this thesis is; in general, considerably prone to locking. Therefore, two new
strategies to remove geometric locking effects from higher-order and higher-continuity
NURBS discretizations were developed and applied to the membrane part of the shell
elements to cure locking: First, the DSG approach of BLETZINGER ET AL. (2000) was
successfully transferred to higher-order and higher-continuity NURBS discretizations in
order to remove membrane and in-plane shear locking. Second, a mixed displacement-
stress formulation which is based on a two-field Hellinger-Reissner variational principle
with independent displacement and stress fields is applied to the in-plane strain compo-
nents of the shell elements. The modified isogeometric Kirchhoff-Love and hierarchic 5-
and 7-parameter shell formulations are completely free from geometric locking. Higher-
continuity NURBS shape functions to be used for the discretization of the displacement
fields in general result in continuous strain and stress distributions which in the case of
the NURBS-DSG method may result in a coupling of degrees of freedom that compro-
mises computational efficiency.

In several benchmark problems the performance of the newly developed hierarchic shell
elements is proven. For the displacement-based element formulations the numerical re-
sults conform well with the results from literature like for example from KIENDL ET AL.
(2009). Modification of the membrane part with the mixed displacement-stress ansatz
successfully removes locking and leads to significantly faster convergence of the inves-
tigated results to the reference solutions. For multipatch analysis, the penalty-type
bending strip method of KIENDL ET AL. (2010) is used to connect NURBS surface
patches with slope continuity in a weak sense. Appropriate stiffness parameters for the
bending strips are defined according to KIENDL (2011).

The isogeometric analysis of highly-curved respectively thick shell structures reveals
significant differences in the system response for the three different shell models (3-, 5-
and 7-parameter). Simultaneously, a fast diminution of the influence of both transverse
shear and higher-order mechanical effects on the investigated displacement results can
be observed. For model adaptivity, analysis of the same problem setup is performed
with hierarchic 5-parameter Reissner-Mindlin shell elements by systematically deacti-
vating those degrees of freedom related to the shear vector. The computational results
obtained, perfectly match the 3-parameter Kirchhoff-Love solution.
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Introduction

1.1 Motivation

Curved thin-walled structures represent a fundamental construction element in both na-
ture and technology. Examples range from eggshells, cell walls or the leaves of plants to
shell structures in engineering, such as in the automotive industry, aircraft construction,
aerospace technology or civil engineering.

Figure 1.1: Shells in nature and technology (WIKIPEDIA (2013a), WIKIPEDIA (2013Db),
WIKIPEDIA (2013c)).

Shell structures are three-dimensional continua, with one dimension being significantly
smaller than the remaining two. Due to curvature, shells are able to carry transverse
load with membrane action and thus make optimal use of the material. This ultimately
yields highly optimized and efficient structures that may be built very slender with excel-
lent load-carrying capacity. Exploitation of this property, however, brings in significant
sensitivities to imperfections with respect to both geometry and loading. Small changes
in the input parameters of shell design and type of loading may result in large changes
of the system response.
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Since the 18th century, large efforts have been made to properly describe the load-
carrying behavior of shells. Initially, descriptive-mechanical considerations were replaced
more and more by mathematical and theoretical analysis. Nowadays, in particular nu-
merical methods are applied for the analysis of shells. Within the finite element method
to be used in this thesis, one of the first elements with Kirchhoff-Love kinematics was the
SHEBA element of ARGYRIS AND SCHARPF (1968). The continuity requirements on
the displacements were accounted for by using polynomial shape functions of fifth-order,
which consequently led to a complex element formulation. Yet another early Kirchhoff-
Love-type finite element is the Bogner-Fox-Schmit (BFS) plate element that is based
on higher-order Hermitian shape functions (BOGNER ET AL. (1960)). For unstructured
meshes that are based on local polynomials, displacements and their derivatives as nodal
degrees of freedom, the required C*-continuity of the basis functions cannot be satisfied
at inter-element boundaries (ZIENKIEWICZ AND TAYLOR (2005)). If independent shear
deformations according to REISSNER (1945) and MINDLIN (1951) are additionally ac-
counted for in the shell kinematics, the continuity requirements on the applied shape
functions reduce to C°. This ansatz leads to first-order theories, which enable the ap-
plication of shape functions with square integrable first-order partial derivatives. The
advantage of lower continuity basis functions is compromised, however, by the existence
of serious ill-conditioning in discrete constrained problems, which arise from the mis-
match of function spaces to be used for the interpolation of the primary field variables
while the underlying mathematical problem is well-posed.

The idea to break up the established use of low-order and low-continuity polynomial
bases in finite element analysis is not entirely new. Higher-order and higher-continuity
splines have already been used as element shape functions since at least the 1970s. In
SWARTZ AND WENDROFF (1974), spline-based element formulations were compared to
finite difference methods for time dependent problems. PRENTER (1975) presented vari-
ational methods and numerical schemes for finite element and collocation methods on
the basis of spline spaces. Elastic composite plate structures were analyzed in CHUNG-
TzE (1979) by using cubic B-splines as a finite element basis. The author identified
improved accuracy compared to conventional finite element discretizations and savings
in both memory requirements and computational costs. B-spline-based finite elements
for the analysis of shells of revolution were developed in FAN AND LuaHn (1990). Al-
though several publications on spline finite elements have been published for more than
40 years, the seminal paper of Hughes and coworkers on isogeometric analysis (IGA)
(HUGHES ET AL. (2005)) was probably the first to cast the idea of integrating popular
methods of CAD and analysis into a uniform and consistent concept. The application of
the significantly richer functions of CAD to FEA improves the accuracy of discrete solu-
tions, compared to standard C°-continuous discretizations, which was first documented
for structural and fluid mechanics problems in HUGHES ET AL. (2005), COTTRELL
ET AL. (2006) and COTTRELL ET AL. (2007). With regard to shell analysis, these func-
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tions offer completely new capabilities and potential. The higher-continuity property of
NURBS to be used in this thesis allows for the straightforward formulation of Kirchhoft-
Love shell elements, and enables the pointwise exact definition of the shell director in
the entire domain, which consequently annihilates the aforementioned problems of con-
structing elements with higher-order derivatives.

Cirak and coworkers derived shell finite elements with Kirchhoff-Love kinematics based
on CAD-exact smooth C'-continuous subdivision surfaces for the analysis of thin and
moderately thick shell structures (CIRAK ET AL. (2000)). The main drawback of subdi-
vision techniques, which originate from the animation industry, is their lack of compati-
bility with NURBS that on their part represent the standard tool in engineering design.
In LONG ET AL. (2012), a further subdivision discretization scheme was developed. The
formulation accounts for both Reissner-Mindlin and Kirchhoff-Love kinematics by in-
troducing a shear vector that is superimposed on the deformed shell normal vector to
model the structural behavior of thick shells. An independent parametrization of the
mid-surface displacements and the shear vector avoids incompatibilities in the discrete
model a priori and thus transverse shear locking. Removing the entire shear vector re-
covers the Kirchhoff-Love shell kinematics.

The first NURBS-based isogeometric shell element with nonlinear Kirchhoff-Love kine-
matics was presented in KIENDL ET AL. (2009). The element formulation is rotation-
free and thus based on mid-surface displacement degrees of freedom only. Modeling of
clamped edges and symmetry boundary conditions is performed by constraining those
displacement degrees of freedom of the adjacent rows of control points, which are re-
quired to fix the tangent. No finite element technology is introduced in the shell for-
mulation to avoid membrane locking. The shell element retains a pure displacement
ansatz. In multipatch FEA, the authors suggest the application of constraint equations
for the control points along common edges in order to preserve the higher continuity
at patch interfaces. The subsequent paper, KIENDL ET AL. (2010), alternatively intro-
duced a penalty-type method denoted as “bending strip” to couple multiple NURBS
surface patches in a weak sense for thin shell analysis.

An isogeometric NURBS-based Reissner-Mindlin shell was presented in BENSON ET AL.
(2010), which, compared to the ansatz of Kiendl, additionally accounts for transverse
shear effects and is thus more convenient for thick shell analysis. The formulation is
based on the concept of degeneration. Again, no modification of the pure displacement
ansatz is performed, so that the shell element is prone to both transverse shear and
membrane locking. In the shell kinematics, the director vectors are not constructed ex-
actly from the surface tangent space, but are computed approximately by closest point
projections onto the shell surface. The directors thus may deviate significantly from the
orientation of the shell normal. BENSON ET AL. (2011) therefore introduced a “lifting
operator”. By solving a linear equation system, this operator satisfies the condition
that the exact normals to be computed at the integration points by the cross product
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of the in-plane tangent vectors coincide with the values at the integration points to be
obtained from the interpolation of the control point directors. This approach, however,
is confined to Kirchhoff-Love-type shell elements.

DORNISCH ET AL. (2013) derived an isogeometric Reissner-Mindlin shell with exactly
calculated director vectors. The element formulation utilizes additional rotational de-
grees of freedom and allows for both geometric and material nonlinearities. It is derived
from continuum theory. The authors established exact nodal basis systems for every
control point for both the interpolation of the director and the correct definition of the
rotation axes related to the rotational degrees of freedom. In a preprocessing step, an
equation system has to be solved for every patch in order to ensure orthonormality of
the interpolated basis system at quadrature points and a correct orientation of both
the director and the rotation axes. This strategy appears to have similarities to the
“lifting operator”-approach of BENSON ET AL. (2011). Like the isogeometric shell of
BENSON ET AL. (2010), the Reissner-Mindlin shell of Dornisch and coworkers retains a
pure displacement ansatz and is therefore sensitive to locking.

An isogeometric shell formulation denoted as “blended shell theory” was defined in
BENSON ET AL. (2013). The ansatz essentially combines the developments of BEN-
SON ET AL. (2010) and BENSON ET AL. (2011) as linking together the shell theories of
Kirchhoff-Love and Reissner-Mindlin by a linear combination of the kinematics of both
models. The main intention is to use the Kirchhoff-Love model in regions which are
dominated by membrane and bending action, whereas Reissner-Mindlin kinematics are
accounted for in areas where transverse shear has a significant influence, i.e. in non-
smooth domains of low continuity, such as folds, intersections or boundaries. The crucial
point of the blended shell is based on the definition of the director. Whereas for the
Kirchhoff-Love ansatz the constraint of the deformed director to remain normal to the
mid-surface is imposed, the Reissner-Mindlin shell additionally accounts for independent
rotations to model transverse shear effects. The idea of applying the Reissner-Mindlin
model to regions of high curvature and using Kirchoff-Love elsewhere yields significant
savings of degrees of freedom and consequently computational efficiency. In the blended
shell element of BENSON ET AL. (2013) again no action is taken to avoid both geometric
and material-based locking effects.

1.2 Scope and objective

In this thesis, a new hierarchic family of 3-, 5- and 7-parameter shell models and their
discrete formulations are developed.

The expression “hierarchic” on the one hand implies a hierarchy in the mechanical model.
The main innovation of the term “hierarchic” to be used in this work, however, is re-
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lated to a hierarchic parametrization of the family of shell formulations with regard to
model-adaptivity. Based on a minimalistic ansatz with three independent parameters
which mechanically represents the Kirchhoff-Love shell kinematics suitable for modeling
thin structures with predominantly membrane and bending action, additional degrees
of freedom can be activated systematically to improve the approximation quality of the
shell model. The procedure of adding the extra parameters is defined so that the kine-
matic equations of this basic formulation can be gradually enhanced to generate the
shear flexible 5-parameter model, also known as Reissner-Mindlin kinematics, which is
more accurate for describing the structural behavior of thick shells. In order to account
for higher-order and three-dimensional effects, ultimately a 7-parameter shell is derived
from the 5-parameter formulation, without the need of a completely new description of
the shell kinematics.

The idea to split the entire director deformation of shear deformable structures into
individual components related to bending and shear is quite natural and was frequently
used in classical theories on beams, plates and shells for more than fifty years. In BASAR
AND KRATZIG (1985), although not the first textbook on this topic, this split of the
entire rotation of the shell director in a contribution with respect to the deformed shell
normal (Kirchhoff-Love) and an additional rotation related to shear is described in an
illustrative manner. The original motivation was to derive Kirchhoff-Love theories from
shear deformation formulations by simply removing the transverse shear contribution.
This approach, moreover, offers the possibility of an independent parametrization of the
shear in finite element analysis and consequently avoids incompatibilities of the discrete
function spaces in the kinematic equations for the transverse shear and thus shear lock-
ing in a pure displacement ansatz. For the 3D shell with 7 parameters, the hierarchic
concept additionally removes curvature thickness locking, which will be demonstrated
in more detail in Chapter 5. For reasons of comparison, 5- and 7-parameter shells with
non-hierarchic, but conventional parametrization are derived, where the difference vec-
tors are imposed on the undeformed director.

The shell models of this thesis are mainly based on the concept of degeneration to
be specified in more detail in Section 4.1.3. The discretization of the shell equations
follows the isogeometric approach of HUGHES ET AL. (2005) by using NURBS shape
functions for both the geometry and the solution fields. Despite the CAD exact ge-
ometry representation in the analysis environment, the aforementioned higher-order
and higher-continuity properties of NURBS enable the straightforward definition of
Kirchhoff-Love shell elements with higher-order derivatives of the displacement field, and
in addition, a pointwise exact shell director in the whole patch domain. Whereas the con-
ventional parametrization of Reissner-Mindlin kinematics only requires C°-continuous
functions for the well-posedness of the underlying mechanical problem, the hierarchic
shear-deformable 5- and 7-parameter shells require at least C"-continuous functions due
to the 3-parameter Kirchhoff-Love-type base model.
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The new possibilities and advantages in finite element analysis with higher-order and
higher-continuity NURBS discretizations with regard to finite element technology and,
especially in the context of eliminating locking imply considerably higher complexity.
Higher-continuity discretizations of primary solution variables result in derived quanti-
ties, such as stresses and strains, which are again continuous and thus require unlocking
procedures that take into account information on patch level rather than on element
level. The strategies developed in Chapter 6 completely remove geometric locking ef-
fects from the in-plane part of the hierarchic shell elements with pure displacement
ansatz and thus yield locking-free isogeometric shell formulations.

1.3 Overview

This introduction concludes with an outline of the individual chapters in order to pro-
vide an overview of the subsequent matters and the structural setup of this thesis.

In Chapter 2, the governing equations of differential geometry and non-polar contin-
uum mechanics of solids are presented, which yield a set of coupled partial differential
equations. The strong form of the field equations of solid continua are subsequently re-
formulated by means of variational methods. For the formulation of displacement-based
isogeometric shell finite elements, the principle of virtual work is used, whereas the two-
field Hellinger-Reissner principle forms the variational basis for a mixed displacement-
stress formulation to remove locking.

Chapter 3 introduces the topic of NURBS, which represent the standard function type
used in engineering design and which, for analysis, will be applied to both shell geometry
representations and discretizations of the solution functions. Therefore, the concepts of
knot vectors, patches, control polygons and projective geometry are introduced. Fur-
thermore, several strategies for a systematic modification of the NURBS basis and thus
the geometric object are presented. These are also utilized to control the discrete solu-
tion spaces of physical quantities.

By taking into account the derivations of Chapter 2 for solid continua, a new hierarchic
family of 3-, 5- and 7-parameter shell models is developed in Chapter 4; see also ECHTER
ET AL. (2013). Starting from a basic shell model with three independent parameters
which mechanically represents the Kirchhoff-Love kinematics, additional parameters are
systematically added to improve the approximation quality of the shells. The procedure
of adding the extra degrees of freedom is performed so that the kinematic equations
of the basic model are gradually enhanced to generate the 5- and 7-parameter models,
without the need of a completely new description of the shell kinematics. Additionally,
5- and 7-parameter shell models with non-hierarchic difference vector formulation are
established for reasons of comparison.



1.3 Overview

Chapter 5 covers the discrete formulation of the shell equations of Chapter 4 by using
the NURBS function definitions of Chapter 3 in an isogeometric concept. The result-
ing algebraic equations represent pure displacement formulations. Besides investigating
the effect of higher-order and higher-continuity NURBS discretizations on the accuracy
of the discrete solution functions, a systematic analysis with regard to locking of the
displacement-based NURBS shell elements of this thesis is carried out.

The numerical experiments of Chapter 5 reveal that, along with an improved accuracy of
the higher-continuity NURBS shell discretizations, the membrane part of the hierarchic
shell elements with pure displacement ansatz is considerably prone to locking. There-
fore, in Chapter 6, two methods are developed which successfully remove geometric
locking from the in-plane part of the shell finite elements of this work for both higher-
order and higher-continuity NURBS discretizations (ECHTER AND BISCHOFF (2010),
ECHTER ET AL. (2013)). The first approach generalizes the discrete strain gap (DSG)
method of KOSCHNICK ET AL. (2002) and BISCHOFF ET AL. (2003) to higher-continuity
NURBS, whereas the second ansatz relies on a mixed displacement-stress formulation
based on a two-field Hellinger-Reissner variational principle. The resulting hierarchic
NURBS shell elements with modification of the membrane part are completely free from
any geometric locking effects.

In Chapter 7, more complex numerical examples with multiple NURBS patches are
analyzed in order to investigate the efficiency of the new isogeometric shell element for-
mulations.

Chapter 8 provides a summary of the developments in the thesis along with conclusions
and indications of future work.

In Appendix A.1, further mathematical background on vector and tensor algebra fun-
damentals is presented.



1 Introduction




Continuum Mechanics, Differential
Geometry

In this chapter, the governing equations of differential geometry and non-polar contin-
uum mechanics of three-dimensional solids are presented to an extent required within
this thesis and to establish a uniform notation. The balance laws used in this work
are confined to mechanical problems and serve as a basis for the material-independent
formulation of the deformation processes of solids.

First, the fundamentals of elementary differential geometry required to describe ge-
ometric configurations of deformable solid bodies in space are introduced. Without
considering microscopic physical effects; the principal equations of motion and deforma-
tion, i.e. the kinematics of continuous solid media are defined in material (Lagrangian)
description.

Based on the concepts of configuration and motion of continuous bodies, appropriate
strain measures and strain-displacement relations are established as one of the field
equations of continuum mechanics.

The interaction of material within a body during deformation results in the notion of a
stress state. By applying Cauchy’s stress theorem, surface tractions are uniquely related
to second-order stress tensor fields. Additionally, relevant alternative stress tensors are
defined.

From the momentum balance laws and Cauchy’s stress theorem, the equilibrium equa-
tions of elastostatics as the second field equation are subsequently derived.

The third functional field equation of continuum mechanics to be introduced is the con-
stitutive law in order to sufficiently describe the response of a material and to specify
the stress-strain relationship.

Finally, the governing equations which consist of kinematics, equilibrium and material



2 Continuum Mechanics, Differential Geometry

law are reformulated by means of variational and energy principles. They serve as a
basis for the development of numerical approximation and discretization methods as
the finite element method to be used within this thesis.

A more comprehensive treatment of the basics of both differential geometry and con-
tinuum mechanics for solids and structures is covered, for instance, in HstunG (1981),
KREYSzZIG (1991), CIARLET (2006), MARSDEN AND HUGHES (1983), CIARLET (1988),
ALTENBACH AND ALTENBACH (1994), STEIN AND BARTHOLD (1996), HOLZAPFEL
(2000), ZIENKIEWICZ ET AL. (2005).

2.1 Elementary differential geometry

Differential geometry which relates the mathematical branches of analysis and geome-
try enables an elegant analytic investigation of the geometric properties of point sets by
using methods of infinitesimal, i.e. differential and integral calculus.

For all quantities and relations introduced to describe the configuration and motion of a
material body B in 3D Euclidean space R?, the concept of classical differential geometry
is applied. A material body B in continuum mechanics corresponds to a contiguous set
of material points M. Its boundary is denoted with 0B.

An orientation in space R? is defined with the introduction of a fixed orthogonal Carte-
sian coordinate system. Its orthonormal basis e; is pointing in the direction of the
coordinate axes and the reference point 0 is coincident with the origin of the Cartesian
basis. Thus the position of every spatial point P relative to the origin 0 is uniquely
associated with a position vector X as the linear combination of material convective
coordinates X’ and base vectors e;, as shown in Figure 2.1. In this work, Latin indices
run from 1 to 3 and Greek indices take on the values 1 or 2.

X =X'e, with e =é€ [lejf =1 (2.1)

The symbol ||(e)|| in Equation (2.1) denotes the Euclidean norm of (e) in R*. Conse-
quently a bijective, i.e. continuous and invertible map 7, which in mathematical litera-
ture is frequently denoted as homeomorphism, may be defined. It uniquely associates to
every material point M € B for every point in time a corresponding point P in Euclidean
space R? labeled with a position vector X. For a fixed moment in time, the mapping
7 of B to its image © in R? represents a configuration which is specified in Equation (2.2)

{B%QCR?’
T (2.2)
M—=X=7(M).

10



2.1 Elementary differential geometry

The inverse mapping of spatial points of R to the material points M € B exists as well

and is denoted with 77!

. Moreover, convective curvilinear coordinates are introduced
in order to adequately describe the geometry and kinematics of the curved structural
objects in this thesis. Therefore each point P € R* can be uniquely identified by the co-
ordinates 6. The position vector X, which in Equation (2.1) is related to the Cartesian

basis e; in curvilinear convective coordinates reads

X=X (07). (2.3)

The partial derivative of X with respect to 6° yields the covariant base vectors Gy, which
represent tangents to the coordinate lines #° and in contrast to e;, are in general not
orthonormal. The expression (o), corresponds to the partial derivative of a quantity
(e) with respect to the argument #.

oX  ox/
96"~ 001

Gi=X,= € (24)

The base vectors G; define a tangent vector space at every point P and enable the
derivation of important local geometric properties to be specified later in this section.

Configuration

Material body 03

Figure 2.1: Mapping 7 of material points M to spatial points P.

The contravariant base vectors G’ may be consequently derived by

G'= %ej, G; -G =47, (2.5)

They represent a dual basis to G;. The Kronecker delta 8,7 takes the value of one if
i = j and is zero otherwise.

11
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With the co- and contravariant base vectors at hand, the components of the metric
tensor G can be directly computed according to Equation (2.6)

G=G .GGeG=G0'G,2G=GG oG, (2.6)

Thus, important local geometric quantities with regard to the metric of the body, such
as distances between points, lengths or angles between tangent vectors, or the size of
differential line, area or volume segments may be derived.

The symbol (®) in Equation (2.6) represents the tensor product of the respective base
vectors in either covariant or contravariant form. The contravariant components of the
metric tensor are obtained by the inverse of G;. They enable the calculation of the
contravariant base vectors G°, which also lie in the tangent space that is spanned by
the covariant basis.

G'=GiG; (2.7)

The kinematic equations of the isogeometric shell models of Chapter 4 only require the
definition of the metric tensor G without explicitly using curvature tensor properties as-
sociated with the second fundamental form of differential geometry, which will therefore
be omitted in the subsequent derivations. For more information on curvature character-
istics of curves and surfaces references KLINGBEIL (1966), BASAR AND KRATZIG (1985)
and CIARLET (2006) are recommended.

2.2 Deformation, strain measures

2.2.1 Deformation and motion

In Section 2.1, the definition of a configuration of a body was introduced. For describing
the motion and deformation of a body, several configurations for different moments in
time have to be defined. The configuration Qg of Euclidean space R?® at time t = 0
is denoted as reference or initial configuration and represents an undeformed, unloaded
and unstressed state of the body, although in principle other choices are possible as well.
Each material point is uniquely identified with a position vector X which represents its
spatial position at ¢ = 0. For all quantities of the reference configuration, capital letters
are used.

The spatial domain occupied by B during motion, that is for time ¢ > 0, is denoted
as current or deformed configuration ;. Material points in the current configuration
Q, are identified with position vectors x. Quantities of the deformed configuration are

12
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labeled with lowercase letters. The mappings for both configurations read

T, =7(P,t=0) =X,

7 =7(P,t>0) =x. @8

Y in Equation (2.9) defines the mapping between the reference and current configura-
tion and may be interpreted as a deformation process. In Lagrangian formulation, it
is described with the material coordinates X of the material points of the reference
configuration.

x =T (X) =Y (X, 1) = [ror,!] (X) (2.9)

The symbol (o) in Equation (2.9) represents a superposition of the mappings 7 and 7, 1
The configurations and motion of a continuum body are illustrated in Figure 2.2.

Current configuration

Reference configuration

Material body

Figure 2.2: Motion of the material body.

By partial derivation of x with respect to the curvilinear coordinates 67, the covariant
base vectors g; of the current configuration are obtained. The computation of both

13
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the contravariant base vectors g and metric of the deformed configuration is performed
analogously to the procedure described in Section 2.1

x o
&= 90 & " ox-

(2.10)

The material deformation gradient F is introduced to define the relative spatial posi-
tion of two neighboring material points after deformation in dependence of their relative
initial position. It represents an unsymmetric tensor of second-order and is used in
Equation (2.11) for the linear geometric mapping of an infinitesimal line element dX of
the reference configuration to an infinitesimal line element dx of the current configura-
tion

dx =F - dX. (2.11)

In Equation (2.12), the tangent vectors of the deformed configuration are computed
from the tangent vectors of the undeformed state by means of F

ox  oOx 0X
== =F-Gy,
87 900 ~ oX o0 (2.12)
gz:F—TGL

In order to ensure the connectivity of adjacent material points of B during deformation,
the mapping from the reference to the current configuration has to be bijective, which
is equivalent to satisfying the condition det (F) # 0. This also requires that the inverse
mapping of Equation (2.11), i.e. dX = F~!.dx and thus F~* has to exist. In order to
physically avoid self-penetration of material, the Jacobian determinant of F must also
only take on positive values, i.e. det (F) > 0.

Additionally, the displacement field u will be introduced as the difference vector of the
position vectors of the deformed and reference configuration, which in Lagrangian for-
mulation is a function of the reference position X and time ¢. All subsequent derivations
are restricted to both static behavior and linear elasticity such that the parameter time
t can be disregarded in the following definitions of the description of motion. The dis-
placement field u is consequently determined by

u=x-X. (2.13)

14



2.2 Deformation, strain measures

Equation (2.13) allows for an alternative definition of the deformation gradient F as the
sum of the displacement gradient tensor L = grad u and the identity tensor I, which is
used in Section 2.2.2 in the derivation of adequate strain measures.

As F uniquely describes the deformation process of a body, it represents a valid strain
measure for constitutive equations in general. Several disadvantages, however, such
as the inability to exactly represent rigid body modes without strains, unsymmetry
and dependency on orientation, limit its applicability as an adequate strain measure
in continuum mechanics. Therefore, in Section 2.2.2 alternative strain measures are
derived, which are used in Chapter 4 to describe the strain-displacement relationships
of the hierarchic family of shell models.

2.2.2 Strain measures

Nonlinear continuum mechanics in general utilizes a multitude of different strain and
strain rate quantities in order to properly describe the kinematics of continuous bod-
ies. As linear kinematics are assumed within this thesis, however, only the linearized
Green-Lagrange strain tensor € will be derived from the more general geometric nonlin-
ear Green-Lagrange strain measure E.

The second order tensor E, in contrast to the aforementioned material deformation gra-
dient F', is invariant with regard to arbitrary rigid body motions and is symmetric. Its
derivation can be directly related to the deformation behavior of the body. For this, E
is defined by the difference of the squares of differential line segments ds and dS of the
deformed and undeformed configurations €2; and € respectively.

(ds)? — (dS)? =dx-dx —dX-dX = (F-dX) (F-dX)—dX-I.dX

—dX - (FT-F-1).dX (2.14)
2E

Alternatively, E may be formulated in curvilinear convective coordinates as the dif-
ference of the metric tensors of both configurations or by means of the material dis-
placement gradient L as follows (STEIN AND BARTHOLD (1996), WRIGGERS (2001),
BELYTSCHKO ET AL. (2008))

(95 — Gy) G'®G,
(2.15)

N =N =

(L+LT+LT~L)‘

15
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For small displacements, rotations and strains, the linearized form of E can be straight-
forwardly derived from the last definition in Equation (2.15) by omitting the quadratic
contribution LT - L. In curvilinear convective coordinates, the linearized Green-Lagrange
strain tensor € and its coefficients e read

e— L (L+LT) :%(uﬁi-GjJru,]wGi) God. (2.16)

DN =

<

2.3 Concept of stress, static equilibrium

This section is related to the concepts of stress and static equilibrium for linear elastic
continuous bodies.

2.3.1 Stress measures

The concept of stress is defined by means of the Eulerian method of sections and the
Cauchy stress theorem, which establishes a linear relationship between the traction vec-
tor t and the normal vector n of a differential surface element of the current configuration
with a second-order tensor field o, denoted as Cauchy stress tensor

t=o0-n. (2.17)

The reference of both the normal and the traction vector with regard to the current con-
figuration in Equation (2.17) associates the spatial tensor o with the notion of a true or
physical stress tensor. Symmetry of o, i.e. ¢ = o', can be derived from the balance of
angular momentum. The Cauchy stress tensor represents an objective, frame-invariant
stress measure, which is therefore suitable to be used in constitutive relations.

o=dlg;®g; (2.18)

In the continuum mechanics of solids, several formulations of stress tensors rely on ma-
terial (Lagrangian) coordinates and a description of quantities related to the reference
configuration. The second Piola-Kirchhoff (PK2) stress tensor S, which represents the
work conjugate of the previously introduced Green-Lagrange strain tensor E, is entirely
defined in the undeformed material configuration. It can be derived from the Cauchy

16



2.3 Concept of stress, static equilibrium

stress tensor by the so-called Piola transformation, a pull-back operation from the de-
formed into the reference configuration by means of the material deformation gradient
F and its Jacobian determinant. S, like the Cauchy stress tensor, is symmetric and
materially objective

S =57G;®G;,

2.19
S =det(F)F'.0-FT. (2.19)

Computation of the Cauchy stress tensor from the PK2 tensor can be performed, on the
other hand, by the push-forward of S to the current, deformed configuration.

For small deformations and strains, the differences among the presented stress tensors
are negligible. The material deformation gradient F becomes approximately the identity
tensor I, i.e. F ~ I. By applying these results to Equation (2.19), one obtains

Slin ~ det (I) I—l . o_lin . I—T — o_lin' (220)

Further, more detailed information with regard to different stress measures, their trans-
formations and specific properties are provided, for instance, in references BASAR AND
WEICHERT (2000), ZIENKIEWICZ AND TAYLOR (2005), BELYTSCHKO ET AL. (2008) or
BONET AND WOOD (2008).

2.3.2 Equilibrium equations

From the balance of linear momentum the strong form of static equilibrium can be de-
rived if inertia effects are neglected. The balance law states that the change in time of
the linear momentum during deformation of a body is equal to the sum of all external
volume forces and surface tractions acting on that body. The Cauchy equilibrium equa-
tion ultimately reads

div (e™) + pb=0. (2.21)
p in Equation (2.21) represents the density of the body, which in linear elastostatics is

identical for both the reference and current configuration and pb equals the body force
per unit volume, which is assumed to be a prescribed, i.e. known quantity.

17
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2.4 Linear elastic constitutive law

Up to now, the equations and relations referring to the kinematics, concept of stress
and static equilibrium of solid continua are independent of material-specific properties
and thus do not suffice to completely describe the response of a continuous body with
respect to an applied loading.

Therefore, constitutive laws have to be defined, which represent the third and last func-
tional field equation of the mechanical boundary value problem under consideration.
The focus of this work lies on the development of efficient isogeometric shell element
formulations. Only small displacements are accounted for in the kinematics. For sim-
plicity but without loss of generality the most basic constitutive model for homogeneous,
elastic and isotropic materials defined by Hooke’s law is applied. Hooke’s law may be
derived directly from the Saint-Venant-Kirchhoff material, which is valid for large dis-
placements but small strains. Consequently, an algebraic, linear relation between the
lin

stresses o' and strains € can be established.

o™ =Atr () I+2ue=C: ¢ (2.22)

(e : @) in Equation (2.22) represents a double contraction of the two tensors C and e.
The parameters A and p are denoted as Lamé constants. They are related to the more
engineering material constants, Young’s modulus F and Poisson’s ratio v, via

vE E

A2 P el

U+ (1—20)° (223)

The fourth order material tensor C may be formally obtained by partial derivation of
the strain energy density function W™ (g) as follows: C = % Tt is defined in
Equation (2.24) in convective curvilinear coordinates and will be used for the shell mod-

els of Chapter 4.

C=0MG®G G ®G, CM=XGIG"+u (G*G+G"G*) (224)

2.5 Variational principles

The field equations derived in Sections 2.2 to 2.4 consist of local geometric relations,
equilibrium and the constitutive law according to Equations (2.16), (2.21) and (2.22).

They represent a system of coupled differential equations and describe the governing
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relations of the boundary value problem of linear elastostatics in strong form, which are
summarized here for convenience.

1 ) .
Kinematics : € = 3 (u;-Gj+u;-G;) G®G inQ

Equilibrium : div (a-li“) +pb=0 in Q (2.25)
Material : o"=C:e in Q

In order to obtain a unique solution for the mechanical boundary value problem, both
geometric and static boundary conditions have to be defined. The spatial domain oc-
cupied by the boundary of the body 0f2 is separated into a portion 0f2, of prescribed
displacements U and a portion 99, of prescribed tractions t. For the boundary of the
body 0%, the following convention holds

00,000, =09, 09, N0Q, = o. (2.26)

The prescribed Neumann and Dirichlet boundary conditions for the static linear elastic
boundary value problem of continuum mechanics read

Neumann boundary conditions : o™ -n=7%t on 99, ,
(2.27)
u

Dirichlet boundary conditions : =1 on J€, .

Finding closed form analytic solutions for the presented set of coupled partial differen-
tial equations is restricted to only a small number of linear elastic problems by a proper
choice of admissible stress or displacement functions. Examples of mechanical problems
for which analytical solutions are available are, among others, the Saint-Venant torsion
of prismatic beams or the elastic half-space.

Therefore, mathematical expressions that are equivalent to the strong form of the par-
tial differential equations of linear elasticity will be formulated by means of variational
methods. These serve as a basis to establish computer-based discretization techniques
such as the finite element method used within this thesis in order to derive approximate
sets of algebraic equations to be solved numerically.

The first variational form introduced herein is the principle of virtual work. It will
be used to define isogeometric shell finite elements with pure displacement ansatz in
Chapters 4 and 5. For constrained problems, however, unphysical locking effects show
up in the single-field displacement models such that alternatively a mixed formulation
based on a two-field Hellinger-Reissner variational principle will be provided (ODEN
AND REDDY (1976), PARK AND FELIPPA (1998), PARK AND FELIPPA (2000), PIAN
AND WU (2006), BISCHOFF (2011b)).
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2.5.1 Principle of virtual work

The principle of virtual work represents a variational formulation, which is equivalent to
the momentum balance equations and Neumann boundary conditions. It can be derived
from the principle of minimum potential energy IT which consists of both strain energy
I (e(u)) and external energy contributions I1™*(u). II represents a functional, i.e. a
function of a function that is mapped onto the space of real numbers.

Implicit inclusion of the material law with the stress-strain relationship and subsequent
introduction of the kinematic equations, yields I as a functional of the displacement
field u only. From all possible displacements, the one which minimizes II(u) satisfies
equilibrium and thus provides the solution to the single-field variational problem. The
minimum condition requires that the first variation §II(u), with respect to the displace-
ments becomes zero, which yields the virtual work principle §1lpyy, = 0.

The equilibrium and Neumann boundary conditions are called Euler-Lagrange equa-
tions, which are satisfied weakly in an integral sense. The subsidiary material and
kinematic equations, as well as the Dirichlet boundary conditions are satisfied strongly.
The principle of virtual work may also be derived from the strong form of the differen-
tial equations with the method of weighted residuals. In contrast to the aforementioned
procedure, this ansatz does not require the existence of a potential and is therefore also
valid for problems with friction, non-conservative loads or material inelasticity.

The way to proceed starts with formulating the differential equations of static equilib-
rium and force boundary terms as a weighted residuum. Therefore, these equations are
multiplied with an arbitrary vector-valued test function denoted with du. Energetically,
the test function du may be interpreted as a virtual displacement function. It has to
be kinematically admissible, i.e. has to vanish on 0f), where T is prescribed. Finally,
the residual equations are integrated over the domain of the body. Integration by parts
and insertion of both the kinematic and material equations again yields the principle of
virtual work as a single-field functional, which is equivalent to the formulation derived
from the principle of minimum potential energy

Mpyy (u, Su) = SII™ (u, su) + 611 (u, du)
= /a'h“: grad du d§Q) — /pE~6udQ— / t-0udQ, =0.
Q Q (

Qs
(2.28)

Functional analysis requirements on virtual work principle
In this section, basic definitions and requirements from the mathematical field of func-

tional analysis are provided for the theoretical analysis of the variational forms intro-
duced in this chapter to describe the elliptic boundary value problem of linear elasticity.
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The way of argumentation only provides basic necessary fundamentals without giving
mathematically complete and rigorous proofs or derivations. For a thorough treatment
of this topic with regard to the finite element analysis, the reader is referred to MARS-
DEN AND HucGHES (1983), REDDY (1998), HUGHES (2000), BRAESS (2003), HOLLIG
(2003), BRENNER AND SCOTT (2008).

Due to the existence of first derivatives in Equation (2.28), the variational index of the
weak form is equal to one. Therefore, an admissible function space U has to be defined,
which comprises the set of all functions u with square integrable first derivatives and
satisfaction of the Dirichlet boundary conditions

U= {ue?—[l,u:ﬁon 8Q,u}. (2.29)

H™ in general represents a Sobolev space as a set of all functions with square integrable
derivatives up to order n. The variations du have to vanish on 92, as mentioned pre-
viously. Therefore, the admissible function space of du is defined as

U = {ou € Hj,0u=0ond,}. (2.30)

For simplifying subsequent writing, a mathematical notation of the energy contributions
of the principle of virtual work is applied. The internal energy of Equation (2.28) may
be formally expressed by a symmetric, bilinear form b (u, du), which implies linearity
in each variable and represents a bilinear mapping of vector valued functions onto the
space of real numbers R. The external virtual energy, which consists of the virtual work
of body forces pb and surface tractions t, may be described by linear forms f (fu) and
F (6u) respectively. In particular, the bilinear and linear functionals of the principle of
virtual work read

b(u,du) = /a'“": grad du dQ2 = /e(u): C: graddu dQ,
Q

Q
f(6u) = /pE~6u dQ, (2.31)
Q
F(ou) = /E.aan”,
0,

such that the virtual work principle 61lp,,, can be rewritten in the following mathemat-
ical notation

b(u,0u) — f (du) — F (du) =0 Vouelu. (2.32)
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Endowing the Sobolev spaces H"™ with an inner product yields inner product spaces
which finally enable the definition of a norm || . [|%». With normed spaces, magnitudes
of functions are measurable and thus evaluations of the approximation quality on the
basis of the selected function spaces are possible. Additionally, information with regard
to convergence and rates of convergence may be established. Bounded Sobolev spaces

H" with associated norm || . ||y~ are denoted as Hilbert spaces.

With these definitions at hand, boundedness and ellipticity of bilinear forms b (-, -) on
Hilbert spaces can be deduced, which enable the derivation of the main existence theorem
of functional analysis for elliptic variational forms: the Lax-Milgram-Theorem. It states
that every problem which can be formulated with a continuous (bounded) and coercive
(elliptic) bilinear functional has a unique solution u. The symmetry of the bilinear
form in linear elasticity furthermore characterizes the solution u as the minimum of a
quadratic functional, i.e. the elastic potential energy.

A bilinear functional is bounded above and continuous if there is a constant 0 < ¢ < oo

such that
[b(u,du)| < c [juf| [dul VYuel, sucld’. (2.33)
In addition, the ellipticity of a bilinear form is established, if for a constant 0 < ¢ < oo
[b(u,u)| > |jul? Yuel. (2.34)

Satisfaction of Equation (2.33) reveals that the application of |b (u, du)| does not produce
results which rise beyond the limits of the associated norms with regard to u and Ju.
The ellipticity condition b (u, u) ensures the definition of a lower bound on the functional
such that stability of the solution is satisfied with the existence of Equation (2.34) and
boundedness of the linear forms f (du) and F (du). Stability therefore requires from the
solution u to be stable with regard to variations of the applied external load.

The necessary conditions for obtaining a unique and stable solution of the continuous
single-field virtual work functional now have been established. These conditions can be
directly transferred to the discrete functionals defined in Chapter 5 of this thesis where
NURBS functions are used as both trial and test functions in an isoparametric finite
element concept.

2.5.2 Principle of Hellinger-Reissner

Single-field finite element formulations on the basis of the principle of virtual work may
lead to significant numerical difficulties, particularly for constraint problems such as
incompressible or nearly incompressible material behavior or the Kirchhoff constraint in
plate and shell structures, which in literature is frequently denoted as locking.
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In order to remove membrane locking from the displacement-based isogeometric shell el-
ements derived in Chapters 4 and 5, a mixed formulation based on the Hellinger-Reissner
principle (HELLINGER (1914), REISSNER (1950)) will be employed. This ansatz more-
over removes both in-plane shear locking and volumetric locking which is, however, not
investigated in more detail for the shell analyses of this thesis. For the mixed formula-
tion the relations in the constrained kinematic equations are alleviated in the variational
functional by expressing them weakly. The two-field functional uses both displacements
and stresses as independent field variables and may be derived either by the method of
weighted residuals or from the principle of minimum complementary energy.

In the weighted residual approach, in addition to the principle of virtual work, the
kinematic equations of the strong form are also multiplied with test functions do and
integrated over the domain of the body. Applying integration by parts and subsequently
inserting the material equations yields the principle of Hellinger-Reissner dllgr. The
Euler-Lagrange equations consist of equilibrium, kinematics and both Neumann and
Dirichlet boundary conditions. The only strong condition is the material law.

0lyr (u, o, du, do) /o’ : grad du dQ+/pb ou dQ
+/ (C_ h“ 2 00 dQ — /gradu oo dQ (2.35)

+/ £oud, + [ (u-w) o no0, =
00 Oy,

Alternatively, the Hellinger-Reissner functional can be derived from the principle of
minimum complementary energy which represents a functional of stresses only and is
equivalent to the kinematic and Dirichlet equations. This approach employs Lagrangian
multipliers to add both the equilibrium and Neumann boundary conditions to the com-
plementary energy expression. The Lagrange multipliers show up as additional free
variables in the equation system. The minimization problem thus becomes a stationary
problem (saddle point problem).

For more detailed information on the derivation of the two-field Hellinger-Reissner
principle in addition to the references presented within this section see, for instance,
ANDELFINGER (1991), ANDELFINGER AND RAMM (1993), HAUSSER (1996), BRAESS
(2003), P1AN AND WU (2006).

Functional analysis requirements on Hellinger-Reissner principle

The Dirichlet boundary conditions in the Hellinger-Reissner principle §IIyr represent
Euler-Lagrange equations such that displacement functions do not have to satisfy com-
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2 Continuum Mechanics, Differential Geometry

patibility across element boundaries in the discrete model. Due to first derivatives in
Equation (2.35) continuous functions of space H' are generally used which satisfy the
geometric boundary conditions. Consequently, the displacement boundary term (u — u)
vanishes in the functional. For the stresses, on the other hand, no derivatives show up
in 6IIyg such that the function space for the stresses may be of H#°, which contains the
set of all functions that are square integrable. The mathematically oriented writing of
the Hellinger-Reissner functional, following the notation introduced for the virtual work
principle, is defined as follows

~D(o,5u) + f (6u) + b(0o,d0) — b(u,dé0) + F (du) =0. (2.36)
The bilinear forms of Equation (2.36) are listed in more detail in Equation (2.37). The

linear forms are equal to the ones defined for the virtual work functional of Equa-
tion (2.31)

o™ grad du dQ,

b(u,d0)

Q
/gra,du 0o dQ, (2.37)
Q
= (s ™) doag.

Q

Compared to single field variational principles, the extremum property is lost for multi-
field principles where the initial minimization problem becomes a saddle point problem.
The two-field Hellinger-Reissner principle, according to Equation (2.35), is convex with
regard to the primary variable u and concave with regard to the secondary variable o.
In order to ensure uniqueness of the solution, the functional éIlyr has to be bounded
(continuous), convex and elliptic (coercive) with regard to the field u and additionally
negative coercive and concave for o.

Boundedness above with regard to both variables u and o is ensured, if the continuity
condition according Equation (2.33) is satisfied for the bilinear forms of 6Ilyg.

The definition of a lower bound for functionals with different arguments such as the
Hellinger-Reissner two-field principle according to the ellipticity condition of Equa-
tion (2.34) is too rigorous as pairs of functions u and o may exist which are orthogonal
with respect to the multi-field functional. In order to ensure stability of the continuous
problem, a less restrictive condition suffices. It states that ellipticity, according to Equa-
tion (2.34), only has to be satisfied for at least one o with regard to arbitrary functions
u in contrast to the requirement of satisfying coercivity for all pairs of o and u.

For the stresses, ellipticity has to be satisfied in the same way as defined for the single-
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2.5 Variational principles

field functional with Equation (2.34), however on a bounded subspace consisting of all
stress functions which are orthogonal to u in the bilinear form b (u,do). In order to
establish coercivity of the functional with respect to u, the bilinear form b (o, du) has
to satisfy the inf-sup condition, that is

) )5 (o, 6u)‘

inf sup ———+ > ¢> 0. (2.38)

[af 1o el [l
The inf-sup condition of Equation (2.38) is frequently referred to as the Babuska-Brezzi
(BB) condition or Ladyzhenskaya-Babuska-Brezzi (LBB) condition, respectively, ac-
cording to the scientific contributions of LADYZHENSKAYA AND URAL'TSEVA (1968),
BABUSKA AND Aziz (1972) and BRrEzzI (1974) in which the existence and stability
conditions of the mixed formulations with saddle point structure were first analyzed.
For the derivation of locking-free NURBS-based shell finite elements in Chapter 6, ap-
propriate choices of discrete function spaces for both the displacements and stresses will
be discussed. On the one hand, orthogonality of stress functions and displacements has
to be avoided in order to prevent zero energy deformation modes. On the other hand,
the definition of too many stress parameters which cannot be properly balanced by the
existing strain modes, yields parasitic unphysical energy contributions that have to be
precluded as well.
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NURBS-based Geometry Modeling

In this chapter, the basic definitions and properties of NURBS basis functions and
NURBS geometric objects will be explained using, essentially, the references PIEGL
AND TILLER (1997), ROGERS (2001), FARIN (2002), FARIN ET AL. (2002) and CoOT-
TRELL ET AL. (2009).

NURBS, up to now, represent the standard format in the field of computer-aided design
(CAD) and computer-aided modeling (CAM), which are used for the numerical descrip-
tion of the continua, defined in Chapter 2. The analysis-suitable discretization with
NURBS functions will be used in Chapter 5 and the following within an isoparametric
finite element environment for the derivation of a hierarchic family of isogeometric shell
finite elements, thus combining engineering design and finite element analysis (FEA).
This idea goes back to Hughes and coworkers (HUGHES ET AL. (2005)), who presented
a seminal paper on the integration of analysis-suitable CAD representation techniques
into the FEA framework, which they denoted Isogeometric Analysis (IGA). Their main
motivation was to bring together more closely the branches of FEA and CAD by directly
embedding the CAD geometry into analysis and adopting the significantly richer CAD
function spaces to FEA.

With regard to the development of isogeometric shell finite element formulations in
Chapters 4 to 6 which represents the main topic of this thesis, special focus is laid
on the higher-order and higher-continuity properties of the NURBS basis, rather than
a detailed investigation of combining CAD and FEA. The higher continuity enables a
straightforward formulation of Kirchhoff-Love shell models with a variational index of
two and additionally a unique and continuous representation of the shell normal in the
entire patch domain. In the context of isogeometric shell analysis, these advantages have
been utilized first in KIENDL ET AL. (2009).

Chapter 3 begins with a short historical view on the development of CAD-based mod-
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3 NURBS-based Geometry Modeling

eling, particularly focusing on NURBS. The mathematical description of geometric ob-
jects in engineering design most frequently relies on parametric representations, the basic
properties of which are outlined in Section 3.2. The derivation of NURBS basis functions
requires the definition of knot vectors, which determine the main properties of the basis
functions and subdivide the geometry into elements. Based on these results, NURBS
curves and surfaces are defined in Section 3.4 by using the concepts of homogeneous
coordinates and projective geometry. Subsequently, several methods for a systematic
modification of the NURBS basis and thus the geometric object are presented, which,
from the CAD perspective, increase the geometric flexibility and, for analysis, addition-
ally, enable the discrete solution spaces of physical quantities to be controlled. Details
of connecting several NURBS surface patches are described in Section 3.6.

3.1 Developments in CAD modeling

The roots of systematic drafting techniques can be found in the Renaissance era, where
Italian naval architects made use of conic sections as mathematical design and drawing
tools in ship building. The term “spline” originates from thin wooden strips which were
bent into the smoothly curved shape of the ship body by means of a fixed set of leaden
pins.

In aircraft construction, the demand for higher-continuous curve and surface descrip-
tions became of great importance since the beginning of the twentieth century. In 1944,
Liming first used mathematical formulations with conic sections for the design of air-
craft fuselages, which he adopted to existing design drawings by the variation of function
coefficients.

With the beginning of mass production in the automotive industry in the 1950s, the de-
mand for computer-compatible design methods arose. Fundamental contributions on the
uniform parametric description of curves and surfaces with Bernstein polynomials which
enabled a fast and intuitive engineering design with particular geometric significance are
the works of the French engineer Bézier at Renault and the French mathematician de
Casteljau at Citroén (BEZIER (1968), DE CASTELJAU (1963)). Geometric objects were
defined as linear combinations of control points and Bernstein functions. Shape mod-
ifications were no longer applied directly to the geometry, but to the control polygon,
without the need to change the properties of the basis functions.

The main drawback of Bernstein polynomials, due to their global support, was resolved
with the development of B-splines (RIESENFELD (1972)). These functions represent
piecewise polynomials with compact support and thus enable local shape modification.
The recursion formulae by Cox and de Boor (Cox (1972), DE BOOR (1972)) established
stable numerical schemes for computing functions of higher order.
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3.2 Parametric geometry representation

A generalization of B-splines to piecewise rational functions denoted as NURBS was first
addressed in the doctoral thesis of VERSPRILLE (1975). NURBS enable an exact formu-
lation of rational conic sections which are frequently used in engineering applications.
Nowadays, they represent the basic technology in free-form design in commercial CAD
systems, such as CATTIA or RHINO and data exchange standards, as for example IGES,
STEP or PHIGS. NURBS may be regarded as a superset of B-splines, which themselves
represent a superset of Bézier functions.

Apart from NURBS, a variety of alternative analysis-suitable CAD function types exist.
Since a comprehensive treatment is beyond the scope of this thesis, only two further
established methods are briefly described.

The first approach represents finite element formulations with subdivision techniques
that have been successfully applied to the analysis of thin and moderately thick shell
structures by Cirak and coworkers (CIRAK ET AL. (2000), CIRAK AND ORTIZ (2001),
LONG ET AL. (2012)). Smooth C'-continuous subdivision surfaces are generated from
the limit of a recursive computation, which is based on the triangulation of nodal point
sets with Loop’s subdivision scheme (LooP (1987)). Subdivision techniques are most
frequently used in the animation industry. Due to their lack of compatibility with
NURBS, they are not widely adopted in engineering design.

Secondly, T-splines become of great importance in IGA, as they represent a general-
ization of NURBS, by using the concept of hanging nodes known from classical FEA.
Thus, T-junctions and unstructured discretizations of the domain are possible and the
tensor product constraint of NURBS discretizations is removed. T-splines are NURBS-
compatible and carry over most of their basic properties. Additional benefits of analysis-
suitable T-splines are, among others, local refinement capabilities and the watertight
merging of geometric domains. The drawback of trimmed NURBS surfaces may be
solved by using untrimmed T-splines. Details of trimmed NURBS surfaces are investi-
gated, for instance, in KIM ET AL. (2009) and SCHMIDT ET AL. (2012). The application
of T-splines in the isogeometric analysis of solids and fluids has been successfully carried
out in BAZILEVS ET AL. (2010), DORFEL ET AL. (2010), L1 ET AL. (2012) and SCOTT
ET AL. (2012).

For more details with regard to subdivision techniques and T-splines which are not
considered within this thesis, the aforementioned citations and references therein are
recommended.

3.2 Parametric geometry representation

In Section 3.1, the concepts of parameter space, knot vector, basis function and control
polygon have been briefly mentioned. Now, these topics are investigated in detail as they
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3 NURBS-based Geometry Modeling

provide the fundamental ingredients for the isogeometric shell analyses with NURBS
functions in this work.

3.2.1 Analytic representation forms

The mathematical description of geometric objects is based on either
e explicit,
e implicit or
e parametric formulations
depending on the type of problem under consideration.
In Figure 3.1, the different forms of representation are shown as functions of the Carte-
sian coordinates z, y and z and independent parameters & and 7 for the example of

a spherical surface with unit radius and center to be coincident with the origin of the
Cartesian coordinate system.

Explicit : z2=1+4/1— 122 — 9?2

Implicit : Py -1=0

Parametric : (&, n) = sin (§) cos ()
y(&n) = sin (&) sin (1)
z(&m) = cos (£)

Figure 3.1: Unit sphere — types of representation.

Although the explicit representation of geometric objects is frequently used due to its
simplicity, it is rarely applied in CAD, as distinct disadvantages have to be considered.
Explicit formulations are axis dependent and thus difficult to transform. The definition
of infinite derivatives is impossible for polynomials and multi-valued functions have a
complex structure. Finally, a large group of geometric objects cannot be defined uniquely
in explicit form, as illustrated in Figure 3.1 in the required distinction of cases.

In the field of CAD, implicit and parametric forms are particularly preferred. Implicit
models are also axis dependent; however, multi-valued and closed forms, as well as in-
finite slopes can be defined precisely. They are well suited for the determination of
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3.2 Parametric geometry representation

intersections and the evaluation of spatial positions on geometric objects.

The main focus within this work is on parametric representation techniques, which are
most widely used in the field of CAD. Parametric forms allow for an elegant description
of multi-valued and closed form functions and the computation of infinite derivatives.
They are axis independent, naturally define bounded domains by the bounds of the
parameter space, and in addition to analytical representations, offer a straightforward
definition of free-form shapes, as required for modeling car bodies, ship hulls or aircraft
wings. Additionally, a large variety of stable and efficient numerical algorithms exist
(P1EGL AND TILLER (1997), FARIN (1999), FARIN (2002)).

3.2.2 NURBS parameter space, knot vectors

The modeling of NURBS-based geometry is defined as a linear combination of NURBS
basis functions and associated vector-valued coefficients, denoted as control points. The
computation of NURBS functions in parametric form requires the definition of a param-
eter space Qpa, which is related to knot vectors. These vectors are defined as a sequence
of equal or increasing real numbers, called knots. For a fixed polynomial degree p and
number £ of basis functions, a knot vector 2 has the following structure in one dimension

E={& & . uaprr} (3.1)

A normalization of the knot vector domain is irrelevant for the shape of the basis func-
tions, which do not depend on absolute knot values, but on their relative distances,
i.e. knot spans. E directly determines the properties of the basis functions and thus
the geometric object. Knot spans of nonzero length subdivide the entire geometry into
elements.

Open Periodic

Uniform Uniform
1={00,01%21,11}
{

2 ={0000,1,2,3,1,1,1,1}

Nonuniform

=3 = {0,0,00,3. 5,551,111}

Figure 3.2: Types of knot vectors.
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3 NURBS-based Geometry Modeling

The two main classes of knot vectors are periodic and open, with a further differentia-
tion into the categories uniform and nonuniform, which depends on the arrangement of
knot values, as shown in Figure 3.2.

Both open and periodic knot vectors enable the modeling of geometries that are either
open or closed. In open knot vectors, the first and last knots have a multiplicity of p + 1,
with p again defining the polynomial degree of the basis functions. The geometry inter-
polates the endpoints of the associated control polygon and is furthermore tangential
to the first and last segments of the control net. The first plots of NURBS geometries,
which illustrate the concept of control polygons more clearly, are provided in Section 3.4.
Open knot vectors are most frequently used in computer-aided geometric modeling and
will be exclusively used in this work.

The end knots of periodic knot vectors in contrast to open vectors only possess a mul-
tiplicity of one. The geometric object does not interpolate the vertices of the control
polygon in general.

Uniform knot vectors are characterized by equidistant knot spans, which yield a uniform
parametrization of the geometry. Internal knot values may only occur once. Nonuniform
knot vectors either possess unequal knot spacings and/or internal knots with multiplic-
ity greater than one. They are well suited for modeling sharp corners and kinks and to
adequately resolve domains of high curvature.

The knot vectors E; and Zy in Figure 3.2 are two examples of open and uniform
types. Obviously, the first and last knots are repeated p times and internal knot values
(0 < £ < 1) only show up once. E; represents a knot vector for computing basis func-
tions up to the polynomial order two, whereas =5 leads to cubic basis functions.

H3 is open and nonuniform. Internal knot values are unequally spaced or repeated,
which, as previously mentioned, significantly affects the properties of the NURBS basis.
Examples of periodic knot vectors are provided with =, and s, which have the same
principal structure as open knot vectors, except for the multiplicities of the first and
last knot values.

The NURBS curve and surface objects to be investigated in this work can be described
with either one or two parameters, £ and 7. The associated parametric domains are
therefore either line segments or rectangles, which are defined by the tensor product of
two knot vectors 2 and H, respectively.

The shell surfaces of Euclidean space R* whose topologies are rectangular in the para-
metric space, only require the definition of one patch. For more complex geometries or
the application of different physical models, several patches have to be set up and joined
along common interfaces in order to define the complete body. Details of connecting
several NURBS surface patches are described in Section 3.6.
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3.3 B-spline basis functions

3.3 B-spline basis functions

The notion of a knot vector introduced in Section 3.2.2 enables a complete definition of
the parameter space of NURBS patches. For the computation of the piecewise rational
NURBS basis functions, the derivation of polynomial B-splines which only depend on
the knot vector data is required in the first step. As illustrated in the subsequent
section, NURBS functions are defined with B-splines and the concepts of homogeneous
coordinates and projective geometry.

Higher-dimensional (bivariate and trivariate) NURBS cannot be derived directly from
the higher-dimensional B-spline functions; see Section 3.4. Therefore, the subsequent
computation of B-spline basis functions is restricted to the one-dimensional case.

Recursive computation

B-spline functions are linearly independent, piecewise polynomials with compact sup-
port. On the knot spans [¢;,&;41), the one-dimensional segments of B-splines are in-
finitely continuously differentiable, whereas at knot locations the pieces are tied together
with reduced continuity. The maximum regularity of B-spline functions is p — 1.
Different possibilities of computing the B-spline basis functions exist. Most frequently,
the recursive computer-compatible relation of Cox (Cox (1972)) and de Boor (DE BOOR
(1972)) is used.

Starting from the piecewise constant, one-dimensional functions of parameter &,

1 for & <& <&
Bo= {B: = 3.2
o= B ={ oS (32)
higher-order (p > 0) B-spline functions are derived recursively as follows
§-& Sirpr1 — &
B, = {Bi, ()} = =—FBip1 () + = ——Br1,1(9). (33)
£i+p - fz §i+p+1 - fi+1

The piecewise constant B-splines B are defined on the entire parametric domain Qpa
of E, but take on values of one only within the half-open interval [§;,&;41) and are zero
elsewhere. Higher-order functions are linear combinations of two basis functions of one
order lower together with associated coefficients. Equation (3.3) may lead to a quotient
of %, which by definition is set to zero.

In Figure 3.3, the graphical interrelation of the recursive computation is displayed for
one-dimensional B-splines up to order four according to PIEGL AND TILLER (1997).
The dependency on the parametric coefficients is omitted therein.
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Bio
> By
By Bi s
> By B
Bs By ;9
> Bs 1 Bys :
Bio Bso

Figure 3.3: Graphical recursive relation — one-dimensional B-spline basis.

Important properties of the B-spline basis functions also with regard to the isogeometric
shell analyses of the subsequent chapters are

e Local support: Each B-spline basis function B, (§) is nonzero only on the knot

span [€i, §irpr),
e Local linear independence of B-spline basis functions,

e Positivity: Each B-spline basis function B, (§) is nonnegative in the entire para-
metric domain of &,

e Partition of unity: The sum of all B-spline basis functions for any parameter ¢ is
equal to one,

e Extrema: Except piecewise constants, B-spline basis functions B; , (§) have exactly
one maximum value.

Uniform B-spline basis

In a first example, uniform B-spline basis functions from zeroth to second order are
computed according to Equations (3.2) and (3.3) and displayed in Figure 3.4 for the
open uniform knot vector 2y = {O, 0,0, %, % 1,1, 1} of Figure 3.2.

The plot clearly illustrates that up to a polynomial order of p = 1, the one-dimensional
B-spline basis is identical to the conventional Lagrange basis functions. With increasing
order, however, both bases differ significantly from each other. Whereas the higher-
order B-splines with uniform knot vector have a uniform and homogeneous shape, the
structure of Lagrange functions become more and more heterogeneous with increasing
polynomial order. Additionally, the support of higher-order B-splines is distributed over
several knot spans, whereas the Lagrange basis is confined to one single element.
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1 Bso Bio Bso Bio=Byy =0 —o0<E< o0,
Bsg =1 0<¢<y,
=0 else,
B4,0 = % < 6 < %7
=0 else,
Bs o =1 % <E<,
0 ; : — =0 else,
0 3 3 1 Bﬁ,() = B71() =0 —o0< f < 0.
By =0 —00 < £ < 00,
Bzylzlf?)f 0§€<%,
=0 else,
Byy =3¢ 0<e<t,
—2-3 1<e<?
=0 else,

Biy =—1+43¢ $<6<3,
=3-3¢ :f<¢€<1,

=0 glse

Bsp =-2+436 2<¢<1
= clse,

Bg1 = *OO<$<OO

By = (=14 3¢)? 0<¢<,
=0 else,

32,2:65—%2 0<§<%7
= 3(=2+3¢)? 3<€<?
=0 else,

Bsy = 3¢ 0<€<y,
= S40e-92  l<e<?
=3(-1+¢)? <<
=0 else,

Byo :%(_14‘35)2 §§§<§~,
=526 5 <8<,
=0 else,

Bsy = (=2+3¢)° 1<e<y,
=0 else.

Figure 3.4: Constant to quadratic uniform B-spline basis of Z;.

The effects of higher-order and higher-continuity NURBS discretizations on the compu-
tational results of the developed isogeometric shell finite element formulations will be
investigated in detail in Chapter 5 and the following.
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The piecewise structure of higher-order B-splines is illustrated in Figure 3.5 for the
quadratic B-spline Bj,, which was derived in Figure 3.4. The function is composed

of three polynomial segments, which are defined on the knot spans [0, %) B, %) and

[%, 1)4 Whereas the polynomials are infinitely continuously differentiable, Bj, repre-
sents a CP~™ = C?~! = (C'-continuous piecewise function due to the existence of the
internal knot values £ = % and £ = 2} with multiplicity m = 1.

Figure 3.5: Polynomial segments of B .

Nonuniform B-spline basis

In contrast to Lagrange polynomials, B-splines and NURBS allow for a systematic con-
trol of continuity by repeating existing knots, which is an essential property for the
geometric modeling of objects with kinks and sharp bends. Inserting multiple knots
additionally reduces the support of the basis. Apart from purely geometric considera-
tions, the control of continuity of the basis functions is fundamental with regard to the
analysis of non-smooth problems such as contact, sharp boundary layers in plates and
shells or material interfaces, for example.

1 8
0 & & 1

Figure 3.6: Cubic nonuniform B-spline basis B3 of E3.

=3 of Figure 3.2 represents an open nonuniform knot vector for computing B-spline
basis functions of order three. Non-uniformity of Z3 is based on both nonuniform knot
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3.3 B-spline basis functions

spans and the existence of multiple interior knot values at £ = Tlo' Therefore, the max-
imum available continuity of C? is reduced to C' at ¢ = 1170 Compared to the uniform
quadratic basis of Figure 3.4, the heterogeneous shape of the cubic B-spline functions
becomes clearly apparent in Figure 3.6.

Periodic B-spline basis

Finally, periodic uniform linear and quadratic B-spline basis functions are derived from
the knot vector =4 of Figure 3.2 and are displayed in Figure 3.7. All functions are
identical and shifted within the parametric domain, which offers efficient computation
strategies.

Finite element analysis with periodic B-splines defined on regular parametric domains
has been investigated in HOLLIG (2002), HOLLIG (2003), among others. Periodic basis
functions will not be used in this work. For more details with regard to both CAD and
FEA applications, the reader is referred to ROGERS AND ADAMS (1990), PIEGL AND

TILLER (1997), FARIN ET AL. (2002), HOLLIG (2002) and HOLLIG (2003).

11 Biin Baapn Bsi, Baip 1

2 4 6
0 0 0 10 10
Figure 3.7: Periodic B-spline basis functions p = 1,2 of Zy.

t t t
8 2 4 6 8
10 1 0 10 10 10 10 1

=

Derivatives of B-spline basis functions

Derivatives of B-spline functions are obtained by formal differentiation. A general for-
mula for computing the b-th derivative of one-dimensional B-spline functions B, (&) is
given as follows

(b—1) (b—1)
B — {ng) (5)} —y (Bi,bp—l ©  BYL(© ) (3.4)

R Cirp— & Cirpr1 — &in1

The details of Equation (3.4) are provided, for instance, in PIEGL AND TILLER (1997),
as well as strategies for applying the Cox-de Boor recursion formula for a more efficient
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3 NURBS-based Geometry Modeling

computation of B-spline derivatives.

The higher continuity of the basis may result in derived quantities such as strains or
stresses in solid FEA, which are again continuous, a fact that does not show up with
standard Lagrange discretizations independent of their polynomial order.

The required modifications of conventional methods to unlock element formulations of
isogeometric higher-order and higher-continuity shell analysis, which account for con-
tinuous strain and stress distributions, are developed in Chapter 6.

3.4 NURBS curves and surfaces

So far, the notion of knot vectors and the computation of one-dimensional polynomial
B-spline basis functions have been introduced. For deriving NURBS functions, however,
additional geometric information based on the concepts of homogeneous coordinates and
projective transformation is required, which is explained within this section.

The geometric definition of NURBS objects in RY with “d” representing the spatial
dimension, is related to a perspective map of weighted polynomial B-spline data from
the projective space R4*L. Therefore, at first B-spline geometries are defined as linear
combinations of the basis functions and vector valued coefficients associated with the
control points.

B-spline curves in RY

A B-spline curve C () of R? with basis of order p is defined as

k+1

C)= Z Biy (&) Pi. (3.5)

P = {P,} € RY represent the position vectors to the control points, whose linear inter-
polation is denoted as control polygon. Every control point is uniquely associated with
one basis function. The properties of C (&) directly follow from the properties of the
corresponding B-spline basis. The entire curve is composed of individual polynomial
segments, which are connected at the knot locations mapped into the spatial domain.
B-spline objects are contained in the convex hull of their control polygons, which enables
intuitive shape design and results from the non-negativity, partition of unity and local
support properties of the B-spline basis. For a polynomial order of one, the geomet-
ric object coincides with the control net and will otherwise only be approximated. By
changing the spatial location of a point P;, the curve is affected only in the interval
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3.4 NURBS curves and surfaces

associated with the knot spans [&;,&;4,41) due to the local support property of the B-
spline basis. In contrast to Bézier objects, the number of control points {P;} to be used
for the modeling C () is independent of the order of the basis.

1
By
By -
Byz DBz 43 Bs3  Bggs
// \\
0 ‘ ¢
1 2 3
0 1 1 1 1

2 ={0,0,0,04,331,1,1,1}

P(il?,y) = {(070) ’ (210) ’ (174) ’ (774) ’ (57_2) ’ (81_2) ) (872)}

P Py

Figure 3.8: B-spline curve Cg, &).

As a first example, the B-spline curve Cg, (€) € R? is presented in Figure 3.8. The
cubic B-spline basis is derived from the open uniform knot vector Zy of Figure 3.2.
The four knot spans [O, %) , [%, %) , [%, %) , [%, 1) subdivide the object into four elements,
which are displayed with different linestyles. The uniform open knot vector defines the
maximum continuity of C?~! = C? of Cg, (§) and an identical orientation of the curve’s
end tangents with the end segments of the control mesh. Clearly, the convex hull prop-
erty and the approximation of the control mesh can be ascertained. With decreasing
polynomial order, the curve converges toward the control polygon, whereas increasing
the order moves the object further away from the control net, but preserves the convex

hull property.
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B-spline geometries are invariant with respect to affine transformations, which in gen-
eral are composed of linear transformations, such as rotations, shearing or scaling and
subsequent translation. Affine invariance represents an important property in CAD ap-
plications, as modifications of the geometric objects may therefore be directly applied
to the control point data.

Compared to classical FEA, in NURBS discretizations, the entire parametric domain
Qpa of a patch, which may consist of an arbitrary number of elements, is mapped with
one global geometry function into the spatial domain Qp, (COTTRELL ET AL. (2009),
DORFEL ET AL. (2010)). See, for instance, Figure 3.12.

Weighted B-splines, projective transformation and NURBS curves

With the definitions of B-spline curve objects at hand, the geometric derivation of
NURBS objects on the basis of perspective mappings of the weighted polynomial B-
spline data will now be explained. Geometries in the projective space may be described
by using the concept of homogeneous coordinates, which are frequently denoted as
weights {w;}. A weighted polynomial B-spline geometry of R*! is obtained by first
multiplying its control point data with the homogeneous coordinates. By means of pro-
jective transformation, the weighted geometry of R4*! is subsequently mapped onto the
projective hyperplane H = 1 of Euclidean space R, which may be graphically visualized
by straight lines passing from the weighted control points through the origin 0 of the
coordinate system {z,y, z}. Due to perspective invariance, the transformation of the
entire geometric object is accurately modeled by applying the mapping to the control
point data only. In Figure 3.9, the projection of a weighted polynomial B-spline curve
C" (€) € R? onto a rational curve C () € R? is schematically shown.

Algebraically, the projection can be determined by the quotient of the weighted B-spline
geometry and a scalar weighting function W (€), which is defined in Equation (3.6) for
a NURBS curve. W (&) represents the sum of all B-spline basis functions of a patch
that are multiplied with the control point weights.

B Ccw (g) B zz:l Bi,p (5) P:U
OO T Y

The weights directly affect the NURBS geometry. For values w; > 1, the object moves
toward the control polygon, whereas for weights smaller than one, the influence of the
control point on the geometry decreases. Control points with w; = 0 do not affect the
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3.4 NURBS curves and surfaces

Figure 3.9: Projective transformation — generation of a NURBS curve.

geometric object at all. If all {w;} are equal to one, the NURBS basis simplifies to the
polynomial B-spline basis (ROGERS AND ADAMS (1990), PIEGL AND TILLER (1997),
FARIN (1999) or FARIN ET AL. (2002)).

Alternatively, the rational NURBS basis of R? may be directly determined in R?: The
polynomial B-spline basis is first weighted with the homogeneous coordinates {w;} and
subsequently divided by the weighting function W (&), as shown for the one-dimensional
case in Equation (3.7).

N, = (N, ()} = Bl _ D ©) w (3.7)

W 2 Bip (&) w
=

The NURBS object finally results from the NURBS basis N, and the control point data
of RY as defined in Equation (3.8)

C() = ZNM) € P;. (3.8)

This algebraic approach, which is identical for curves, surfaces and solid bodies, has
the same principal structure as the one introduced for modeling B-spline curve objects
according to Equation (3.5). NURBS inherit the essential properties of B-spline basis
functions, such as partition of unity, linear independence, local support and positivity.
Due to their rational character, they additionally allow for an exact modeling of conic
structures and enable a higher geometric flexibility than B-spline discretizations.
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3 NURBS-based Geometry Modeling

NURBS conic sections

Conic sections represent rational functions of second order and may be exactly defined
with quadratic NURBS.

For the example of a quadratic circular segment of R?, the definition of control point
positions and their associated weights are briefly explained and shown in Figure 3.10.
Circular arcs with sweep angle a less than 180° may already be modeled with one
quadratic NURBS element, which consequently consists of three basis functions and
associated control points. Arcs with a > 180° are not frequently used in CAD, as they
require the use of negative weights, which leads to an undesired loss of the convex hull
property among others (PIEGL AND TILLER (1997)).

The open knot vector for recursively computing the quadratic basis functions has the
structure 2 = {0,0,0,1,1,1} and results in an interpolation of the control polygon at
both ends, i.e. Py and P3 by the curve object C (&) with weights w; = ws = 1. For this
simple example, the control polygon only consists of two straight line segments P; Py
and P, P53 of equal length, which simultaneously define the end tangents on the circular
arc. A radius of r and a sweep angle of a = 60° are selected, such that the coordinates
(2, yi, w;) of the end control points can be specified by P; = (0,0,1) and P3 = (7,0, 1).
The intersection of the tangent vectors of the arc yields the position of control point P,
which is (g tan 30° 7, wz). For the exact definition of the circular arc with sweep angle

60°

@, the weight w, has to be equal to half of the cosine of o, which is w, = cos %5-.

P = (%,tanSOog,cos %)

Ps = (Ta 0, 1)

Figure 3.10: Circular arc (o = 60°) — quadratic NURBS curve.

The complete circle may now be modeled by combining six of the previously derived
circular segments, which are only C°-continuous at their ends due to the open knot vector
property. The entire NURBS object is, however, C''-continuous, as the tangent vectors
of adjoining segments are both collinear and of equal length. With regard to analysis,
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3.4 NURBS curves and surfaces

C'-continuity is restricted to the undeformed configuration without the definition of
further constraints, as the relocation of control point positions during deformation may
change both the orientation and length of adjacent tangent vectors.

Modeling of the NURBS circle with segments of sweep angle o = 90° or sweep angle
a = 120° for example yields the weights wy (o = 90°) = g and wy (a =120°) = L of
control point Py, respectively. In Figure 3.11, two examples of quadratic NURBS circles
with three and six segments are shown.

Figure 3.11: Full circles — three and six NURBS segments.

NURBS surfaces

The geometric description of NURBS surface structures of R? requires the definition of
bivariate NURBS basis functions. Therefore, in addition to the knot vector E, a second
knot vector denoted as H is introduced. Both vectors may have a different parametriza-
tion and thus define basis functions of different number, continuity and polynomial order
in each parametric direction. In contrast to B-splines, bivariate NURBS are not the re-
sult of applying a tensor product scheme to the one-dimensional NURBS basis functions,
as is shown in Equation (3.9)

Nyq = {Ni’i}q (577)} =01 ZBle’p (€) Cha (n) iy . (3.9)

2 X B, (§) Gy (n) wys

i=1j=1 ’

The polynomial degree in £ direction is denoted with p; the one for the 7 direction with
q. {Bip (&)} and {C; 4 (n)} represent the univariate polynomial B-spline basis functions
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3 NURBS-based Geometry Modeling

of both parametric directions and {w;;} are the scalar weights. A NURBS surface can
be consequently defined as

k41 14+1

S(Em) => > N (&) Py, (3.10)

i=1 j=1

where {P;;} represents the set of control points. From the properties of one-dimensional
NURBS, the following main properties of bivariate NURBS basis functions and surfaces
can be established: positivity, linear independence, partition of unity, extrema and local
support of the basis, as well as affine invariance and convex hull property of the geo-
metric objects.

Construction of bivariate basis:

Geometric NURBS mapping:

n
P13,P23,P33,Py3,Ps53

Geometric
map

§

1 2

Pl,l Pg’l P3 1 P4’1
Figure 3.12: Spherical NURBS surface and bivariate basis functions.

In Figure 3.12, the construction of a spherical NURBS surface of R and its required “in-
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3.5 Algorithms for a systematic modification of NURBS

gredients” are briefly explained. The parametric domain Qpa is defined by the two knot
vectors 2 = {0,0,0,%,2,1,1,1} and H ={0,0,0,1,1,1}, from which the basis func-
tions can be derived according to Equations (3.2), (3.3) and (3.9). As examples, the
two biquadratic NURBS basis functions N2212 (&,m) and N;}f (&,1) and the involved one-
dimensional B-spline basis functions are shown.

Although the entire object can already be modeled with one element, a refined dis-
cretization with three elements in circumferential direction and one element in meridian
direction is selected, which illustrates more clearly the tensor product structure of the
parametric domain Qpa and the local support properties of the bivariate basis functions
N,

The computation of the control point locations and associated weights for conic sections
has been briefly explained herein. A systematic modification of NURBS surface objects
is identical to NURBS curves. Algorithms for computing the refined control point data
are dealt with in more detail in Section 3.5. Therefore, the refined control polygon is
only visualized without detailed derivation.

3.5 Algorithms for a systematic modification of NURBS

In this section, three basic algorithms for increasing the geometric flexibility of NURBS-
based objects are presented by modifying the properties of the associated basis functions.
These techniques, which are frequently denoted as

e knot insertion, knot refinement,
e order elevation, degree elevation and
e k-refinement,

do not only affect the geometric shape, but with regard to analysis and in particular the
subsequent derivation of isogeometric shell finite elements, they are also used to control
the discrete solution spaces of physical quantities such as the displacements, strains and
stresses.

3.5.1 Knot insertion, knot refinement

The insertion of a single knot or several knots simultaneously in a vector = is commonly
denoted as knot insertion or knot refinement and relies on the Oslo algorithm originally
developed in COHEN ET AL. (1980). For multivariate NURBS, knots may be inserted
independently for the individual parametric directions.

Knot insertion is similar to conventional h-refinement techniques of classical FEA by
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3 NURBS-based Geometry Modeling

subdividing elements into smaller ones. The higher flexibility of knot refinement, how-
ever, is related to the potential of additionally inserting existing knots and therefore
controlling the continuity and support of the NURBS basis without changing its poly-
nomial degree. The insertion of existing knots does not generate new elements.

The subdivision of the parametric domain and thus the geometric NURBS object into
new elements by the insertion of new knots requires the recomputation of both the basis
functions and associated control points, such that the object remains geometrically and
parametrically unchanged. Equation (3.11) defines the calculation of the new control
points {F} as a linear combination of the initial data {P} for the one-dimensional case
(P1EGL AND TILLER (1997)). One single knot £ is inserted in between two existing
values &, and .1, where a represents the position in the knot vector. As usual, p is the
polynomial degree of the basis. Inserting single knots only requires the computation of
p new control points. All other control vertices coincide with the initial configuration

1 'L'Sa_pv
Y= % a—p+l1<i<a, (3.11)
i+p i
0 a+1<71.

In Figure 3.13, knot insertion is applied to the cubic B-spline curve of Figure 3.8. A
new knot £ = % is therefore inserted into the original vector Zs, which yields the refined
knot vector Zs. Both the initial and the refined B-spline basis functions are displayed-
the former (Bj) with black dashed lines, the latter (Bj) in color. The recursive compu-
tation of the B-spline basis reveals that the first two and the last functions of B3 and
B; coincide. The refined basis maintains its polynomial order as well as its continuity.
It contains the initial basis as a subset.

The computation of the p = 3 new control points follows from Equation (3.11) with the
location of the new knot & = % being equal to ¢ = 6 in the knot vector.

The figure clearly illustrates that the initial and the refined curves Cg, (¢) and Cg, (€)
are geometrically identical. The green dots on the curve objects show the initial split
into four elements, whereas the extra turquoise dot represents the additional subdivi-
sion of knot span [%, Zi) into two spans. The individual line segments are displayed in
alternating solid and dashed line styles.

Knot refinement can be described as a process of sequentially inserting single knots into
the vector. Therefore, the refinement algorithms of knot insertion may be used repeat-
edly without the need of additional means. Nevertheless, significantly more efficient

procedures exist, with regard to concurrent insertion of knots, which are not reproduced
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Figure 3.13: Knot insertion — B-spline curve C= (£).
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herein and can be found, for instance, in PIEGL AND TILLER (1997).
Due to the tensor product scheme of the parameter space Q,, = 2 @ H for the model-

ing of NURBS surfaces, the one-dimensional algorithms can be directly applied to the

rows and columns of the control mesh. Standard knot insertion and knot refinement

consequently affect the entire patch and thus preclude local refinement.

In Figure 3.14, the spherical biquadratic NURBS surface of Figure 3.12 is reused to
present three different levels of mesh refinement due to knot insertion. The spatial
domain consists of one single patch ,, with rectangular topology and can thus be
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3 NURBS-based Geometry Modeling

modeled with one biquadratic NURBS element, which is shown in the left plot as a
linear combination of nine bivariate NURBS basis functions and corresponding control
points according to Equation (3.10). The refined models in the center and the right side
of the figure both utilize a discretization with three elements in circumferential direction
and either one or three elements in meridian direction. The associated knot vectors are
additionally displayed.

E={000111} =={0004.3111}

H={0,00,1,1,1} H=1{000,1,1,1}

Figure 3.14: Knot refinement — spherical NURBS segments and control polygons.

The topic of local mesh refinement is not covered within this work. Therefore, in the
following, some fundamental approaches are only briefly summarized.

In HOLLIG (2003), a subdivision technique for B-splines referred to as a two-scale re-
lation was presented as a linear combination and averaging approach of B-spline basis
functions with the same degree defined on half of the original grid width. Originally, the
concept of hierarchical B-spline refinement was introduced in FORSEY AND BARTELS
(1988).

Schillinger and coworkers recently employed and further developed the hierarchical
adaptive approach for both B-splines and NURBS (SCHILLINGER (2012), SCHILLINGER
ET AL. (2012)) in combination with the finite cell method, an embedded domain ap-
proach which was developed in PARVIZIAN ET AL. (2007).

In VUONG ET AL. (2011) hierarchical B-splines and NURBS were used as locally refined
function spaces to be integrated in the framework of isogeometric analysis and applied
to two-dimensional problems.

Bornemann and Cirak presented a hierarchical B-spline finite element concept based on
subdivision projection schemes, which enable a straightforward implementation into an
existing finite element code architecture (BORNEMANN AND CIRAK (2013)).
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3.5 Algorithms for a systematic modification of NURBS

3.5.2 Order elevation, degree elevation

The second strategy for increasing the flexibility of NURBS objects is degree elevation
or order elevation of the NURBS basis. In this work, the expressions “degree” and “or-
der” have the same meaning, whereas in many textbooks on CAD the term “order” is
associated with the degree of polynomial functions plus one.

Due to order elevation, the NURBS object is embedded in a higher-dimensional vector
space without changing the geometry and parametrization. This method is similar to
p-refinement of conventional FEA (SzABO ET AL. (2004)) and identical for the case of
C°-continuity of the basis in the entire domain.

The principle steps of order elevation are briefly outlined in the following. First, the
parametric domain Qpa is subdivided into Bézier, i.e. C°-continuous elements by suc-
cessively inserting existing internal knot values. Thus, the number of elements remains
unchanged. Subsequently, order elevation is performed on each knot span either by one
or by several degrees in one step. Finally, redundant multiple knots are removed in
order to reconnect the individual knot segments. The polynomial order of the NURBS
object is increased, while the continuity of the basis remains unchanged.

In order to preserve the original shape of the geometry, order elevation requires the re-
computation of control point locations. For NURBS structures, the new control points
{F} are calculated from the original data {P} together with the coefficients v; on Bézier
segments according to Equation (3.12) for a one-dimensional model with an order el-
evation by one degree (PIEGL AND TILLER (1997)). More sophisticated and efficient
numerical algorithms exist for degree elevation by several orders in one step; they are,
however, not reproduced herein as they are very complex. The reader is therefore re-
ferred to the textbooks and articles on CAD cited throughout this chapter.

P; =(1—%)Py+~%Py,, with

v = ;T11 i=1,.p+2 (312)
Order elevation by one degree will now be made concrete for the cubic B-spline curve of
Figure 3.8, which consists of four elements. The parametric domain Qpa is defined
by the open uniform knot vector 2, which yields C*-continuity. In order to pre-
serve this continuity, the order elevated knot vector must have the following structure:
=, = {O, 0,0,0,0,4,1,2/2°3°371 11,1, 1}. This enables the computation of the refined
basis functions By of order four, as displayed in color in Figure 3.15. The initial cubic
basis (Bj) is shown in a black dashed line style.
A detailed presentation of the entire algorithm for computing the new control points,

which is nested in the procedure of Bézier segmentation, order elevation and knot re-
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Figure 3.15: Order elevation — B-spline curve C= (£).
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moval, is too complex to be reproduced herein. Therefore, only the final result of the
new control point data is presented and highlighted in red. The original control mesh
is displayed with blue solid lines. The number of elements remains unchanged.

Degree elevation of NURBS surfaces is performed in the same manner, as explained for
knot insertion of surface structures in Section 3.5.1 by applying the one-dimensional
algorithms to the rows and columns of the control mesh. A large variety of efficient and
stable algorithms for order elevation of both NURBS curves and surfaces can be found
in the CAD-based literature referred to in this chapter.
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3.5 Algorithms for a systematic modification of NURBS

3.5.3 K-refinement

The knot refinement and order elevation procedures introduced so far represent power-
ful computational algorithms in order to enrich and modify the NURBS basis and to
increase the flexibility of geometric objects.

A novel refinement strategy denoted as “k-refinement” combines the two aforementioned
methods of knot refinement and order elevation, such that the refined NURBS basis is
of higher order and higher continuity. It was presented in HUGHES ET AL. (2005) within
the establishment of isogeometric analysis.

The modus operandi of k-refinement, in principal, consists of first elevating the degree
of the NURBS basis functions up to a desired order, followed by the insertion of distinct,
new knot values into the order-elevated knot vector. The maximum possible continuity
of the NURBS basis, however, can only be obtained if the NURBS surface topologically
corresponds to a rectangle and can thus be modeled with one element. Continuity con-
straints between elements in the initial configuration of the knot vector will therefore
be retained during refinement.

In Figure 3.16, the concept of k-refinement is illustrated for a one-dimensional paramet-
ric domain. For simplicity, a discretization with nonrational B-spline basis functions is
defined, which only depends on the knot vector. The approach of k-refinement applied
to NURBS, however, is identical.

A linear (p = 1) B-spline basis B (£) of an open knot vector E with one single knot span
is order-elevated to degree three first and subsequently uniformly refined with five dis-
tinct knot values. The new knot vector E now subdivides the domain into six elements.
The k-refined cubic B-spline basis Bj (£) has a maximum continuity of C?~' = C2.

== {0011} E={000042.3831111}

Figure 3.16: K-refinement — one-dimensional B-spline basis.

K-refinement results in a homogeneous shape of the basis functions independent of their
polynomial order, which is in clear contrast to higher-order Lagrangian C°-continuous
functions associated with corner and interior nodes. A comparison of the homogeneous
structure of maximum-continuity NURBS basis functions of order three to the inhomoge-
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neous pattern of cubic Lagrange functions is graphically illustrated for a one-dimensional
discretization with ten elements in Figure 5.6.

The superior behavior of k-refined NURBS in the analysis of structural and fluid me-
chanics problems, compared to conventional h- and p-refinement, has already been estab-
lished in the first paper on IGA (HUGHES ET AL. (2005)) and has since been confirmed
in a multitude of scientific works. For the derivation of NURBS-based shell finite ele-
ments with Kirchhoff-Love kinematics, which require functions with square integrable
partial derivatives of order two, the formulation of higher, at least C'-continuous basis
functions, is essential. This is shown in Chapters 4 and the following. The effect of
higher-continuity k-refined NURBS on the accuracy of discrete solutions in isogeometric
shell analysis of smooth structural mechanics problems is investigated in Chapters 5 to 7.
An in-depth mathematical treatment of the approximation properties of higher-continuity
NURBS due to k-refinement will not be reproduced herein. Complementary literature
is e.g. BAZILEVS (2006), COTTRELL ET AL. (2007), HUGHES ET AL. (2008) and EVANS
ET AL. (2009).

3.6 Multiple NURBS surface patches

The existence of complex geometries, material interfaces or discontinuities in the thick-
ness function of the shell body, for instance, require the definition of several patches and
adequate coupling techniques.

Whereas the continuity within patches may be of higher order, at patch interfaces it
is, in general, not greater than C° without employing further constraint conditions. In
this thesis, only smooth NURBS surface multipatches with compatible parametrization
along common interfaces are used. Thus, the control points of common edges spatially
coincide. A corresponding example of a cylindrical shell with four NURBS patches is
shown in Figure 3.17.

For subsequent FEA, the same degrees of freedom are assigned to spatially coincident
control points, which yields a C°-continuous patch coupling. This, however, is not
sufficient for several isogeometric shell formulations of Chapter 4, which are based on
Kirchhoff-Love shell kinematics.

In KIENDL ET AL. (2009), the authors derived an isogeometric rotation-free Kirchhoff-
Love shell element and also addressed the problem of smooth multipatch coupling. By
taking into account the rectangular structure of the NURBS control mesh, they suggest
the application of linear constraint equations in master-slave form on patch interfaces
with identical parametrization in order to strongly enforce slope continuity. For connect-
ing patches with kinks, the relations to preserve the angle during deformation become
nonlinear, which prevent a strong enforcement of the constraint conditions. Kiendl and
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Figure 3.17: Compatible NURBS multipatch — C°-continuous coupling.

coworkers therefore introduce a penalty-type method denoted as the “bending strip”,
which weakly imposes the constraint of connecting surface patches with slope continuity
(KIENDL ET AL. (2010)).

This approach is used in Chapter 7 for the smooth coupling of compatible NURBS sur-
face patches. It is schematically illustrated in Figure 3.18 for smoothly connecting two
compatible NURBS surface patches of a cylindrical shell.

Bending strip (green)

Physical domain Qpa, bend. Parametric domain Qpa,bend

1

Figure 3.18: Bending strip — weak C* NURBS patch coupling.
Each patch is uniformly discretized with a mesh of four elements (six control points)

in circumferential and five elements (seven control points) in axial direction by using
biquadratic NURBS. This provides a conforming parametrization along the shared edge.
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For the definition of the bending strip patch, which in physical space is displayed in dark
green, triples of control points along the entire patch interface are used. The associated
control mesh is highlighted in red. The bending strip does not possess any mass or stiff-
ness, except a directional user-defined bending stiffness perpendicular to the interface
edge. Investigations of reliable bending stiffness values to preserve the included angle
during deformation have been performed in KIENDL ET AL. (2010). The parameter
space of the bending strip patch is defined by the tensor product of two knot vectors.
The triples of control points in transverse direction of the interface require the definition
of one element of second order. Along the interface edge, the parametrization, i.e. the
knot vector structure of the adjoining NURBS edges, is adopted. This approach slightly
differs from the original version, where for simplicity and less computational costs, linear
NURBS functions are used along interface edges for the bending strip. The entire bend-
ing strip of the cylindrical shell example consequently consists of five elements in axial
direction and one element in transverse direction with biquadratic NURBS functions.
In BENSON ET AL. (2013), limitations of the bending strip method are discussed as it
precludes, for instance, the evolution of plastification in regions of high stresses such
as shell intersections or near boundaries. This restriction, however, is not relevant for
the linear elastic analyses of this thesis. In the same article, the authors alternatively
propose the use of rigid bodies as generalizations of linear constraint techniques to non-
linear and explicit applications.

For further details on the coupling of patches in IGA, the reader is referred to CoT-
TRELL ET AL. (2007), COTTRELL ET AL. (2009) and KIENDL (2011) in addition to the
literature already mentioned.
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This chapter presents a new hierarchic family of 3-; 5- and 7-parameter shell models
(ECHTER ET AL. (2013)), which serve as a basis for the development of isogeometric
displacement-based shell finite element formulations in Chapter 5.

The expression “hierarchic”, on the one hand, can be related to the mechanical shell
model. Starting from the basic 3-parameter shell in Section 4.3, which is suitable for
modeling thin structures with predominantly membrane and bending action, by addi-
tionally accounting for shear flexibility, 5-parameter shell formulations see Section 4.4
are defined that are more convenient for moderately thick shells. The inclusion of exten-
sibility in thickness direction enables, moreover, the derivation of 6- or 7-parameter shell
models, which are presented in Section 4.5, and which additionally allow for complete
three-dimensional constitutive laws.

The main objective of “hierarchic” in this chapter, however, is related to the hierar-
chic parametrization of the shell models with regard to model adaptivity. On the basis
of a minimalistic shell model, which mechanically corresponds to the 3-parameter for-
mulation, additional degrees of freedom will be switched on systematically in order to
increase the approximation quality of the shell model. The procedure of adding the
extra parameters is defined, such that the kinematic equations of the basic model are
gradually enhanced to obtain the 5- and 7-parameter models, which, consequently, does
not require a complete reformulation. The hierarchic parametrization of the kinematic
equations additionally avoids certain locking effects in the discrete finite element formu-
lations, which are investigated in detail in Chapter 5.

In addition, for reasons of comparison, 5- and 7-parameter shell models with non-
hierarchic parametrization are derived. These formulations are specified with the ex-
pression “standard” shell models in this thesis.

The hierarchic shells of this chapter are mainly based on the concept of degeneration,
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which is specified in detail in Section 4.1.3. Additionally, the following basic assump-
tions and approximations are accounted for: All proposed concepts are restricted to
single layer models with constant thickness, geometrically linear kinematics and ho-
mogeneous, linear-elastic and isotropic material properties. No pre-integration of the
constitutive law is performed. The static and kinematic variables of the shell equations
are therefore stresses and strains.

For further information on classical shell theories and modeling techniques, the reader
is referred to FLUGGE (1962), NAGHDI (1972), BASAR AND KRATZIG (1985), GREEN
AND ZERNA (1992), BISCHOFF ET AL. (2004) and TIMOSHENKO AND WOINOWSKY-
KRIEGER (2007) to name but a few.

4.1 Principal strategies for deriving shell models

In this section, principal strategies to derive shell models are briefly summarized, with
the concept of degeneration representing the basis for the shell formulations of Sec-
tions 4.3 to 4.5 and the shell finite elements of Chapters 5 and 6.

Shells represent curved, thin-walled structures where one dimension is, in general, signif-
icantly smaller than the other two. Therefore, physically reasonable assumptions with
respect to geometry, kinematics and material law are frequently applied to the governing
equations, which consequently yields an approximation of the 3D continuum theory. A
quantification of the error for different simplified assumptions in classical shell surface
theories has been dealt with in BASAR AND KRATzIG (1985) and BUCHTER (1992),
among others.

For details on the justification of various rod, plate and shell theories by mathemati-
cally proving the asymptotic convergence of their governing equations and solutions to
three-dimensional theories in the limit of small parameters, such as the thickness or the
curvature, the reader is referred to MORGENSTERN (1959), SANCHEZ-PALENCIA AND
VASSILIEV (1992), ARNOLD AND FALK (1996) or ANTMAN (2005), for instance.

The principal strategies to derive shell models are

e the derivation from 3D non-polar continuum mechanics,
e the so-called direct approach (Cosserat surface) or
e the degenerated solid concept.

Classical shell theories are based on shell models obtained via the direct approach or
the derivation from three-dimensional continuum mechanics. The degenerated solid
concept has its origin in the derivation of shell finite elements. However, it was proved
by BUCHTER (1992) that identical assumptions with regard to geometry, kinematics
and material law may finally yield the same element formulations.
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4.1.1 Shell models from 3D non-polar continuum mechanics

The main idea of shell models to be derived from 3D non-polar continuum mechanics
is the reduction of the mechanical behavior of a continuum to its essentials. Therefore,
the behavior in thickness direction of the thin continuum is described independently of
the mid-surface parametrization, which finally yields a spatial semi-discretization.
NAGHDI (1972) discretized the thickness direction of a shell continuum by an infinite
series of monomials, which recovered the 3D mechanical behavior of the shell without
approximation. Instead of monomials, Legendre polynomials could also be used.

For shell models with Kirchhoff-Love or Reissner-Mindlin kinematics, the basic assump-
tions and simplifications mainly imply the approximation of the shell body by its mid-
surface and a linear ansatz across the thickness, the inextensibility of the shell director,
the formulation of equilibrium without higher-order contributions and the neglect of
transverse normal stresses, which consequently require a modification of the constitu-
tive law to ensure asymptotic correctness (BASAR AND KRATZIG (1985)).
Alternatively to NAGHDI (1972), multi-layer theories have been developed, which again
yield the exact 3D continuum solution in the limit of an infinite number of layers in
thickness direction. Multi-layer shell models are not considered herein. The reader
is referred to EPSTEIN AND GLOCKNER (1977), GRUTTMANN AND WAGNER (1994),
BRAUN (1995) or HORMANN (2002), for instance.

Dimensional reduction can be performed by pre-integration of the material law in thick-
ness direction of the shell body, thus associating the kinematic strain with stress re-
sultants, which become functions of the in-plane convective coordinates only. Material
pre-integration will, however, not be applied in this work. A more detailed discussion
on this topic can be found, for example, in BASAR AND KRATZIG (1985), BUCHTER
(1992), BISCHOFF (1999) or BISCHOFF ET AL. (2004).

Details with regard to the assumptions to be made for the mechanical behavior of the
3-, 5- and 7-parameter shell models of this thesis are specified in Sections 4.3 to 4.5.

4.1.2 Shell models by direct approach

Instead of reducing a three-dimensional continuum theory to a 2D surface theory by im-
posing assumptions and approximations on both the kinematics and the material law, as
explained in Section 4.1.1, surface-based shell theories may alternatively be derived di-
rectly on the basis of two-dimensional directed material continua, i.e. Cosserat-surfaces
(DuHEM (1893), COSSERAT AND COSSERAT (1909)).

Each material point of the two-dimensional Cosserat surface, in addition to its position
vector, is equipped with extra vectorial quantities denoted as directors. The Cosserat
continuum therefore allows for the postulation of quantities, without the need of approx-
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imations. Shell models of this type are therefore frequently referred to as geometrically
exact (ERICKSEN AND TRUESDELL (1958), GREEN ET AL. (1965), SIMO AND Fox
(1989)), although these formulations do not imply any higher accuracy compared to
shell models derived from 3D non-polar continuum mechanics.

Despite the elegance of exactly formulating the shell kinematics on a Cosserat-surface,
the delicate point of the direct approach is to relate the kinematic to the static variables
by a proper choice of material law, which cannot be derived directly and associated to
the static and kinematic variables of the three-dimensional continuum. The definition of
a constitutive law therefore represents the essential modeling assumption (BASAR AND
KRrATZIG (1985)).

4.1.3 Degenerated solid concept

The degenerated solid concept has its origin in the derivation of shell finite elements.
Instead of discretizing the shell models obtained in Sections 4.1.1 and 4.1.2, typical shell
assumptions are imposed to the thickness direction via a certain choice of shape func-
tions.

The concept in its original form is related to AHMAD ET AL. (1968) and was general-
ized to geometrical nonlinearities in RAMM (1976). Biichter identifies the equivalence
of shell element formulations derived from 3D continuum mechanics and those obtained
from degeneration, provided that identical physical and numerical assumptions are made
(BUCHTER (1992), BUCHTER AND RAMM (1992)).

The imposition of a linear displacement ansatz in thickness direction of the shell body
without any further assumptions on both the kinematics and material law, yields a 6-
parameter shell model. By application of a difference vector formulation, the resulting
independent parameters of the degenerated shell formulation are the three mid-surface
displacement components and three difference vector displacement components, which
are used to describe the deformation behavior of the shell.

The 3-, 5- and 7-parameter shell models of Sections 4.3 to 4.5, which are mainly based
on the concept of degeneration, employ a surface parametrization of the homogeneous
shell body. In contrast to conventional concepts of degeneration with Lagrangian basis
functions and the application of averaged nodal directors (BUCHTER (1992), BISCHOFF
(1999), BISCHOFF ET AL. (2004)), the formulations of this thesis utilize a unique and
continuous director field based on higher-order and higher-continuity NURBS discretiza-
tions.

Continuum-based degenerated shell elements, which physically represent 3D solids, have
been developed, for instance, in SCHOOP (1986), PARISCH (1995), HAUPTMANN AND
SCHWEIZERHOF (1998), KLINKEL ET AL. (2006) and HARTMANN (2007).
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4.2 Differential shell geometry and kinematics

4.2 Differential shell geometry and kinematics

Reference configuration

03 Current configuration

Figure 4.1: Configurations of the shell body.

A convective curvilinear coordinate system is introduced for the parametrization of the
3D shell body. The in-plane coordinates are defined by 6°; the shell thickness direction
by 6. Points of the shell mid-surface are specified by 6° = 0. Material points of the
shell body are thus labeled by the same coordinate triple (9“, 93) before and after de-
formation, while their location in space changes, i.e. their position vectors.

According to the conventions of Chapter 2, capital letters are used for quantities in the
reference configuration and small letters refer to the current configuration.

For dimensional reduction, the position vectors X of the shell body in the undeformed
configuration are defined as linear functions of #*. Thus, both the position vector R to
a point on the shell mid-surface and the director Ag are only functions of the in-plane
coordinates 6*

X (91,92,93) - R(91,62) + 63 A, (01,92). (4.1)
According to Equations (2.4) and (4.1), the covariant base vectors of the shell body are

defined by partial differentiation of the position vector X with respect to the convective
coordinates 6

o :aix :Ra+93A3a7
00~ ’ ’ 49
X (4.2)
3 :% =A;.
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For the shell mid-surface, the in-plane covariant base vectors are derived by partial
derivation of the position vector X with respect to the in-plane convective coordinates
0% as follows

0X

A=
6% |55 _,

=R,. (4.3)
The third base vector Aj of the reference configuration, denoted as director, is obtained
from the normalized cross product of the in-plane covariant base vectors A,. It coin-
cides with the normal vector of the undeformed mid-surface

Al X A2
3= 44
' A Al -y
A3 may alternatively be derived from the position vector X: Az = %.

4.3 Kirchhoff-Love shell model (3p)

Historically, the first hypothesis on the bending behavior of elastic rods was devised by
the Swiss mathematician and physicist J. Bernoulli in 1691, who postulated that the
cross section of a beam remains straight and normal to its center line during deformation,
which is denoted as normal hypothesis.

The first mathematically correct theory on the structural behavior of plates accounting
for Bernoulli’s normal hypothesis was derived by G. Kirchhoff in 1850, which states
that normals to the mid-surface in the undeformed configuration remain normal and
unstretched in the deformed configuration (KIRCHHOFF (1850)).

Based on the work of Kirchhoff for plate problems, A. E. H. Love derived a general theory
for both curved and plane surfaces (LOVE (1888)). The normality hypothesis for shell
structures is therefore frequently associated with the term Kirchhoff-Love hypothesis.
In the 20th century, a multitude of Kirchhoff-Love type shell theories were developed
(REISSNER (1942), GREEN AND ZERNA (1954), WUNDERLICH (1966), KOITER (1960),
KOITER (1961)), to name but a few. It lasted, however, until 1963, when the first
consistent Kirchhoff-Love type shell theory was derived by NAGHDI (1963).

Kinematics

In this section, the linearized Green-Lagrange strain tensor €°P is derived in curvilinear
convective coordinates, as required for the virtual work expression of the Kirchhoff-Love
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4.3 Kirchhoff-Love shell model (3p)

shell model. The derivation is based on the concept of degeneration discussed in Sec-
tion 4.1.3, the differential shell geometry and kinematic specifications of Section 4.2 and
common assumptions and approximations for thin shells to be established in the follow-
ing.

The deformation behavior of the thin, elastic and homogeneous shells in this thesis is
physically dominated by membrane and bending action. The constraint to be imposed
on the director of staying normal to the mid-surface, also in the deformed configuration,
yields vanishing transverse shear deformations. Rotations of cross-sectional fibers are
therefore not independent, but equal to the gradient of the mid-surface displacement
field. Additionally, extensibility of the thin shell in thickness direction and transverse
normal strains and stresses are disregarded.

By summarizing these assumptions and simplifications, the kinematics of thin shells
with surface parametrization, as displayed in Figure 4.1, can be described with three
independent parameters (3-parameter formulation (3p)), which correspond to the mid-
surface displacement components v; of a material point.

The computation of the linearized Green-Lagrange strain tensor with Kirchhoff-Love
kinematics requires the specification of several additional variables which have not been
introduced so far.

First, the position vector x*® to an arbitrary material point of the shell body in the
deformed configuration is defined as

X (01,0%,6°) = x (0",0%) + 0° a3 (0,07). (4.5)

The director a§" of the deformed configuration may be derived from a linearized rotation
of As, as shown in the principal sketch of Figure 4.2 and described for the general case
of a linearized vector rotation, for instance, in BELYTSCHKO ET AL. (2008)

al’ = Ay +® x Ay, (4.6)

® x Aj represents the difference vector between the director of the undeformed config-
uration Ay and the rotated director of the current configuration aj”. The orthogonality
of @ x Aj to the undeformed director Aj ensures satisfaction of the inextensibility con-
straint of the shell in thickness direction during deformation by assuming linearized
kinematics.

The rotation of Aj is defined by the rotation vector ®, which is a function of A, and
associated rotation angles ¢,. ® represents an element of the tangent space, which is
spanned by the in-plane base vectors A,,.

61



4 Hierarchic Shell Models

o1
Figure 4.2: Deformed configuration — 3-parameter model.

Q=91 A1+ A, (4.7)

The associated rotation angles ¢, read

1 1

- (- A)A = v, A
T R A T A A g e A
1 1 (4.8)
- . _(a—A)-A L vi-As.
ey W L Tee e A

a, are the covariant base vectors of the current configuration and v, represent the par-
tial derivatives of the mid-surface displacement field v of the shell with respect to the
in-plane convective coordinates 0. ||[A; x A,|| denotes the Euclidean norm of A; x As.
The computation of the rotation angles ¢, is therefore related to the projection of the
rotated in-plane base vectors a, in the direction of the undeformed normal Aj.

The difference of the position vectors x*® and X yields the displacement field u®" at any
point of the shell body. For the 3-parameter Kirchhoff-Love shell model, this results in

ui}p — X3p - X
=r +0a? —R - A, (4.9)

The derivation of the Green-Lagrange strain tensor coefficients 5?}’ requires the partial
derivatives of the displacement field u®® with respect to the convective coordinates 6

U =v,+ 0 (P, x Ay + B x Agy,),

) . 4.10
uP =alP — Ay =@ x Aj. (4.10)
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4.3 Kirchhoff-Love shell model (3p)

The covariant base vectors of the shell body have already been defined in Equation (4.2).
The contravariant form is obtained from Equation (2.7), such that €* and its coeffi-
cients can be finally computed according to Equation (2.16)

R S%P GG/,
with (4.11)
1
3 3 3
el = 5 (u,,»p . Gj + ll,jp . G,) .

With the kinematic assumptions made so far, the strain tensor consists of constant, linear
and quadratic components. The constant part of €°P represents the membrane strains
and the linear contributions are related to changes in curvature, i.e. bending. Quadratic
terms in Equation (4.11) will be neglected in accordance with common assumptions of
classical shell theories, which in general do not consider higher-order contributions for
the stresses and strains or their resultants, respectively.

The choice of working with stresses and strains as kinematic and static variables in this
work, however, does not preclude the use of quadratic components in general. The re-
sulting error of neglecting quadratic terms remains acceptably small for thin shells with
little curvature according to investigations performed in BASAR AND KRATZIG (1985)
or BUCHTER (1992), for instance.

The individual strain tensor components for the presented 3-parameter Kirchhoff-Love
shell model, which account for both constant and linear contributions, are

5?113 = vi- Ay
+0° (vi-Agy + @1 x Ag- Ay,
26l = ViArt+va- Ay
F0P (Vi Azo + @ x Az Ayt vy Az +®ox Az-Ay), (4.12)
el = vy A,
+6% (Vo Ao+ Py x Ag- Ay),
e = 0.
All strain contributions ® x As, - Ag in Equation (4.12) vanish: The vectorial quan-
tities obtained from the cross products of ® and Aj, both lie in the tangent space

spanned by the vectors A, and are normal to the mid-surface. By subsequent scalar
multiplication with the in-plane base vectors A, the final result becomes zero.
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Constitutive law

The linear elastic constitutive law for three-dimensional continua was defined in Sec-
tion 2.4 according to Equation (2.22). For the shell models of this chapter, the deriva-
tion of the material tensor relies on the base vectors of Equation (4.2).

The inextensibility constraint requires zero transverse normal strains, i.e. €55 = 0. Zero
transverse normal strains, however, do not automatically ensure zero transverse normal

3p,33

stresses o , i.e. for nonzero Poisson’s ratio. Asymptotic correctness of the model

therefore necessitates the modification of the constitutive law by implementing the stress

3033 — () to eliminate €55 via static condensation. Equations with regard

assumption o
to transverse shear are automatically equal to zero and therefore do not have to be
considered for the Kirchhoff-Love model. Thus, the modified material tensor C* only
relates the in-plane stress components o°>* to the in-plane strain components E‘Z’fg.
Further details on the definition of the constitutive law for the Kirchhoff-Love shell
model can be found, for instance, in BASAR AND KRATZIG (1985), BISCHOFF ET AL.
(2004) or BISCHOFF (2011a).

Love’s first approximation, which simplifies the “true” shape of an infinitesimal cross-
sectional area element by neglecting contributions with regard to curvature is not consid-
ered in the definition of the material tensor C*. Consequently, membrane and bending
action are coupled due to nonzero off-diagonal blocks in the constitutive matrix.
Numerical integration of the discrete finite element equations is performed with three in-
dependent nested loops, two for the in-plane directions (%) and one across the thickness

().

Internal virtual work

With the strain tensor € of Equation (4.12), its first variation and the material tensor
C% the internal virtual work of the Kirchhoff-Love shell can be defined

SRt — / )T e dn. (4.13)
With regard to the formulation of Kirchhoff-Love-type shell finite elements in the sub-
sequent chapter, the existence of second derivatives in the kinematics with respect to
curvature requires at least C'-continuity of the displacement field. The satisfaction of
this condition is rather challenging when discretizations with standard Lagrange finite
element basis functions are applied, but can be naturally satisfied with subdivision tech-
niques or the higher-continuity NURBS discretizations of Chapter 3.
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4.4 Reissner-Mindlin shell model (5p)

With increasing thickness of the structure, transverse shear effects become more pro-
nounced, thus significantly contributing to the total strain energy of the system.

For Reissner-Mindlin models, the Kirchhoff-Love kinematics are relaxed by introducing
additional rotation parameters for the director, which do not depend on the gradient
of the mid-surface displacement field and thus allow for extra transverse shear effects.
Instead of applying a rotation tensor for shear deformable plates and shells, a difference
vector formulation can be defined, which is the approach to be used in this thesis.

The differentiability requirements on the displacement functions in the energy functional
of Reissner-Mindlin models reduce to functions of Sobolev space H' with square inte-
grable first derivatives to ensure C°-continuity. Reissner-Mindlin models are therefore
also denoted as first-order shear deformation theories (REDDY (1997)).

Early significant scientific contributions which extended the kinematics of the Kirchhoff
theory for plates by additionally accounting for independent transverse shear deforma-
tions were developed in REISSNER (1945) and MINDLIN (1951). The corresponding
kinematics is therefore commonly denoted as Reissner-Mindlin kinematics.

On basis of the works by Reissner and Mindlin, a multitude of shear deformable shell
theories have been developed. See, for instance, the depictions in NAGHDI (1972) and
BASAR AND KRATZIG (1985).

4.4.1 Standard parametrization (5p-stand.)
Kinematics

The inextensibility of the director in the deformed configuration reduces the number

of additionally required parameters to two. The difference vector w°Pstand:

, which is
a function of in-plane convective coordinates 8% only, is added to the director of the

undeformed configuration as follows

agp-stand. _ A3 + W5p»stand. ) (414)

In the geometrically linear case, the inextensibility constraint can be constructed by

5p-stand.

expressing the components of w with respect to the covariant base vectors A,

w5p—stand. — ﬂ}lAl + @2A2 . (415)
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The kinematics of the shell model can be described with five independent parameters
(5-parameter formulation (5p)), which correspond to the three mid-surface displacement
components v; and the difference vector components w®.

In the following, the lincarized Green-Lagrange strain tensor g”P-stand:

and its coefficients
are briefly derived for the 5-parameter Reissner-Mindlin model with standard difference
vector formulation. For more detailed definitions and alternative approaches with ro-

tation tensors, the reader is referred to the textbooks cited at the beginning of this

chapter.
The displacement field is obtained from the difference of the position vectors of both
configurations

u5p-stand. — v+ 0‘3 W5p—stand, , (416)

from which the partial derivatives can be derived as follows

5p-stand.  __ 3 . Op-stand.
u} =v,+ 0wy ,

(4.17)

uigf)—stand. _ agp—stand. _ A3 _ w5p—stand. )

By using the base vector definitions of Equations (4.2) and (2.7), the Green-Lagrange

5p-stand.

strain tensor & and its coefficients are computed

-stand. 5p-stand. i j
€5p stand. Eijp stan G! ® QJ ,
with (4.18)
5p-stand. 1 5p-stand. 5p-stand.
Ez'jp stan: _ 5 (u,ip stand. | Gj + u.jp stand. GL) )

The strain tensor components with both constant and linear contributions are

Efﬁ)»stand. = Vi- A1 + (93 (V,l . A3,1 + Wip»stand_ . A1> 7
2€?g—stand = v, A2 4 Vs Al
+6° (v,l Ao+ V- Agy WP LA g gt Al) 7
6gg»smnd. = vy -As+ 93 (V,z “Ass+ W:‘g)»stand_ ) Az) 7
2€?§—stand, = vy- A+ WSpfstand. A, ,
2£g§—stand, = v, A3 + W5p—stand. . A27
Egg—sland. _—

(4.19)
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4.4 Reissner-Mindlin shell model (5p)

Constitutive law

The modified constitutive law for 5-parameter Reissner-Mindlin shells accounts for in-
extensibility in thickness direction in the same way as the 3-parameter Kirchhoff-Love
model. In order to ensure the asymptotic correctness of the formulation, the stress as-

.33 — () is introduced in the material equations to eliminate 5% by static

sumption o
condensation. Again, Love’s first approximation is not accounted for. Due to trans-
verse shear deformations, the modified material tensor C°P relates the stress components

5p-stand., i . 5p-stand.
goPstand, ai ¢ the strain components 255",

Internal virtual work

Finally, the internal virtual work can be derived by means of the strain tensor definition
of Equation (4.18) and the modified material tensor C°"| which is specified in more de-
tail in BASAR AND KRATZIG (1985), BISCHOFF ET AL. (2004) and BISCHOFF (2011a),
among others

Pvw

5H5p—sta!)d<1illt _ /(5 (€5p—standA)T . (C5p . €5p—standA dn. (420)
Q

4.4.2 Hierarchic parametrization (5p-hier.)

The approach of adding a difference vector onto the director of the undeformed con-
figuration is most commonly used in FEA due to reduced continuity requirements on
the applied function spaces. In this section, alternatively, a hierarchic Reissner-Mindlin
shell model is derived, which imposes the transverse shear on the rotated director of the
3-parameter Kirchhoff-Love model of Section 4.3. Mechanically, both continuous models
(5p-stand. and 5p-hier.) yield the same result. With regard to finite element discretiza-
tion, however, the hierarchic parametrization of the current director will remove certain
locking effects to be specified in more detail in Chapter 5.

The continuity requirements on the displacement functions for the proposed hierarchic
shell model (5p-hier.) are identical to those of the 3-parameter formulation of the pre-
vious section, i.e. C', which can, as mentioned before, be naturally satisfied with the
higher-continuity NURBS discretizations of Chapter 3.

The idea of splitting the total deformation of the director of shear deformable struc-
tures into a component related to bending and an additional independent component
due to shear is quite natural and was frequently used in classical theories on beams,
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plates and shells for more than fifty years. The textbook BASAR AND KRATZIG (1985),
although not the first scientific work on this topic, describes in an illustrative manner
the split of the entire rotation of the shell director in a contribution with respect to
the deformed shell normal (Kirchhoff-Love) and an additional rotation related to shear.
The original motivation and teaching purpose in BASAR AND KRATZIG (1985) was to
derive Kirchhoff-Love theories from shear deformation theories by simply removing the
transverse shear contribution. For FEA, this approach, moreover, offers the possibil-
ity of an independent parametrization of the shear deformations. This consequently
avoids incompatibilities of the discrete function spaces in the kinematic equations for
the transverse shear and thus transverse shear locking.

Kinematics

Spehier: which exclusively accounts for shear de-

The imposition of a difference vector w
formations, on the rotated director a;fp of the Kirchhoff-Love formulation is displayed
schematically in Figure 4.3 and defined in Equation (4.21).

) w5p-stand.

[ XA;;/ /

oL
Figure 4.3: Deformed configuration — 5-parameter models.

5p-hier. 3] -hi 5p-stand.
ag}} ier _ a3p + W5p hier. _ agp stan
~— ——
membrane+ transverse (4 21 )
bending shear

5p-hier.

The hierarchic difference vector w is a function of the in-plane convective coor-

dinates 6% only, as described for the standard Reissner-Mindlin model. Inextensibility
of the director can therefore be again defined by expressing the components of wPer

with respect to the covariant base vectors A,
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W5p—hier. — ﬂllAl + ﬂlQAQ . (422)

If the vectors a3® and a"‘*h‘er are normalized, their difference w’PM exactly corre-
sponds to the shear angle . For a shell thickness of ¢, the hierarchic difference vector
is related to the shear angle and half of the shell thickness. For thin shells with ¢ — 0,
the solution of the shear-deformable Reissner-Mindlin shell asymptotically converges to-
wards the Kirchhoff-Love solution, whereas the removal of w» " from Equation (4.21)
directly leads to the 3-parameter Kirchhoff-Love model. This concept has been applied
in a similar way in LONG ET AL. (2012) in the context of smooth subdivision surfaces
for accurately modeling both thin and thick shells.

The entire displacement field of the hierarchic Reissner-Mindlin shell consists of contri-
butions of the Kirchhoff-Love model and the hierarchic difference vector w’ . Partial

5p-hier.

derivation of u , required for computing the Green-Lagrange strain tensor coeffi-

cients, yields

u5p—lncr. — 3p + 93 5p hier.
E)(;»hier Jp 5 —hlcr 7 (423)
s = ug Hwre,

With the covariant base vectors of Equation (4.2), the linearized Green-Lagrange strain
tensor e”PM" is defined

€5p—hierA _ E?jp—hicr. Gz ® Gj ,
with ( 4_24)
E?jp—hien _ % (u5p—hler G +u '3p hier. GL) )

The computation of the strain tensor coefficients follows directly from Equations (4.2),
(4.12), (4.22), (4.23) and (4.24), again neglecting quadratic contributions in 6°

5p-hier. _ 3p 3 5p-hier.

€11 =ey +0 ( 1 Al) s
51-hi 5

2 81112»h1er. o 25 + 93 ( 5p-hier. AQ + wop hier. | A]) i

5p-hier. 3 5p-hier.
€95 =P +0 ( -A )

% 2) > (4.25)

2¢ 5p—hler. — W5p—hierA . A] ,

Ep—hler. __ <x,Dp-hier.
2eq% =wrr Ay,

5p-hier. o
£33 =0.
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Important to notice in Equation (4.25) are the transverse shear strain coefficients 25 ™",

which only consist of the constant components w”P° . A, through the thickness of the
shell. Linear terms do not show up due to the inextensibility constraint.

The discrete hierarchic shell element (5p-hier.) with pure displacement formulation to
be derived in Chapter 5 with equal order interpolation of both the mid-surface dis-
placements and the difference vectors will be free from transverse shear locking. The
condition of zero transverse shear strains for the case of pure bending can be easily
established by setting the hierarchic difference vector to zero.

The standard model of Section 4.4.1, on the other hand, has additional contributions
with first derivatives of the mid-surface displacement field v in the strain tensor coeffi-
cients €255 o0 Equation (4.19). This may lead to transverse shear locking in the
discrete finite element model with equal order interpolation of both the mid-surface and
difference vector displacements. Further details with regard to the discrete shell models

and the problem of locking are provided in Chapter 5.

Constitutive law

The constitutive law of the hierarchic 5-parameter shell model is identical to the standard
formulation of Section 4.4.1 and will therefore not be repeated here.

Internal virtual work

The internal virtual work of the hierarchic 5-parameter Reissner-Mindlin shell can now
be derived with the strain tensor of Equation (4.24) and the modified material tensor C*

6H5p—hicr,,int — /6 <55p—hiclu)T . (CSp . ESp—hicr. d0. (426)

Pvw
Q

4.5 3D shell model (7p)

For the previously presented thin to moderately thick shell models with three or five
parameters, respectively, several simplifications and assumptions on the kinematics in
thickness direction of the shell body have been defined, which also require a modification
of the material law to ensure an asymptotically correct formulation. For thick shells,
however, effects in thickness direction become more and more pronounced and have to
be accounted for.
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In this section, two 7-parameter shell formulations are derived, which represent an ex-
tension of the 5-parameter Reissner-Mindlin models of Section 4.4. The 3D shells incor-
porate extensibility of the director in thickness direction and enable the application of
three-dimensional constitutive laws without the need of modifications.

4.5.1 Standard parametrization (7p-stand.)
Kinematics

The 7-parameter shell formulation with standard parametrization represents an exten-
sion of the standard 5-parameter Reissner-Mindlin shell model of Section 4.4.1 and
retains a pure displacement formulation. In order to describe the thickness change of
the shell based on an extension or shortening of the current director, a 6th displacement
parameter @ is introduced, which, in accordance with the standard 5-parameter shell
(5p-stand.), is defined with respect to the covariant base vectors of the mid-surface and
leads to a linear distribution of the transverse displacements in 63-direction

wo = % Ay (4.27)

The introduction of a 7th displacement parameter @' yields a quadratic distribution of
the transverse displacements in §3-direction with (6*)2w™ = (#*)> @™ A3 and thus lin-
ear transverse normal strains £33. In the 6-parameter model, these linear normal strains
in @3-direction are not present, which results in an imbalance to the linear stresses
033, Barly 7-parameter shell models with quadratic displacement ansatz in thickness
direction have been developed in KUHHORN AND SCHOOP (1992), SANSOUR (1995) or
PAriscH (1995), for instance.

Alternatively, linear strain components may be introduced for the thickness direction of
the shell body as 7th parameter and added to the 6-parameter displacement model on
the basis of an EAS (enhanced assumed strain) method. The application of enhanced
strain components requires the use of multi-field variational functionals for deriving fi-
nite element formulations, compared to the aforementioned pure displacement ansatz.
Prominent early publications in this field are, among others, SIMO AND RIFAT (1990),
BUCHTER AND RAMM (1992), BISCHOFF AND RAMM (1997), EBERLEIN AND WRIG-
GERS (1997) or BETSCH ET AL. (1998)).

Coming back to the pure displacement-based 7-parameter shell model, the position vec-
tor of the deformed configuration is defined as

71



4 Hierarchic Shell Models

. 2
-sta . R 5p-stand. R K
xstand. -y 4 g3 gip-stand: g3 60 (03) wP

W s 2 (4.28)
—r4 0'% A3 + '93 Wop-stand. 4 93 (ﬁ}ﬁp A3) + (93) (wa AS) )

For reasons of presentation, the dependencies of the variables on the convective coordi-

nates 6 are omitted.

The director of the deformed configuration az”**"® of the 3D shell model may conse-

quently be derived from Equation (4.28) and reads
agp-stand. _ A3 + W5p—stand. + w6p. (429)

It has to be mentioned that in Equation (4.29), the quadratic displacements (6°)* w™

are not included. They are, however, used in Equation (4.30) for the definition of the

Te-stand: - Tyangverse shear effects and changes in thickness

5p-stand.

entire displacement field u
direction are accounted for with w and w°, whereas linear transverse normal

strains are enabled via w™

u7p-stand. — uSp-stand. + 03 wﬁp + (95)2 w7p . (430)

Tp-stand.

From Equation (4.30), the partial derivatives of u with respect to the convective

coordinates 0" can be derived

st e -ste o o 2 —_— —_—
u’g)-btdnd. — uig stand. T 03 (wif A3 4 wﬁp AS,Q) + (63) (w;}? Ag + w7p AS,a)y

ug)—stand. _ ujfga—stand, + (ﬁ}ﬁp AS) -+ ) 93 (mﬁ) AS) )
(4.31)

Tp-stand.

Finally, the linearized Green-Lagrange strain tensor € of the 7-parameter model

is established

-5 . Tp-stand. i j
E?p stand. __ Eijp stan G ® GJ ,

with (4.32)
1 .
EZp-stand. _ 5 (u’7ip—btand4 . Gj + u?jp-stand. . Gz) )

The computation of the strain tensor coefficients follows directly from Equations (4.2),
(4.31) and (4.32)
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Tp-stand. 5p-stand. K 6
P (WA
Tp-stand. 5p-stand. 3 6 6
2P = 2% +0° (WP Ay +wh - Ay),
Tp-stand. 5p-stand. 3 6
€95 =5 +0 (W,zp . A2> s

2ephstand = ggfpstend | wbp . A 4¢P (wf’}“ A+ WP Ay, 2T Ay Al)
=0

28;}3)_7“&“(1' = QEggfstand. + WGp . A2 + 93 (W?Qp . A3 + W6p . A312 + 2@71) A3 . Az)
=0
gipstend - — WP AL 4 67 (2 WP A3) .
(4.33)

In Equation (4.33), the quadratic contributions in #3-direction are again neglected ac-
cording to the assumptions of classical shell theories, where higher-order contributions
for the stresses and strains or their resultants, respectively, are not accounted for.

Constitutive law

The aforementioned decisive advantage of 3D shell models with at least seven parameters
is the application of complete constitutive laws without the need for modifications. Thus,
every strain variable is related to an associated stress component via the material law.
The application of only six parameters does not provide an asymptotically correct shell
model due to an imbalance of energetically conjugate stress and strain components
in transverse normal direction (BISCHOFF (1999), ROSSLE ET AL. (1999)). Poisson
thickness locking may show up, which results in artificial transverse normal stresses.
Unlike other locking effects, this phenomenon is a defect in the mathematical shell
formulation and does not diminish in the discrete model with mesh refinement.

Internal virtual work

The internal virtual work of the standard 7-parameter Reissner-Mindlin shell model can
be derived on the basis of the strain tensor of Equation (4.32) and a 3D material tensor

c®

. 3 T
5H'F7)}z;\itand.,mt — / 5 (E7p—stand,) . C?p . €7p—stand, d0. (434)
Q

3



4 Hierarchic Shell Models

4.5.2 Hierarchic parametrization (7p-hier.)
Kinematics

The hierarchic 7-parameter shell formulation represents an extension of the hierarchic
5-parameter Reissner-Mindlin shell model (5p-hier.) from Section 4.4.2. In order to de-
scribe the extension or shortening of the director and linear transverse normal strains,
the kinematics of “5p-hier.” is enriched with a 6th and 7th displacement parameter %
and @' in terms of the covariant basis A; as for the “7p-stand.” model, which ultimately
yields linear and quadratic displacement contributions in #3-direction. The hierarchic
parametrization allows for nicely switching on or off the extensibility property of the
shell by activating or deactivating the 6th displacement component, which is desirable
for model-adaptivity. In Figure 4.4, the current configuration of the director for 3D
shell is displayed, however, not accounting for the entire displacement field. Quadratic
contributions through the thickness are not included in the sketch.
wOp-stand.

w5p—staud.

=0

el !
Pl
Figure 4.4: Deformed director configuration — 7-parameter models.

7p-hier.

The position vector x of the deformed configuration for the hierarchic 3D shell

model with pure displacement ansatz is defined as

S Tp-hier. + 9° (A3 +® x A3) +(/_)3 W5p-hicr, +(93 W6p+ (03)2 wP

3p

5p—hier.

6p—hier.

Tp—hier.

—r4 93 agp + 93 WSphicr. + 63 (fUGp A3) + (93)2 (mh)AS) )
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4.5 3D shell model (7p)

For the sake of brevity, the dependencies of the variables on the convective coordinates
6" are omitted.

Clearly, the hierarchic parametrization of the shell models “5p-hier.” and “7p-hier.” can
be ascertained which are based on the 3-parameter Kirchhoff-Love formulation.

The director a;p’hicr‘ of the deformed configuration may consequently be derived from
Equation (4.35) and reads

Tp-hier. 3 -hier. Tp-stand.
ae}p fer. asp + W5p hier. + W6p — 331}5 an .
~—~ — ~—~
membrane+ transverse thickness (436)
bending shear change

The deformed director in Equation (4.36) again represents a 6-parameter model, as for
the “7p-stand.” shell, as no quadratic displacements in transverse normal direction are
included. For a uniform notation, though, the director of the current configuration is
specified with the label “7p-hier.”.

Te-hier of the hierarchic 3D Reissner-Mindlin shell con-

sists of contributions from the Kirchhoff-Love model, the hierarchic difference vector
W5p»hier.

The entire displacement field u

, the linear displacement field w® and the quadratic term in transverse normal

p . u7p—hier.

direction w can be obtained by the difference of the position vectors of the

deformed and undeformed configuration x P

and X in the same way, as described
for the standard 7-parameter shell and will therefore not be reproduced herein.
The partial derivation of u™M™ with respect to the convective coordinates 67 is required

for computing the coefficients of the Green-Lagrange strain tensor

Net

w4 (6 Ag) +26° (T Ay) -

»

u?l)*hicr. _ ui}:—hicr, + [93 (ﬁ},%) A3 + ??UGp A31a> + (03)2 (wri]j A3 +@7p A3,a) ,

(4.37)

Consequently, the linearized Green-Lagrange strain tensor & P of the hierarchic 7-
parameter shell model can be established

€7p—hier, _ Esz-hiel”- G ® el ,
with (4.38)

Tp-hier. __ Tp-hier. Tp-hier.
e = = (WP Gy uP T G)

N =

The strain tensor coefficients 7™ follow directly from Equations (4.2), (4.37) and
(4.38)
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Tp-hier. 5p-hier. : 6
Ellp hier = p-hier. 03 (W D, Al)
7p-hier. 5p-h :
28T = 2 08 (W Ap+ WA,
7p-hier. 5p-hier. 6p
€22 =Ex» +6° ( 2 AZ) )

2y = WML AL WA+ 0 (wf’i" Ayt WP Agy 420" Ay - A1>

=0

2£g§’hi°r' = WSpfhicr, . A2 + W6p . A2 + 93 (WGQP . A3 + W6p . A372 + 2@71) A3 . AQ)
=0
epher — WO Ay 6 (2 wP. A3) .
(4.39)

The discrete model of the 3D hierarchic shell with pure displacement ansatz is free
from transverse shear locking like the hierarchic 5-parameter Reissner-Mindlin formula-
tion introduced in Section 4.4.2; as the constraint of vanishing transverse shear strains,
in case of pure bending, can easily be satisfied by setting the hierarchic shear vector
wop-ier. _ ().

Investigations with regard to locking effects of the discrete 7-parameter models are per-
formed in Chapter 5.

Constitutive law

The material tensor C™ of the hierarchic 7-parameter shell model is identical to the
standard formulation of Section 4.5.1 and will therefore not be repeated here. It relates

7p-hi
the stress components ¢ P ¥ o the strain components ey

Internal virtual work
Finally, the internal virtual work of the hierarchic 7-parameter Reissner-Mindlin shell

model can be derived on the basis of the strain tensor of Equation (4.38) and the 3D
material tensor C™®

51—[7]; hier., int / e lner : ™ . €7P’hier- dQ. (440)

Pvw
Q
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Hierarchic Isogeometric Shell Finite
Elements

In the previous chapter, 3-, 5- and 7-parameter shell models were developed. The
parametrization of the displacements of the hierarchic shear-deformable formulations
(5p-hier., 7p-hier.) defined in Sections 4.4.2 and 4.5.2 avoids transverse shear and cur-
vature thickness locking in the shell finite elements without the need of further remedies,
such as assumed natural strains (ANS), mixed formulations or reduced integration. This
will be demonstrated in numerical experiments of this chapter.

NURBS, which were introduced in Chapter 3 as a standard tool of geometric model-
ing in CAD/ CAM, are used as basis functions in a continuous Galerkin finite element
ansatz for the discretization of the weak shell equations according to the isogeometric
analysis concept of HUGHES ET AL. (2005).

Section 5.1 gives a short introduction to the fundamentals of the finite element method
to an extent required within this thesis. Subsequently, the isoparametric concept with
NURBS functions is applied to the variational virtual work formulations specified for
the shell models in Chapter 4 in order to derive the discrete algebraic shell equations
in Section 5.2. Next, the effect of higher-continuity NURBS discretizations on the ac-
curacy of the discrete solution functions will be investigated and analyzed in numerical
examples. The results reveal that along with improved accuracy of higher-continuity
NURBS discretizations, the membrane part of the hierarchic shell elements with pure
displacement ansatz is considerably prone to locking. Therefore, in the last section of
this chapter, geometric locking effects of the developed NURBS shell elements of this
work are analyzed and quantified.
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5 Hierarchic Isogeometric Shell Finite Elements

5.1 Finite element fundamentals

The finite element method can be classified as a special form of the Ritz-Galerkin
method. It represents a numerical approach for the approximate solution of mathe-
matical models for boundary value problems or initial boundary value problems that
are mainly described by partial differential equations in variational form.

In order to derive the displacement-based shell finite elements with a Bubnov-Galerkin
ansatz, appropriate finite dimensional function spaces for both the solution and test
functions have to be defined. They are subspaces of the continuous function spaces
of the variational formulation; in this case the principle of virtual work. The NURBS
functions of Chapter 3 will be employed for both the ansatz and weighting functions.
The discrete function spaces are associated with a mesh, i.e. a partitioning of the spa-
tial patch domain 2, into a finite number n, of non-overlapping elements Q°, which
in Equation (5.1) is mathematically defined with the assembly operator A. The subdi-
vision of a NURBS patch was defined by knot spans of nonzero length in Chapter 3.
This procedure carries over to the analysis framework. The superscript (e)° specifies
an element quantity and the index “h” is related to the discretization of the domain.
It represents a characteristic dimension of an element. For h — 0, the finite element
formulation has to ensure convergence of the approximate solution to the exact one.

Opo =08, = A 08 with QN =0 for i#] (5.1)

The first equal sign in Equation (5.1) points out that the CAD geometry is exactly
embedded in the analysis framework, which clearly differs from conventional FEA, where
the CAD representation is, in general, replaced with an approximate and independent
finite element mesh description.

Historical development

From a mathematical point of view, the origin of FEA is often associated with the
work of Courant on the eigenvalue analysis of beams with piecewise linear hat functions
(COURANT (1943)). Its popularity, however, is related to engineering approaches par-
ticularly in the field of structural mechanics in the late 1950s and 1960s in conjunction
with the rapid development of computer technology at that time. Some prominent early
contributions are, for instance, ARGYRIS (1955), TURNER ET AL. (1956), ARGYRIS
(1957), CLOUGH (1960) and ZIENKIEWICZ AND CHEUNG (1964). Basic mathematical
concepts and theoretical fundamentals on finite elements were first derived in the 1970s
by ZIENKIEWICZ (1971), BABUSKA AND Aziz (1972) and STRANG AND FIx (1973).
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5.1 Finite element fundamentals

Nowadays, some prominent textbooks on the finite element method are HUGHES (2000),
WRIGGERS (2001), BRAESS (2003), ZIENKIEWICZ ET AL. (2005) and BELYTSCHKO
ET AL. (2008) among numerous other valuable publications.

The idea of using splines as finite element shape functions dates back at least to the
1970s. In PRENTER (1975), variational methods and numerical solution strategies were
presented with particular emphasis on the finite element method and collocation meth-
ods on the basis of spline spaces. Swartz and Wendroff studied the effectiveness of
spline-based finite elements compared to finite difference methods for time dependent
problems (SWARTZ AND WENDROFF (1974)). Chung-Tze utilized cubic B-splines as
finite element basis for the numerical modeling of elastic composite plate structures
(CHuNG-TZE (1979)) and determined improved accuracy compared to conventional fi-
nite element discretizations and savings in both memory requirements and computa-
tional costs. B-spline-based finite elements for the analysis of shells of revolution were
developed in FAN AND LuAH (1990). In HOLLIG (2002) and HOLLIG (2003) different
types of B-spline basis functions were presented which are suitable for the numerical so-
lution of boundary value problems. The author also provides theoretical fundamentals
on stability and error estimates for B-spline functions.

Hence, several scientific papers of spline-based finite elements were published, yet rarely
considered before the first paper of Hughes and coworkers on isogeometric analysis ap-
peared (HUGHES ET AL. (2005)). Hughes was probably the first to cast the idea of
integrating popular methods of CAD and analysis into a uniform and consistent con-
cept.

Isoparametric concept

The isoparametric finite element concept, which is attributed to TAIG (1961) and IRONS
(1966), applies the element shape functions for the approximation of the field variables,
such as the displacements u, also to the geometry representation and thus utilizes the
same parametrization for both quantities.

In the isoparametric approach, a parametric element domain is defined, which in two di-
mensions topologically represents a square. The application of natural coordinates (£,7)
enables an efficient construction of the shape functions on the parametric element, which
can be used for all elements of the spatial configuration. Both the element geometry and
the displacement field are defined as a linear combination of the basis functions and the
nodal coordinates or displacement components respectively. The parametric element is
uniquely mapped from the natural coordinate system into the global Cartesian frame
for every element, without the need to distinguish between straight or curved elements.
Isoparametric elements consequently enable an elegant mapping of arbitrary geometries
into a finite element mesh due to their transformation properties.
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5 Hierarchic Isogeometric Shell Finite Elements

For the derivation of element stiffness or mass matrices, differentiation and integration
of discrete quantities, which are functions of the global coordinates {z, y, z} is likewise
simplified by carrying out the procedures in natural coordinates {£, n, (}: The Jacobian
J of three-dimensional transformations connects the differentials of {z, y, z} to those of
{&,m, ¢} and vice-versa

o(z,y, z)
A& n, Q)

In IGA, the isoparametric concept is applied accordingly; the initial order of the classi-

X=JT¢ with J= (5.2)

cal concept, however, is switched. The geometry parametrization in IGA is embedded
into the analysis domain and the solution fields are subsequently approximated with
the functions of the geometry parametrization. Additionally, the parametric NURBS
domain does not correspond to one single element, but to a patch Qpa, which already
contains the complete partition into elements defined by the knot vectors. The entire
parameter space is then mapped with one global geometry function to the spatial con-
figuration €, as was illustrated for a spherical NURBS segment in Figure 3.12.
Important properties of the B-spline basis functions for isogeometric analysis, which
carry over to NURBS, have already been defined in Section 3.3. Further requirements
on the NURBS basis functions, in order to ensure convergence of the isoparametric finite
element ansatz, are discussed in more detail in the subsequent section.

For additional information on the classical isoparametric concept and IGA ansatz, see,
for instance, STEIN AND BARTHOLD (1996), HUGHES (2000), ZIENKIEWICZ ET AL.
(2005) and COTTRELL ET AL. (2009).

Functional analysis requirements on NURBS basis

The internal virtual work contributions of all displacement-based shell models — see
Equations (4.13), (4.20), (4.26), (4.34) and (4.40) — may be formally expressed by sym-
metric, bilinear forms in the same way as defined for three-dimensional continua in
Section 2.5.1. In addition, the corresponding requirements on the function spaces for
both the trial and test functions of the continuous weak formulation with variational
index of one have been established.

In FEA, the continuous function spaces are restricted to finite dimensional subspaces.
The conditions required to determine a unique solution for the minimization and station-
ary problems defined in Section 2.5 can be directly transferred to discrete formulations,
as discretization mathematically implies the restriction of the function spaces in which
the solution is to be found.

The discrete bilinear forms for the individual internal energy contributions of the shell
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models of Chapter 4 are

b3p,h (uh7 §uh) = /5 (63}7 h C’Sp,h : E3].7.}1 th
Oh

Eres

bop stand.,h( h 5uh = /(5 (55 p-stand., h) (cap h 5p stand., h th
Qb

51-hi 5 55-hi

boP hier., h (uh.’ 611 = /5 (eop hier., h : (Cap,h . ghp hier., h th (5 3)
Qb

b?p»stand.,h ( h 6]1 /5 (67]; stand., h) . (C7p.,h . €7p-stand.,h th
Qb

b7p-hier.,h <uh7 6u 6( Tp-hier., h : (C7p,h . €7p-hier.,h th .
Oh

Second derivatives of the transverse displacements in the discrete weak forms of the
Kirchhoff-Love-type (3p) internal energy functional and the hierarchic shear deformable
5- and 7-parameter shell models (5p-hier., 7p-hier.) require discrete functions with
square integrable partial derivatives of second-order to ensure convergence of the nu-
merical scheme. Although the standard Reissner-Mindlin shells (5p-stand., 7p-stand.)
only have first derivatives and thus reduced integrability requirements, the same higher-
order and higher-continuity NURBS basis functions are applied, which enable a unique
definition of the director field in the entire patch domain.

The application of at least biquadratic and C'-continuous NURBS basis functions for
the displacement-based shell formulations in this thesis satisfies the completeness re-
quirements of the basis to exactly represent all functions up to the order induced by
the variational index of the underlying weak problem, which is two. Secondly, the
compatibility of the NURBS basis, which is defined to be at least C'-continuous at
inter-element boundaries and infinitely continuous within element domains, is satisfied,
which, together with completeness, finally ensures the consistency of the formulation.
The requirements with regard to stability have already been defined in Section 2.5.1 and
can be transferred to the discrete shell models.

Mathematical theorems and proofs on the convergence properties of isogeometric NURBS-
based FEA and suitable error estimates were derived, for instance, in BAZILEVS (2006),
BAZILEVS ET AL. (2006) and EVANS ET AL. (2009). These take into account the ratio-
nal property of NURBS, the concept of support extension of the basis, which in general
is not confined to one single element, and the reduced regularity of the basis functions at
inter-element boundaries. The local approximation properties of NURBS finite element
discretizations are consequently in between those of standard Sobolev spaces and discon-
tinuous Galerkin methods. In the aforementioned references, the authors additionally
identify identical rates of convergence for both the discrete solutions with NURBS and
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5 Hierarchic Isogeometric Shell Finite Elements

standard finite element formulations of identical polynomial order, independent of their
continuity.

5.2 Displacement-based, discrete element equations

5.2.1 Discrete shell quantities

The requirements on the finite-dimensional NURBS function spaces for the discrete weak
forms of the shell models have been established in Section 2.5.1 by means of the Lax-
Milgram-Theorem and further specified in Section 5.1 in order to ensure the existence,
uniqueness and stability of the discrete solution function.

Throughout all numerical shell examples of this chapter and the following, at least
biquadratic, bivariate NURBS with inter-clement continuity of minimum C* for both
the displacement field and the geometry are utilized, due to the base shell model with
Kirchhoff-Love kinematics, although this is possibly not necessary with regard to the
geometry representation. A cylindrical shell, for example, only requires second-order
NURBS functions in one parametric direction, whereas the other direction is sufficiently
accurately modeled with linear functions.

For the formulation of the discrete shell quantities, the convective coordinates 6° of Fig-
ure 4.1 are associated with the natural coordinates & = {&,n,(}.

In order to compute the shell element stiffness matrices, the strain tensors of the five
shell models defined in Equations (4.11), (4.18), (4.24), (4.32) and (4.38) and the cor-
responding material tensors C*, C* and C™ have to be discretized, which in detail
requires the discrete formulation of the mid-surface base vectors A of the reference
configuration, the rotation vector ®", the mid-surface displacements v?, the difference

5p-stand., h7 W5p—hier., h

displacement vectors w of the Reissner-Mindlin shell formulations

p:h and wP

and finally w b which introduce the linear and quadratic displacement dis-
tributions of the 7-parameter models in transverse normal direction.

According to the isoparametric concept, the discrete covariant base vectors Af; which
are identical for all shell models of this work, are defined as the sum of the NURBS

element basis function derivatives and the associated control point coordinates

.A}1l (5777) = Z(th,q (fv 77)),5 Pi7

A3 (Em) =D (NPYEm), P
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5.2 Displacement-based, discrete element equations

The number of element basis functions and control points (n,) depends on the poly-
nomial order p and ¢ of the bivariate NURBS basis defined in Equation (3.9). For
biquadratic NURBS (p = ¢ = 2), the number of element basis functions and control
points is equal to nine, for example.

The unique and pointwise exact definition of the discrete shell director A}j‘ in the entire
NURBS patch domain, due to the higher-continuity basis functions, naturally avoids
difficulties which arise from standard C°-continuous discretizations. Different modeling
strategies of C%-continuous director fields and consequences are discussed, for instance,
in BISCHOFF (1999) and BISCHOFF ET AL. (2004).

The CAD-exact NURBS director field A} is derived from the normalized cross product
of the discrete in-plane covariant base vectors A of Equation (5.4) in the same way as
for the continuous model

h h
Al x Aj

h _

The discrete displacement field of the mid-surface v* is determined from the sum of
NURBS element basis functions and the associated displacements v = {vjé7 U;, vf{} of

the control points as follows

Ncp

V(& m) =Y NP (Em) v (5.6)

i=1

Consequently, the discrete rotation vector ®" can be established, which rotates the un-

deformed director A} of the Kirchhoff-Love shell model into the current configuration a}

1 1
@h ) = h Ah Ah = h Ah Ah‘ .
0= (fapea &) A (apeag v at) a8 60

So far, all discrete quantities have been established for the 3-parameter Kirchhoff-Love
shell element to compute its stiffness matrix.

The shear-deformable 5-parameter shell formulations additionally require the discretiza-
tion of their difference vectors, which have to account for the inextensibility of the di-

5p-stand., h and WE}}hlcr.,h

rector in thickness direction. The principal structure for both w
is identical and can be modeled with functions of the in-plane natural coordinates £ and
n only. The different mechanical meaning of both vectors in the shell kinematics has
been explained in detail in Chapter 4; see, for instance Figure 4.3. Inextensibility in the
geometrically linear case is constructed by expressing the components of the discrete
difference vectors with regard to A as follows
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nep

WS (¢ ) — R (€ m) - AL with @0 (€n) = Y NP (€m) i
i=1
(58)

Ncp

WD (€ ) — N (€ ) - AL with @0 (€n) = Y NP (€m)

i=1

The discrete linear transverse displacements in #*-direction of both the standard and
hierarchic 3D shell elements (7p-stand., 7p-hier.), which accounts for extensibility in
thickness direction is equal to

nNep

wOPR (g, n) = ™" (€,n) - Ay with  @™" (€,n) =D NP (& n) @' (5.9)

i=1

Finally, the quadratic discrete displacement contributions w™™ of both 7-parameter
shell elements (7p-stand., 7p-hier.) have to be defined. Their control point degrees of
freedom @' are interpolated within the element domain like the degrees of freedom '

of the linear transverse displacements w!

Ncp

wiPh (&) =™ (¢, n) - Ay with @™ (&) =Y NP . (5.10)

i=1

5.2.2 Stiffness matrix, numerical integration

With the expressions of Section 5.2.1 at hand, the discrete form of the principle of
virtual work can now be written as a coupled system of linear algebraic equations in
matrix-vector notation, i.e. K-d =f for all shell models defined in Chapter 4. With
regard to the applied linear elastostatics in this thesis, the matrix K is referred to as
the stiffness matrix, the vector d is the vector of discrete control point displacements
and f represents the force vector.

Due to the local support of NURBS basis functions, the structure of the global stiffness
matrix is sparse. The evaluation of stiffness matrices and force vectors is performed
on element level and then assembled into the system stiffness matrix and system force
vector according to the direct stiffness method in the same way as for conventional finite
elements, by accounting for both compatibility of the displacements and force equilib-
rium.

For numerical integration, element-based Gauss quadrature is used throughout all com-
putations, although this is not optimal for higher-continuity basis functions, such as
B-splines or NURBS (HUGHES ET AL. (2010)). For biquadratic NURBS basis func-
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tions, 3 x 3 Gauss points are applied in-plane, whereas 2 Gauss points are used for
numerical integration in thickness direction.

As mentioned in Chapter 4, no pre-integration of the material law in @3-direction of
the shells is performed. The kinematic and static variables are defined on strain and
stress basis, rather than their resultant form. Consequently, numerical integration of the
element stiffness matrices consists of three nested loops: two for the in-plane directions
(&,1) and one through the thickness (¢).

5.2.3 Kinematic boundary conditions

The Kirchhoff-Love shell (3p) represents the basic mechanical shell model in this the-
sis with three independent parameters defining its kinematics, which correspond to the
mid-surface displacement components v; of a material point. No additional dependent
rotational degrees of freedom have been established in the formulation. The imposi-
tion of homogeneous displacement boundary conditions on the control points of 9Qb
consequently yields at most a hinged support. The definition of symmetry boundary
conditions or clamped supports, therefore, follows the approach of KIENDL ET AL.
(2009). Therein, the displacement degrees of freedom of the “second” row of control
points, which are perpendicular to the tangent plane of the NURBS object at the sup-
port boundary are additionally fixed to preserve the original orientation of the tangent
during deformation.

The 5-parameter standard formulation (5p-stand.) with difference vector to be imposed
on the director of the undeformed configuration has two additional displacement degrees
of freedom per material point, which are, however, defined in the local coordinate sys-
tem and thus do not coincide with the global Cartesian reference frame in general. For
the special case of a rectangular plate with the local coordinates {6’} having the same
orientation as the global ones {z, y, z}, fixing the degrees of freedom iy of all control
points along the boundary edges in y-direction and simultaneously setting the degrees of
freedom 1wy of all control points along the edges in x-direction to zero, yields a clamping
of the entire plate with soft support conditions, meaning that twisting along the edges
is not constrained.

Clamping of the hierarchic 5- and 7-parameter shells (5p-hier., 7p-hier.) is performed
analogously to the 3-parameter Kirchhoff-Love formulation by fixing the tangents of the
NURBS object during deformation along the prescribed displacement boundary. Im-
portant to notice, however, is that the degrees of freedom w, related to the hierarchic
difference vector only account for transverse shear deformations. Fixing these variables
in the same way as described for the standard Reissner-Mindlin shell (5p-stand.), con-
sequently enforces the condition of setting the transverse shear forces to zero along the
homogeneous displacement boundary, which may lead to wrong results.
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The sixth degree of freedom, w of the 7-parameter shells, is related to the extensibility
in thickness direction. Setting them to zero enforces the inextensibility of the shell along
the support boundary, which may, however, not be constrained if symmetry boundary
conditions are to be modeled. Finally, the seventh degree of freedom @, which for the
3D shells defines the quadratic displacement contribution in thickness direction, may
be constrained. If W = 0, the linear part of the transverse normal strains is set to zero
along the prescribed displacement boundary.

For further details on the physical significance of the kinematic and static variables of
shell formulations and the imposition of kinematic and static boundary conditions, the
reader is referred to BISCHOFF (1999), BISCHOFF AND RAMM (2000), BISCHOFF ET AL.
(2004), COTTRELL ET AL. (2009) and KIENDL ET AL. (2009), among others.

5.2.4 Numerical examples

Example 1: Plate strip with uniaxial bending

Figure 5.1: Simply supported plate strip with uniform transverse load.

The first example to be investigated is a rectangular simply supported plate strip as
shown in Figure 5.1, which is subjected to a constant transverse area load of ¢, = 1.0.
A Young’s modulus and Poisson’s ratio of 1000.0 and 0.0 are chosen for the definition
of the linear-elastic isotropic material. The sensitivity of the displacement-based shell
element formulations (3p, 5p-stand., 5p-hier., 7p-stand., 7p-hier.) to transverse shear
locking is analyzed. Due to the simple problem setup with uniaxial bending, the nu-
merical shell results are compared to the analytical Bernoulli beam solution, which for
a thickness of 1.0 yields a center deflection of v, = 1.5625. The corresponding analytic
displacement result with Timoshenko beam kinematics is v, = 1.5875.

The plate strip has the dimensions L, = 10.0, L, = 1.0 and a uniform thickness of ¢,
which will be varied in order to investigate the dependency of the numerical displace-

L= The natural coordinates

ment results on the critical parameter, i.e. the slenderness
{&,m, ¢} have the same orientation as the global coordinates {z,y, z}. The metric of
the shell is therefore constant in the entire patch domain. Consequently, derivatives
of the base vectors, with respect to the natural coordinates, vanish. The area load is

scaled with 3, proportional to the bending stiffness, such that the computed deflection
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becomes independent of ¢ in the thin limit.

The spatial domain is discretized with a structured mesh of 10 elements in z-direction
and one element in y-direction using biquadratic NURBS functions with maximum con-
tinuity of CL.

For all shell models, homogeneous displacement boundary conditions are applied to
the mid-surface displacement components v; of all control points along the edges in y-
direction at z = 0.0 and z = L,.
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Figure 5.2: Plate strip — displacement convergence (transverse shear locking).

The chart of Figure 5.2 clearly illustrates that the displacement results of the Kirchhoff-
Love-type (3p) and the hierarchic shell formulations (5p-hier., 7p-hier.) are independent
of the slenderness and asymptotically converge to the analytic Bernoulli reference solu-
tion. Due to the relative coarse mesh, the numerical shell results slightly underestimate
the beam reference solution. In the thick regime, the Reissner-Mindlin and 7-parameter
elements match the analytic Timoshenko beam solution due to the influence of trans-
verse shear. Whereas the Kirchhoff-Love shell element is free from spurious transverse
shear strains by definition, the hierarchic 5-parameter and 3D shell elements do not suf-
fer from this locking effect based on the independent parametrization of both bending
and shear deformation; see Sections 4.4.2 and 4.5.2. The standard 5- and 7-parameter
shell elements (5p-stand., 7p-stand.), on the other hand, clearly exhibit sensitivity to
transverse shear locking. Equal order interpolation of both the mid-surface displacement
field and the difference vector yields an imbalance of the NURBS function spaces in the
kinematic equations of e",; see Equations (4.19) and (4.33).

Next, the quality of the discrete transverse shear forces V, will be investigated along
the path P-Q of Figure 5.1 for the 5- and 7-parameter shell element formulations. Ad-
ditionally, a NURBS-based Timoshenko beam model with hierarchic difference vector
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(Timo.-hier.) and the analytic Timoshenko reference solution (Timo.-Ref.) are analyzed
for a fixed slenderness of % = 10.

10 ‘
bp-stand. O

N 5p-hier. 2~
® Tp-stand.
= or 7p-hier.
- Timo.-hier.
B Timo.-Ref.
< 0
=
()
%
% -5
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-10

0 2 4 6 8 10
Length L,

Figure 5.3: Plate strip and Timoshenko beam — transverse shear forces.

For computing the stress resultant transverse shear forces of the shell models in the
global Cartesian basis e;, the stress components ¢*, which are defined in curvilinear
convective coordinates 67, first have to be transformed into a Cartesian frame according
to Equation (5.11)

o0 = o (Gy-e) (G- €). (5.11)

The transverse shear stresses for the 5-parameter shell elements are constant across the
thickness. For the given problem setup, the 7-parameter shell elements also have a con-
stant distribution of transverse shear stresses in #*-direction. Due to the unit area of
the rectangular cross section of the plate strip, the values of the transverse shear forces
coincide with the values of the transverse shear stresses.

The evaluations along the path P-Q reveal an interesting result. Although the parametri-
zation with hierarchic difference vector is insensitive to transverse shear locking, see Fig-
ure 5.2, oscillations in the transverse shear forces show up both for the hierarchic shell
and the hierarchic Timoshenko beam elements. For the given problem setup with uni-
axial bending, the transverse shear forces of the discrete hierarchic shell and hierarchic
beam formulations are identical. The reason for this oscillation phenomenon, however,
is not yet found. The oscillations are very pronounced near the supports and diminish
towards the homogeneous interior of the structure. With progressive mesh refinement,
they become more and more confined to the displacement boundary at z = 0.0 and
z = L,, with decreasing maximum amplitudes.
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Example 2: Plate with biaxial bending

In this second example, a simply supported square plate subjected to constant transverse
loading ¢, is investigated, which, compared to the previous example, however, yields
biaxial bending. The plate edges have a length of L = 10.0. The Young’s modulus is
equal to 1000.0 and a nonzero Poisson’s ratio of 0.3 is chosen. Again, the sensitivity of
the shell element formulations (3p, bp-stand., 5p-hier., 7p-stand., 7p-hier.) to transverse
shear locking is analyzed by evaluating the dependency of the center deflection of the
plate on the critical parameter, i.e. the plate thickness . The transverse unit load
¢. = 1.0 is again scaled with the #*, such that the displacement evaluations become
independent of ¢ in the thin limit.

Figure 5.4: Simply supported plate with uniform transverse load.

A spatial discretization with 10 biquadratic NURBS elements in both z- and y-directions
with maximum C'-continuity is employed. The displacement values at the center of the
plate are computed for all discrete shell models and compared to an analytical Kirchhoff
plate solution ' of TIMOSHENKO AND WOINOWSKY-KRIEGER (2007). Only the

2, max
ref.
z, max

first two terms of the series solution to v are considered for a sufficiently accurate

result, which finally yields

ol =0.442892. (5.12)

z, max

The displacement results in Table 5.1 confirm the observations and results of the plate
strip of the previous example. Both the Kirchhoff-Love-type (3p) and the hierarchic
shell element formulations (5p-hier., 7p-hier.) match the analytic center deflection of
the Kirchhoff plate model very well in the thin limit, independent of the slenderness
of the structure. In the thick regime, the expected differences due to transverse shear
effects are observed. The standard 5- and 7-parameter elements (5p-stand., 7p-stand.)
again clearly underestimate the center deflection in the thin limit because of transverse
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Slenderness % 10 100 1000 10000
Shell formulation (2nd order NURBS)

3p 0.4423  0.4423  0.4423  0.4423
5p-stand. 0.4947  0.4367  0.3905  0.3878
5p-hier. 0.4938  0.4431  0.4423  0.4423
Tp-stand. 0.4947  0.4367  0.3905  0.3878
Tp-hier. 0.4936  0.4429 0.4421  0.4420

Table 5.1: Square plate — center deflection v, max.

shear locking. The results, however, do not converge to zero with increasing slenderness,
as they do in the case of linear elements due to the application of second-order NURBS
discretizations.

In the thin limit, the results of the hierarchic 7-parameter shell do not exactly match the
Kirchhoff solution. Whereas the 3- and 5-parameter formulations satisfy the condition
of zero transverse normal stress, i.e. ¢® = 0 in a strong sense via static condensation of
the corresponding constitutive equations, in the 7-parameter model, the zero transverse
normal stress condition is only satisfied approximately. The quality of the approxima-
tion depends on the discretization ansatz in thickness direction of the shell. With mesh
refinement, the deviation in the displacements fades away, which consequently yields a
locking-free formulation.

In Figure 5.5, the vertical displacement v, of the plate, which is discretized with Kirchhoff-
Love shell elements, is displayed for a slenderness of ’7‘ = 100.

T |
0.0000 0.4423
Figure 5.5: Kirchhoff-Love shell — deformation plot v,.

The examples of this section show that standard formulations of displacement-based
NURBS finite elements are not necessarily locking-free. For problems with constraints,
the solution may depend on a critical parameter, which due to the mismatch of dis-
crete NURBS function spaces may result in a significant underestimation of displace-
ments. Although NURBS finite element methods are fundamentally of higher-order,
locking does not vanish, but will only be alleviated. Therefore, the topic of locking of
displacement-based NURBS finite elements is investigated in more detail in Section 5.4.
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5.3 Higher-continuity NURBS discretizations

5.3 Higher-continuity NURBS discretizations

In Section 3.5, three different mesh refinement methods have been presented which en-
able enriching the NURBS basis and controlling inter-element continuity: knot insertion,
order elevation and k-refinement. Whereas for CAD-based geometry representation,
refinement of the function bases is used particularly for visual design, for numerical
analysis, the modification of the NURBS basis is essential to ensure satisfactory approx-
imation and convergence properties of the discrete solution functions.

Compared to classical C°-continuous p- and h-refinement, the higher-continuity prop-
erty of NURBS represents a significant novum in FEA. It allows for the straightforward
formulation of problems with higher-continuous derivatives, such as the Kirchhoff-Love
shell of Section 4.3, and in addition, provides improved accuracy of discrete solutions,
which was first documented for smooth structural and fluid mechanics problems in
HUGHES ET AL. (2005), COTTRELL ET AL. (2006) and COTTRELL ET AL. (2007).
K-refined NURBS, moreover, provide a homogeneous and repeating pattern of function
coefficients and thus a regular distribution of nodal stiffness, which is in clear contrast
to higher-order Lagrangian polynomials with an increasingly heterogeneous structure.

Lagrange NURBS
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Figure 5.6: Consistent nodal forces — cubic Lagrange (C°) vs. NURBS (C?).

This difference is illustrated in Figure 5.6 for the distribution of consistent nodal forces
of a 1D problem subjected to constant transverse loading. The spatial domain of unit
length is discretized uniformly with ten elements and basis functions of cubic order for
both cases. The nodal locations are displayed with black circles and element boundaries
are highlighted with black vertical lines. Except for small regions at the patch boundary,
the NURBS discretization yields uniform nodal forces of % in the interior of the domain,
whereas the Lagrange discretization shows the aforementioned heterogeneity within el-
ements. Additionally, the difference in inter-element continuity of both discretizations
is clearly demonstrated. Whereas the Lagrange model provides a C°-continuous inter-
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polation across element boundaries independent of the polynomial order, C2-continuity
is achieved with the k-refined cubic NURBS in the entire patch.

On the other hand, the higher continuity and smoothness of the NURBS basis may lead
to unphysical phenomena, particularly for coarse mesh discretizations and non-smooth
problems, such as contact, boundary layers, singularities or material interfaces. Local
physical effects are consequently smeared over larger parts of the domain in the discrete
model, and spurious deformations and oscillations of stresses may show up, as analyzed
for NURBS contact problems in MATZEN ET AL. (2013), for instance. With regard
to finite element technology, the continuity of derived quantities, such as stresses and
strains, precludes the direct application of conventional approaches for C°-continuous
discretizations, such as the enhanced assumed strain (EAS), assumed natural strain
(ANS) or reduced integration methods to improve the behavior of pure displacement
formulations, which will be discussed in Chapter 6.

5.3.1 Effect of continuity on accuracy
In this section, the effect of higher-continuity NURBS on the approximation quality of

discrete solutions compared to higher-order C°-continuous element formulations will be
investigated for a pinched cylindrical ring with fixed slenderness of % = 100.

Problem setup

Figure 5.7: Pinched ring — problem setup.

The entire geometry can be modeled with four patches. For numerical analysis, however,
only one quarter of the domain is discretized with one NURBS patch €, and appro-
priate symmetry boundary conditions. To avoid singularities due to the concentrated
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loading Fy, an equivalent distributed shear force g, is applied along the cross-section of
the ring.

The discretization of the ring is performed with 2D NURBS continuum elements, which
allow for a reduction of inter-element continuity up to C°, in contrast to the hierarchic
NURBS shell elements of this thesis, which require at least C'-continuity of the NURBS
basis. For the 2D problem setup, a state of plane stress is assumed.

In circumferential direction of the ring, 2nd and 3rd order NURBS functions are used
along with mesh refinement. In radial direction, only one element with quadratic
NURBS is applied to all computations, which is required for an asymptotically cor-
rect model. Consequently, five finite element models with different polynomial order
and continuity are examined. The polynomial degree of the NURBS basis in circumfer-
ential direction of the ring is denoted with p; in radial direction, the variable ¢ is used.
The Young’s modulus and the Poisson’s ratio are equal to £ = 1000.0 and v = 0.0 for
all computations. For numerical integration, an element-based standard Gauss quadra-
ture is employed in the same way, as defined previously for the NURBS shell element
formulations.

Numerical results
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Figure 5.8: Pinched ring — relative error e, (effect of continuity).

In Figure 5.8, the relative error in the displacements e,n is computed with respect to a
numerical reference solution u; and plotted versus the number of degrees of freedom
(d.o.f.) in a double logarithmic scale. The evaluations refer to the discrete displacement
u;‘ of the control point highlighted with a red box in Figure 5.7 in y-direction. The re-
sults of the biquadratic discretizations are displayed in blue; the cubic-quadratic models
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are shown in red.

Several conclusions can be drawn from Figure 5.8: By comparing the red to the blue
curves, it turns out that increasing the polynomial order of the NURBS basis reduces
the relative error in the displacement results for the same number of degrees of freedom.
Additionally, higher-order NURBS discretizations possess higher rates of convergence in
the limit of an infinite number of degrees of freedom, which is revealed by the steeper
slopes of the cubic NURBS discretizations. These observations are not fundamentally
new for NURBS FEA, and they conform with the results known for traditional finite
element formulations.

When looking at the class of red and blue curves in Figure 5.8 individually, their asymp-
totic rates of convergence are identical in the limit. The absolute errors, however, signif-
icantly differ from each other. With decreasing continuity of the basis in circumferential
direction of the ring, the relative error increases. In the coarse mesh regime, the C°-
continuous approach with cubic basis appears to be superior to the one with maximum
continuity. This phenomenon may, however, be due to the fact that for very coarse
discretizations, the C°-continuous shape functions happen to better approximate the
discrete displacement result. In the asymptotic range, the maximum-continuity models
provide significantly superior results.

This first example of a curved 2D thin-walled structure predominantly subjected to
bending reveals that the higher continuity of the NURBS basis significantly improves
the computational results compared to C°-continuous shape functions for smooth prob-
lems.

5.3.2 In-plane behavior of NURBS shell elements

In Section 5.2.4, the two examples of plates subjected to transverse loading revealed that
the hierarchic family of NURBS shell elements with pure displacement ansatz avoids
transverse shear locking completely, whereas the standard shear-flexible formulations
(5p-stand., 7p-stand.) tend to lock.

The curves of the relative error in the displacements for the pinched ring problem of
Section 5.3.1, on the other hand, demonstrate that the rates of convergence of the
displacement-based 2D continuum elements are not uniform and show slow convergence,
particularly in the coarse mesh regime, which indicates locking. With increasing poly-
nomial order, the relative error in fact becomes smaller; nevertheless, even the cubic
NURBS discretizations tend to lock for the given bending dominated problem setup.
Therefore, the pinched ring of Figure 5.7 now is discretized with biquadratic Kirchhoff-
Love shell elements with pure displacement formulation in order to investigate in-plane
behavior of NURBS shell elements in the same way as for the 2D continuum elements,
by analyzing the relative error in displacements. The circumferential and radial direc-
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tions of the ring coincide with #* and 6% and thus the in-plane directions of the shell
elements. The Reissner-Mindlin and 3D shell formulations of Sections 4.4 and 4.5 are
not considered herein. For the given model problem, no contributions of the difference
vectors to the in-plane strain components sﬁ;ﬁ will show up.

In circumferential direction, the number of elements is varied; in radial direction, again
only one element is utilized. Three models with different slenderness £ are evaluated

¢
and compared among each other.
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Figure 5.9: Pinched ring — relative error e,n (effect of slenderness).

In Figure 5.9, the relative error in the displacements for the control point highlighted in
red in Figure 5.7 is plotted versus the number of degrees of freedom in a log-log scale.
All three models have identical asymptotic convergence rates in the limit due to having
the same polynomial order. The absolute errors, however, increase significantly with an
increase in slenderness of the structure and are not uniform, particularly in the coarse
mesh regime.

These observations, together with the results obtained from Figure 5.8, clearly indicate
that NURBS finite elements and, with regard to this thesis, the in-plane part of the
NURBS shells elements with pure displacement ansatz, is not locking-free for problems
with constraints. The locking effects of this example are purely geometric.

So far, no detailed investigations have been performed to determine exactly which type
of geometric locking effect deteriorates the approximation properties of the discrete so-
lutions. It can be observed that higher-order and higher-continuity NURBS discretiza-
tions have improved accuracy properties compared to C%-continuous discretizations for
smooth problems, but they are not necessarily locking-free.

Therefore, in Section 5.4 a detailed investigation of the respective locking phenomena
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showing up for the displacement-based NURBS shell finite elements in constraint prob-
lems is carried out.

5.4 Locking phenomena for NURBS shell elements

The most important locking phenomena in the context of numerical shell analysis are
related to geometric constraints, which deteriorate the accuracy and slow down the con-
vergence as thickness approaches zero. For the most general case of three-dimensional
shells, these effects are transverse shear locking, curvature thickness locking and mem-
brane locking. A detailed treatment of the different locking effects for shell finite el-
ements in general can be found, for instance, in HAUSSER (1996), BISCHOFF (1999),
KLINKEL (2000), BISCHOFF ET AL. (2004) and KOSCHNICK (2004).

Standard polynomial or NURBS-based shape functions in a Galerkin ansatz are often
too inaccurate for a sufficiently precise approximation of the exact solution, if either
kinematic or material-based constraints, such as fulfillment of the Kirchhoff condition
for thin computational domains or incompressible material behavior are present.
Mathematically, locking is associated with an ill-conditioning of the respective physical
problem or the set of partial differential equations, which depends on the existence of a
small critical parameter. This parameter may be associated with some physical quan-
tity, as for example the thickness of a structure or the bulk modulus. If the parameter
approaches a limiting value, a large quotient of coefficients in the internal energy func-
tional evolves, which inhibits uniform and optimal convergence of the discrete model
with regard to this parameter, as the mesh parameter h — 0.

A robust formulation, on the other hand, is characterized by uniform and optimal con-
vergence of the discrete solution with respect to some norm for all values of the critical
parameter, as h tends to zero (BABUSKA AND SURI (1992), ARNOLD AND BREZzZI
(1997), BRAESS (2003)).

5.4.1 Constraint count method

In the following, the “constraint count” approach of HUGHES (2000) is briefly summa-
rized and used in the subsequent sections to numerically analyze the sensitivity of the
NURBS shell elements with regard to locking, without requiring in-depth mathematical
fundamentals of mixed methods and proofs of stability conditions.

For a discrete model, the scalar constraint ratio c¢n is computed as the quotient of the
number of displacement degrees of freedom and the amount of constraint conditions.
Only those degrees of freedom are considered which contribute to the deformation mode
under consideration. For computing the constraint ratio of a specific element type, the
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existence of an infinitely large and structured mesh is assumed. In the discrete model,
the number of relevant degrees of freedom Ny, is computed by the ratio of finite ele-
ment nodes to elements, which is denoted with 7n,,4. times the number of nodal degrees
of freedom ngq,.¢. The amount of constraints N, is related to the number of quadra-
ture points ny, where the constraints are to be evaluated.

cont.

The optimal constraint number of the continuous problem cn/ is equal to the ratio of
degrees of freedom per material point sz"ﬁ and number of constraint conditions Ngops. -
A numerical estimate, with regard to the element performance, is obtained by comparing
the discrete constraint number to the optimal one. If the constraint ratio cn is smaller

ot too many constraints exist and the element formulation tends

than the optimal cn
to lock. Values of ¢n <1 indicate severe locking, as more constraint conditions than
displacement degrees of freedom are available. If ¢n > 2, the number of constraints is
too small, which may lead to a poor approximation quality, oscillations of the solution
or even instability of the element formulation.

Further details of this numerical approach with regard to the assessment of locking and
existing shortcomings are provided, for instance, in HUGHES (2000), BISCHOFF (1999)
and BISCHOFF (2005).

The derivation of the optimal and discrete constraint number is illustrated in the fol-
lowing for a 2D continuum element subjected to pure bending. The optimal constraint
number is equal to the ratio of displacement degrees of freedom, which is two, and the
number of constraints, i.e. zero shear strains

Ncont. 2
cont. d.o.f.
= _dof. _~ _9, 1
o Ncons. 1 (5 3)

The four node bilinear displacement quadrilateral with 2 x 2 quadrature points, accord-
ing to the course of action described before, yields

Nyo o.f. * Tlmode 2-1 1
_ Ndof. _ Mdof " Mhode _ 2-1 1 (5.14)

cn
Ncons. Neons. * Tq 1 2

The discrete constraint number is significantly smaller than one, which reveals that the
element formulation is strongly overconstrained and thus exhibits severe shear locking.
An application of reduced one-point integration for example results in a constraint ra-
tio c¢n = 2, which is optimal with regard to c¢n®"; but it is known from literature
(ZIENKIEWICZ ET AL. (1971), HUGHES ET AL. (1977)) that this approach will lead to
zero energy deformation modes without the use of selective reduction or stabilization
techniques. Methods to avoid locking for the NURBS shell finite elements of this thesis

are discussed in Chapter 6.
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5.4.2 Transverse shear locking

Transverse shear locking may show up in isoparametric displacement-based shear de-
formable beam, plate and shell finite element formulations that are applied to problems
with constraints. Particularly for shell structures, which due to their efficient load car-
rying behavior can be built very slender, this locking effect may become very severe in
computational structural analysis.

The Bernoulli or Kirchhoff constraint of zero transverse shear strains cannot be enforced
accurately, especially for low-order displacement approximation functions, which are not
able to represent the continuous deformation modes correctly and consequently lead to
unphysical parasitic transverse shear strains and stresses that do not show up in the
continuous formulation.

Timoshenko beam — analytical investigation of transverse shear locking

The straight Timoshenko beam model, although a fairly simple problem setup, allows
for an analytical investigation of transverse shear locking and the computation of exact
solutions for arbitrary load cases. The reasons and phenomena for shear locking can
be carried over to plates and shells, which makes it sensible to investigate the shear-
deformable beam problem first.

For a Timoshenko beam element with a rectangular cross section, the ratio of bending to
shear stiffness is proportional to the square of the thickness ¢, which for ¢ — 0 converges
quadratically to zero. If unphysical parasitic transverse shear is present, the major part
of the deformation energy will be absorbed, which finally results in a significant underes-
timation of the displacements. This effect is in clear opposition to the continuous model,
where with ¢ — 0, the influence of transverse shear vanishes, such that the continuous
solution converges to the shear-rigid Bernoulli displacement solution.

The linear kinematic equations for the curvature s and shear angle v of a straight
and plane Timoshenko beam are defined in Equation (5.15), where the transverse dis-
placements u, and the cross sectional rotations ¢ are the independent displacement

parameters
o=y,
/ (5.15)
v o =u,te.

First derivatives with respect to the coordinate of the beam center line are indicated
with (e)". Equation (5.15) clearly reveals the different orders of functions in the equation
for the shear angle ~, which for equal-order interpolation of both the displacements and
rotations in the discrete model results in higher-order contributions of ¢ that cannot be

balanced by the transverse displacements u; with the existence of derivatives.
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The Timoshenko beam model of Figure 5.10, which is discretized with a pure displace-
ment NURBS ansatz, will be analyzed with respect to transverse shear locking in the

following.
Y Mm(z) = 5sin (130)
//\, ’
Vo)
uy(L)
| L |

Figure 5.10: Timoshenko beam with sinusoidal moment loading.

The beam has a length of L = 10.0 and unit width b = 1.0. The Young’s modulus and
Poisson’s ratio are equal to £ = 10000.0 and v = 0.0, respectively. To analytically in-
vestigate locking, the thickness ¢ stays symbolic, such that the computational results
remain functions of the thickness.

The exact solutions for the displacements w,*(x) and rotations o™ () are

1
u(z) = 2—30 7% cos(2) + zcos <3x> - g ,

2 @+ S on (L)
= 1OOZECOS 20SlD 5.’1} .
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For the continuous model, the pure moment loading 7 (z) results in pure bending defor-
mations without transverse shear effects. The load is scaled with the 3rd power of the
beam thickness ¢, such that the displacements are independent of the thickness param-
eter.

For simplicity, single element NURBS discretizations are used, as the investigated lock-
ing effect results from the mismatch of discrete function spaces in the kinematic equation
for the transverse shear, rather than the number of elements.

In (5.17), the element displacement vector d,—; is shown, which accounts for only the
nonzero control point displacements for a discretization with linear (p =1) NURBS
functions. The tip displacements uL‘(z = L) of all displacement vectors d,—; to d,—4 are
highlighted in green; the discrete rotations at the tip of the beam in blue color. Only
nonzero degrees of freedom are displayed

—3.92 =
d,, = { 12-’*“} . (5.17)

2
0.783 1355

The results of d,—; clearly reveal the dependency of the discrete solution on the beam
thickness ¢, in contrast to the analytical model. The displacements even tend to zero with
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t — 0, which leads to a complete divergence and confirms conventional finite element

results
—0.179 3t
[ 0122 21 ] 0.0375 2039177762
~0.568 55z 0.05 SL6E20° ~0.366
O Lt DT sl IR I
—0.75 BT | 0.05 L5220 —0.1875 S834L308 0
0.261 ~1.69 0.0375 8851043012
0261, | —1.69
0.261 |
(5.18)

Additionally, higher-order NURBS discretizations with p = 2,3 and 4 are investigated.
For the 2nd order model, the rotation at the free end of the beam is now independent of
t. For the cubic and quartic NURBS discretizations, both the tip displacements and the
rotations match the exact solution. Nevertheless, even for cubic and quartic NURBS
functions, the control point degrees of freedom in the interior of the patch still depend on
the thickness ¢ and thus indicate sensitivity to locking. The situation, however, becomes
less dramatic as the polynomial order is increased. The displacement at the free end of
the beam no longer tends to zero for ¢ — 0, as it was the case for the linear NURBS
discretization.

In Figure 5.11, the exact error ||e,||z2 in the displacements is computed with respect
to the L:-norm for all four NURBS discretizations. L? represents the Sobolev space of
square-integrable functions. The definition of the error is provided by Equation (5.19),
where u;‘ denotes the NURBS finite element solution (HUGHES (2000), ZIENKIEWICZ
ET AL. (2005))

. [|ug* — U?};HLZ

R P P

(5.19)

llew

The relative error for the linear NURBS discretization is almost one, even for a com-
paratively small slenderness of % = 10. For quadratic NURBS functions, ||e,||z2 already
becomes significantly smaller with a value of approximately 0.25 for a slenderness of
% = 100. The error curves of the cubic and quartic case are nearly horizontal and pos-
sess very small absolute values, which, from a practical point of view, become almost
insignificant.

An application of the constraint count method of Section 5.4.1 for a linear Timoshenko
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Figure 5.11: Timoshenko beam — exact L?-norm error.

beam element yields the following results. The number of continuous constraints to be
satisfied at a material point is one, i.e. 7 = 0. The number of relevant degrees of freedom
per material point is two, which are the transverse displacements and cross sectional ro-

cont.

tations. Consequently, the optimal constraint ratio is equal to cn = % = 2. For an

infinite mesh, the ratio of number of nodes to elements becomes one. Standard Gauss

quadrature requires two integration points per element. The constraint number for the
12 _

linear Timoshenko beam element yields cn = 57 = 1, which reveals that the element

formulation is overconstrained and will exhibit locking.

Transverse shear locking for standard 5- and 7-parameter isogeometric shells

The 5- and 7-parameter shell models with standard difference vector to be imposed on
the director of the undeformed configuration (5p-stand., 7p-stand.) have been intro-
duced in Sections 4.4.1 and 4.5.1. As already assessed for the Timoshenko beam model,
the constraint of vanishing transverse shear in the thin limit cannot be achieved for
the standard shear deformable isogeometric shell elements if an equal-order NURBS in-
terpolation is applied to both the mid-surface and difference vector displacement field.
The highest polynomial order of the difference vectors cannot be balanced by the mid-
surface displacements, which possess first derivatives in the strain tensor coefficients .3,
see Equations (4.19) and (4.33).

The shell elements consequently tend to transverse shear locking and principally show
the same behavior as described for the discrete NURBS Timoshenko beam models be-
fore.

The effect of transverse shear locking for the shear deformable 5- and 7-parameter shell
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5 Hierarchic Isogeometric Shell Finite Elements

elements with standard difference vector show up in exactly the same way, if, instead of
a difference vector formulation, a parametrization with rotation tensors is applied. The
same holds true for the Timoshenko beam model, if, instead of rotations, a difference
vector is imposed on the undeformed director.

5.4.3 Membrane locking

The ability to carry loads in a state of pure bending, i.e. inextensional deformation
without any membrane action is limited to developable shell structures, for example
cylinders and cones. Membrane locking for curved, thin-walled beam and shell finite
elements is related to the inability of describing inextensional pure bending deforma-
tion modes without additional unphysical parasitic membrane contributions. For flat
structures with zero curvature, this phenomenon does not show up, as bending and
membrane action are not coupled a priori.

In STOLARSKI AND BELYTSCHKO (1982), this phenomenon of undesired membrane-
bending-coupling was denoted as membrane locking for the first time while the kine-
matics of a curved shallow beam was investigated, accounting for Marguerre’s shallow
shell theory (MARGUERRE (1938), L1 AND SHYY (1997)).

Figure 5.12: Marguerre shallow shell.

In the left sketch of Figure 5.12, the reference configuration of a shallow shell is dis-
played. By assuming linear kinematics and taking the z-y-plane as the reference plane
of a three-dimensional Cartesian coordinate system, the mid-surface of the shell may be
defined by

z=2z(z,y). (5.20)

The displacement field u = {u, v, w} is again described in Cartesian coordinates. It
yields for the cutting plane through the points P and @, which is parallel to the y-z-
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plane, as shown on the right of Figure 5.12

v o=v4zZ,w,
Y (5.21)

W o=w-—2Z

Ly U

By accounting for the approximations v ~ 9, w ~ @ and z,v < 1, the entire displace-
ment field, which is composed of mid-surface displacements and curvature contributions,
is equal to

Wz, y,z) =ulz,y) +z, w(z,y),
oz, y,2) = v(z,y) + zow(z,y), (5.22)

w(z,y,2) =w(z,y),

from which the linearized membrane strain components of the shallow shell can be
derived

ou _
Eax = a7 = Ug + Za Wy,
Jz ~—  ~——
lin. const.
ou 0
24 =5+ =UytUFZ W, +Z,w
ay ay oz g T Vo T 2z Wy T 2y W, (5.23)
lin. const.
ov _
Eyy oy = Uy tZyWy.

lin. const.

Equation (5.23) reveals that nonzero curvature, i.e. z # const., leads to contributions
of different order in the membrane strain components. An isoparametric interpolation
of both the geometry and displacement field therefore leads to unbalanced terms in the
kinematics, which are the reason for membrane locking.

The critical parameter for membrane locking is again the thickness of the structure, as
for transverse shear locking. The ratio of bending to membrane stiffness is proportional
to the square of the thickness. With increasing slenderness of the discrete model, large
parts of the internal energy are due to unphysical membrane action, which consequently
results in a significant underestimation of the displacements and prevents a uniform
convergence to the exact solution.

The application of the constraint count approach of Section 5.4.1 to numerically investi-
gate the tendency of displacement-based shell finite elements to membrane locking will
be examined in the following.

The number of continuous constraints to be satisfied if shear deformations are accounted
for is three, which are the membrane normal forces and shear forces to vanish for the case
of pure bending. The number of relevant degrees of freedom per material point consists
of three mid-surface displacements and two rotations or difference vector displacements,
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respectively. The optimal constraint ratio is therefore equal to cn®™ = g ~ 1.667.

A four node bilinear shell element with standard 2 x 2 Gauss integration points gives
cn = % =~ 0.417. The biquadratic nine node shell element with standard 3 x 3 Gauss
points yields a discrete constraint number of ¢n = % ~ 0.741. Both values are signifi-
cantly smaller than one, which indicates strongly overconstrained formulations that are
sensitive to locking.

Analytical investigation of membrane locking — cylindrical shell strip

P_—
-t

Figure 5.13: Cylindrical shell — problem setup.

In this numerical example of a curved cylindrical shell subjected to bending, the behavior
of the 3-parameter (3p) and hierarchic 5-parameter (5p-hier.) NURBS shell formula-
tions with pure displacement ansatz is analyzed with regard to membrane locking. The
T-parameter shell formulation (7p-hier.) is not considered herein in order to exclude
possible curvature-thickness locking effects from the investigations. Transverse shear
locking will not show up due to the hierarchic difference vector formulation.

The required material constants for the linear elastic computations are Young’s modulus
FE =1000.0 and Poisson’s ratio ¥ = 0.0. Thus, material-based locking effects, which are
discussed in Section 5.4.5, are excluded a priori.

The only remaining defect in the discrete kinematic equations of the curved shell finite
elements may therefore originate from unphysical membrane-bending-coupling.

The shell segment has a radius of R = 10.0 and a width of 1.0 in y-direction. For the nu-
merical simulations, the domain is discretized with a structured mesh of ten biquadratic
NURBS shell elements with a maximum continuity of C' along the circumferential di-
rection of the cylindrical strip. Along the edge x = 0 the structure is clamped. Clamping
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of the rotation-free NURBS shell elements is performed according to Section 5.2.3 by
setting all mid-surface displacement degrees of freedom v’ at 2 = 0 equal to zero and
additionally applying homogeneous displacement boundary conditions in z-direction on
the adjacent row of control points in order to fix the horizontal tangent at z = 0.

At the free edge, z = R, a moment loading of #m = 1.0 #> is applied to the discrete
model. Due to the lack of rotational degrees of freedom, the moment is modeled with
force couples, which are applied to the last two rows of control points. Based on the
shape of the cylindrical segment, these rows of control points are both located at z = R
and thus the corresponding force couples have an orientation exactly in + z-direction.
An analytical reference solution is based on Bernoulli beam theory and yields the fol-
lowing stress resultants for the statically determinate structure

M=-10-t, V=00, N=00. (5.24)

The exact radial displacement u,, at the free edge is equal to 1.20, independent of the

slenderness %
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Figure 5.14: Cylindrical shell — displacement convergence (membrane locking).

Figure 5.14 clearly demonstrates the sensitivity of both the displacement-based Kirchhoff-
Love (3p) and the hierarchic Reissner-Mindlin (5p-hier.) shell elements to membrane
locking due to parasitic membrane strains in €1;. Whereas for a comparatively thick
structure the numerical results conform very well with the analytical reference solution,
with increasing ﬁlendemegq , the discrete radial displacement of point P tends to zero.
A moderate slenderness of R =100 already reveals significant unphysical membrane
strains, which lead to an underestunatlon of the reference displacement by almost 30%.
The numerical displacement results are displayed in Table 5.2.
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Slenderness g 10 100 1000 10000
Shell formulation (2nd order NURBS)

3p 1.1909  0.8446  0.0285  0.0003
5p-hier. 1.1948  0.8446  0.0285  0.0003

Analytic result
Beam reference 1.2000  1.2000  1.2000  1.2000

Table 5.2: Cylindrical shell — displacements ug, (membrane locking).

As mentioned before, the investigated displacement-based NURBS shell formulations
may only exhibit membrane locking in the 1y strain component. All other locking ef-
fects are excluded a priori due to the setup of this model problem. Additionally, no
changes in thickness direction will show up during deformation, such that the results
for the membrane strain component £1; can also be carried over to the hierarchic 7-
parameter shell element, in principle.

This numerical experiment illustrates that the isogeometric displacement-based NURBS
shell element formulations require additional techniques for improving the behavior of
the membrane part, which will be dealt with in detail in Chapter 6.

A comprehensive treatment and mathematical analysis of membrane locking for curved
beam and shell structures can be found, for instance, in PITKARANTA (1992), ARNOLD
AND BREzz1 (1997), CHOI ET AL. (1998), BISCHOFF ET AL. (2004) or WISNIEWSKI
(2010).

5.4.4 Curvature thickness locking

For the 3D NURBS shell elements with extensible director, which have been derived in
Section 4.5, curvature thickness locking also has to be considered, which was identified
first in RAMM ET AL. (1994) and BETSCH ET AL. (1995). This locking effect occurs for
curved beam and shell elements with difference vector formulation and the application
of averaged extensible directors. It may lead to artificial contributions in the transverse
normal strains es3.

In order to explain this phenomenon more clearly, a curved shell structure with bilinear
discretization subjected to pure bending in the §' — #3-plane is investigated, as shown
in Figure 5.15. For a state of pure bending, the length of the nodal directors has to
remain unchanged during deformation. Additionally, the difference vector w is orthog-
onal to the director Az, i.e. As-w = 0 for zero Poisson’s ratio and linear kinematics.
Thus, no transverse normal strains 33 will occur. The interpolation of even exact nodal
directors with conventional C°-continuous low-order Lagrangian shape functions in the
element, however, results in an unphysical elongation or shortening of the director and
thus artificial transverse normal strains.
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Figure 5.15: Pure bending deformation — curvature thickness locking.

The 7-parameter isogeometric shell formulations of Section 4.5 neither use averaged
nodal directors, nor interpolate the discrete nodal director components in the element.
They pointwise exactly define a smooth and extensible director field within the entire, at
least biquadratic and C'-continuous NURBS patch. Whereas for the 3D shell element
“Tp-stand.” the difference vector is added on the undeformed director Aj, “7p-hier.”
imposes the difference vector on the rotated shell normal.

1.0

P§?J1~t3

Figure 5.16: Cylindrical shell with transverse loading ;.

A cylindrical shell strip, which is subjected to a constant line load §,, as shown in
Figure 5.16, will be investigated in order to examine if the hierarchic difference vector
concept is able to intrinsically avoid curvature thickness locking. The geometric dimen-
sions of the structure, the material properties and the kinematic boundary conditions
coincide with the shell model of Section 5.4.3. This type of loading, however, does not
only create a state of pure bending, but also results in transverse shear and membrane
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normal forces. The analytical reference solution for a curved beam structure is obtained
from equilibrium and is displayed in Figure 5.17.

M= —g,-t2- R-sin(p) V=G, t>- cos(p) N = —g, 2 sin(p)

Figure 5.17: Stress resultants M, V, N — beam reference solution.

For the bending dominated problem setup, the magnitude of the load g, = 0.1 is scaled

with #3. The beam reference solution for the radial displacement u;ff yields
ref. 3 17 ~
Uy, = 55T + 55000 T 12 2 0.942478 + 0.002670 - 2. (5.25)

Three NURBS shell finite element models are compared to the reference solution and
among each other, which are all discretized with biquadratic C'-continuous NURBS
functions. First, a 7-parameter shell with standard difference vector (7p-stand.) ac-
cording to Section 4.5.1 is analyzed. This model is sensitive to transverse shear locking,
membrane locking and possibly curvature thickness locking for the given problem setup.
Secondly, the hierarchic 7-parameter shell element of Section 4.5.2 is modified with a
mixed ansatz for the in-plane part based on the two-field Hellinger-Reissner principle
of Section 2.5.2 in order to remove membrane locking (7p-hier.-mixed). Parasitic trans-
verse shear effects are intrinsically avoided, as described in Section 4.5.2, and verified in
the numerical examples of Section 5.2.4. This mixed approach is explained in detail in
Section 6.2 and will be used herein to concentrate on the problem of curvature thickness
locking. Finally, the standard 7-parameter model is modified with the aforementioned
mixed ansatz to remove membrane locking. Additionally, the Discrete Strain Gap (DSG)
method, which will be discussed in detail in Section 6.1, is utilized to remove transverse
shear locking. The resulting model is denoted with “7p-stand.-mixed-DSG” and may
consequently only be prone to curvature thickness locking. As in the previous examples,
the discrete radial displacement u;‘], at the free edge, see Figure 5.16, is computed for a
varying slenderness and compared to the analytical beam solution.

Figure 5.18 numerically confirms the previous explanations. The hierarchic 7-parameter
NURBS shell element with mixed ansatz for the membrane part (7p-hier.-mixed) is
completely free from geometric locking and matches the reference beam solution very

R

well, independent of the slenderness 7. The differences between “7p-hier.-mixed” and
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Figure 5.18: Cylindrical shell — displacement convergence (curvature thickness locking).

“Tp-stand.-mixed-DSG” only result from curvature thickness locking. All other effects
have been avoided or do not show up for the given problem definition. The hierarchic
concept, therefore, not only removes the parasitic transverse shear effects, but also suc-
cessfully eliminates curvature thickness locking for the NURBS shell finite elements of
this thesis with extensible director. The standard difference vector shell element (7p-
stand.) shows the worst behavior, as all aforementioned locking effects deteriorate its
accuracy. Even for a comparatively small slenderness, the discrete radial displacements

h

u,, are strongly underestimated.

Slenderness % 10 100 1000 10000
Shell formulation (2nd order NURBS)

Tp-stand. 0.9364 0.6438 0.0205 0.0002
Tp-stand.-mixed-DSG 0.9409 0.9421 0.9116 0.7509
7p-hier.-mixed 0.9409 0.9424  0.9425 0.9425

Analytic result
Beam reference 0.9451  0.9425 0.9425  0.9425

Table 5.3: Cylindrical shell — displacements u,, (curvature thickness locking).

5.4.5 Material-based locking

Volumetric locking, in contrast to the aforementioned locking effects, depends on a ma-
terial parameter, i.e. the Poisson’s ratio v. For incompressible or nearly incompressible
material behavior, i.e. v — %, the bulk modulus K tends to infinity and therefore repre-
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sents the critical parameter. Typical examples are, for instance, rubbers, the von Mises
plastic behavior of metals in the nonlinear regime or undrained soil. The corresponding
constraint for the displacement field u is its divergence to be zero

divu = Uj, j = 0. (526)

If the applied finite element function spaces are not able to satisfy this constraint of
a volume preserving strain field, unphysical membrane strains and stresses show up.
They result in parasitic internal energy contributions, avoid uniform convergence and
may even result in divergence, i.e. a complete locking of the element. With mesh re-
finement, volumetric locking may be alleviated.

The focus in this thesis is centered on the geometric locking effects of the NURBS-based
shell finite elements formulations. For more detailed information on volumetric locking,
the reader is referred to HUGHES (2000), BRAESS (2003), BRENNER AND SCOTT (2008)
and BELYTSCHKO ET AL. (2008).

The most prominent methods to eliminate or alleviate volumetric locking are reduced
and selective reduced integration (ZIENKIEWICZ ET AL. (1971), HUGHES ET AL. (1977),
ZIENKIEWICZ AND TAYLOR (2005)) and the EAS method (StMo AND Rirar (1990),
ANDELFINGER AND RAMM (1993), BISCHOFF ET AL. (1999)), which are explained in
more detail in Section 6.3. Numerical analysis of incompressible material behavior and
volumetric locking in the context of isogeometric analysis has been performed in Au-
RICCHIO ET AL. (2007), ELGUEDJ ET AL. (2008), AURICCHIO ET AL. (2010), TAYLOR
(2011) and MATHISEN ET AL. (2011), among others.

Poisson thickness locking in shell element formulations has the same causes as volu-
metric locking. Parasitic linear strains and stresses may arise in transverse normal
direction, which are based on nonzero membrane strains and lateral contraction due to
nonzero Poisson’s ratio. The 3- and 5-parameter shell formulations do not suffer from
this phenomenon in thickness direction due to the modification of the material law as
described in Sections 4.3 and 4.4. A displacement-based 6-parameter model, however,
exactly shows this locking-effect for nonzero Poisson’s ratio. Therefore 7-parameter
shells with either quadratic displacement ansatz in thickness direction or the applica-
tion of enhanced linear strain components according to the aforementioned EAS method
are most frequently applied to avoid Poisson thickness locking.

5.4.6 Summary locking

In Section 5.4, the most prominent locking effects that may show up for the displacement-
based isogeometric shell finite elements of this thesis have been investigated separately,
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focusing on geometric locking in particular.

The numerical experiments revealed that transverse shear locking for the hierarchic
shell elements of this thesis (5p-hier., 7p-hier.) is avoided by construction, which is,
however, not the case for isogeometric structural finite element formulations in general.
Investigations of the Timoshenko beam problem subjected to bending in Section 5.4.2
demonstrated that higher-order NURBS discretizations alleviate locking, such that, from
a practical point of view, its influence becomes negligible; the phenomena are, however,
not removed.

The pinched ring example of Section 5.3.1 demonstrated for the 3-parameter shell el-
ements that the in-plane part of the hierarchic family of isogeometric shell elements
with pure displacement ansatz is, in general, sensitive to locking in situations with con-
straints.

The behavior with regard to membrane locking was investigated separately for the model
problem of a cylindrical shell strip subjected to pure bending. Significant locking of the
hierarchic isogeometric shells could be determined. Even for a comparatively small slen-
derness, the displacement results were underestimated considerably; see Section 5.4.3.
The problem of curvature thickness locking was analyzed for the same problem setup,
however, with a different type of loading for several 7-parameter NURBS shell elements.
It turned out that the hierarchic 7-parameter shell model does not show any curvature
thickness locking due to the hierarchic imposition of the difference vector. The compar-
ison to a standard difference vector model exactly demonstrated this effect, as shown in
Section 5.4.4.

In the subsequent chapter, therefore, two methods are presented to remove these lock-
ing effects for the higher-order and higher-continuity isogeometric shell elements of this
thesis.
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Locking-free Hierarchic Shell Element
Formulations

The numerical investigations of the isogeometric shell finite elements with pure dis-
placement formulation in Chapter 5 revealed that the in-plane part of all elements is
significantly prone to locking. Whereas for the hierarchic parametrizations (5p-hier., 7p-
hier.) no additional geometric locking effects show up, the non-hierarchic shell elements
(5p-stand., 7p-stand.) are sensitive to both transverse shear locking and curvature thick-
ness locking. In this chapter, two methods are derived to remove the in-plane locking
effects for the higher-order and higher-continuity NURBS shell elements: a NURBS-
DSG ansatz and a mixed displacement-stress (u-o) formulation, which is based on
the Hellinger-Reissner variational principle of Section 2.5.2. Additionally, alternative
strategies, which are frequently used in standard C°-continuous FEA to avoid locking,
are briefly discussed. Their practicability for higher-order and higher-continuity NURBS
discretizations are investigated.

6.1 NURBS-DSG method

Originally, the “Discrete Shear Gap” (DSG) method was developed by Bletzinger and
coworkers to remove transverse shear locking in beam, triangular and quadrilateral plate
and shell finite elements with C°-continuous Lagrange discretizations (BLETZINGER
ET AL. (2000)). In KOSCHNICK ET AL. (2005) a generalization to solid finite elements
was presented, which is able to avoid all geometric locking effects, rephrasing DSG as
the “Discrete Strain Gap” method.

Therein, the strain distributions from a pure displacement formulation are modified to
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explicitly satisfy the kinematic equations at discrete locations in the element. Thus, the
DSG procedure has similarities to assumed natural strain (ANS) approaches (HUGHES
AND TEZDUYAR (1981), BATHE AND DVORKIN (1985)). Both formulations evaluate
discrete quantities at predefined collocation points that are subsequently interpolated
within the element domain to remove parasitic contributions. No additional internal
parameters or degrees of freedom are used. As both the DSG and the ANS method
only modify the strain-displacement matrix B, they are frequently denoted as “B-bar”
methods (HUuGHES (2000)) in literature.

The variational basis of the ANS approach was first derived in SIMO AND HUGHES
(1986) based on the three-field Hu-Washizu functional (Hu (1955), WASHIZU (1955)).
A complete and consistent variational foundation of the DSG method, however, is still
missing, to the author’s best knowledge.

The conceptional simplicity and special quality of the DSG procedure, compared to
ANS-type methods, is the unique location of the collocation points for the evaluation of
the discrete strain values, which are always the nodes of an element independent of its
shape and polynomial order. For ANS elements, on the contrary, the choice of sampling
point locations and interpolation functions depends on the element type, the polynomial
order and the strain components to be modified.

6.1.1 Effect of continuity on 1D NURBS-DSG approach

In this section, the influence of the continuity of NURBS functions on the derivation of
locking-free NURBS-DSG element formulations will be investigated, which, for demon-
stration purpose, is defined for one-dimensional, straight Timoshenko beam problems.

NURBS C'-continuous DSG procedure

First, the Timoshenko beam of Figure 5.10 which is subjected to a sinusoidal moment
loading is investigated. By using higher-order, but C°-continuous NURBS discretiza-
tions, the principle outline of the DSG method according to BLETZINGER ET AL. (2000)
will be demonstrated. The problem data coincides with the example of Section 5.4.2.
For the subsequent evaluations, a constant thickness of ¢ = 1.0 is assumed.

The beam is discretized with three elements and quadratic, C°-continuous B-spline basis
functions, which are built from the knot vector =2 = {O, 0,0, ls %, % %, 1,1, 1} as displayed
in Figure 6.1.

The linear kinematic equations for the continuous Timoshenko beam in terms of the cross
sectional rotations ¢ and the slope of the beam axis u;, are defined in Equation (5.15).
Equal-order interpolation of both the displacements and rotations in the discrete model

yields the mismatch of function spaces in the kinematic equation for the transverse
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0+
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Figure 6.1: C-continuous B-spline basis By, three clements.

shear. In this example, this results in higher-order (quadratic) terms of the rotations
that cannot be balanced by the displacements due to the existence of first derivatives.
Figure 6.2 shows the distribution of the parasitic, second-order transverse shear strains
7:)‘&1.‘ in the parametric domain €, which, for the C° B-spline basis, are obviously dis-
continuous across element boundaries. The roots of the parasitic shear strains, which
are marked with red boxes, are exactly at the Barlow points (BARLOW (1976)) of every
element independent of the external load. This fact is known from standard FEA with
C%-continuity Lagrange shape functions.
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Figure 6.2: Timoshenko beam — parasitic transverse shear strains 'ylp“a‘r'.

By reordering Equation (5.15); and subsequent integration, the displacement field w,
can be obtained as the sum of shear and bending deformations. In Equation (6.1), the
displacements related to transverse shear are defined as

u)(r) = / y(z)dz. (6.1)
0
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The shear gap functions u;’h (z) for the beam model with quadratic NURBS discretization
are displayed in Figure 6.3. They are, in general, nonzero within the element domain,
but possess several roots, which are displayed with blue dots.
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Figure 6.3: Timoshenko beam — shear gap functions u;’h (z).

Whereas for the Lagrange-DSG approach, the collocation points for computing the dis-
crete shear gap values as the integral of the shear gap functions are always the nodes of
an element, for the NURBS-DSG method, the Greville points (Gp) of the parametric do-
main have to be used. The Greville points (SCHOENBERG (1967)), which are also called
Marsden-Schoenberg points (MARSDEN AND SCHOENBERG (1966)), are computed from
the knot vector data according to Equation (6.2) for the one-dimensional case, with p
denoting the polynomial degree of the NURBS basis functions

Gp _ bt Eith
iD=

’ (6.2)

With the discrete shear gap values at hand, the Lagrange-DSG procedure enables a
direct computation of a modified shear gap function W}h(z), which is free from any par-
asitic shear by linearly interpolating the discrete nodal shear gaps with the standard
element shape functions. Subsequent partial differentiation yields the new, locking-free
transverse shear strains 4" P5¢(z). Finally, a modified DSG strain-displacement matrix
can be derived that is identical for all elements of the discrete domain. It may, therefore,
be computed analytically in advance and thus would not negatively affect the compu-
tational runtime efficiency.

The application of C°-continuous NURBS functions for the discretization of the dis-
placement field results in discontinuous transverse shear strain distributions. Therefore,
an element-by-element DSG approach can be carried out in the same way as for the
Lagrange discretizations. The non-interpolatory property of NURBS basis functions
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6.1 NURBS-DSG method

requires the determination of those coefficients that interpolate the discrete shear gaps
at the collocation points. Therefore, in addition, a linear system of equations has to be
solved which takes into account all nonzero NURBS basis functions at sampling points
before the modified shear gap function can be defined (ECHTER AND BISCHOFF (2010)).
The Lagrange-DSG method for plates and shells follows the same principal procedure
of integration, collocation, interpolation and differentiation. The tensorial strain com-
ponents are usually formulated in the parametric coordinates 0 or £ and 7 respectively,
and the DSG values are computed for each coordinate direction separately.

More detailed information about applying the DSG method to structural and solid finite
elements with Lagrange discretizations is provided, among others, in BISCHOFF (1999),
BLETZINGER ET AL. (2000), BISCHOFF AND BLETZINGER (2001), KOSCHNICK (2004)
and KOSCHNICK ET AL. (2005).

Higher-continuous NURBS-DSG ansatz

The procedure of deriving NURBS-based DSG finite elements with C°-continuous ba-
sis, with the exception of solving an additional linear system of equations to obtain
the interpolatory shear gaps, follows the conventional method known from Lagrange
discretizations and can be performed on element level. Computational efficiency can
therefore be preserved and the fill-in of the global stiffness matrix Kgg remains sparse.
As shown in Figures 3.4, 3.6 or 3.8, higher-continuity NURBS may have different co-
efficients of element basis functions on every knot span and additionally varying inter-
element continuity, which depend on the regularity of the associated knot vectors. This
may lead to derived quantities, such as strains and stresses, that are again continuous
within a patch. Their shapes may be different for every element, which is in clear con-
trast to the conventional C°-continuous discretizations.

The strain integration procedure for computing the discrete shear gaps of the DSG
approach consequently has to be carried out on patch level, rather than on element
level (ECHTER AND BISCHOFF (2010)). The application of an element-by-element DSG
method completely fails for higher-continuous NURBS basis functions. In addition, the
roots of the parasitic shear strains are no longer the Barlow points.

The formal framework of integration, collocation, solution of a linear system of equa-
tions, interpolation and differentiation as described for C°-continuous NURBS remains
identical for higher-continuity NURBS. Due to continuous strain distributions across
inter-element boundaries, however, the element DSG solution may depend on degrees of
freedom of the entire patch domain and therefore compromise computational efficiency.
Propagation of information throughout the patch is primarily related to the higher con-
tinuity of the NURBS shape functions, rather than the structure of the DSG method.
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6 Locking-free Hierarchic Shell Element Formulations

This effect has already been reported in ELGUEDJ ET AL. (2008) in the context of pro-
jection methods for material incompressibility with higher-order and higher-continuity
NURBS discretizations in IGA.
An improved accuracy of discrete solutions with higher-continuous NURBS functions
was described in Section 5.3.1. This can again be determined for the NURBS-DSG
method. Whereas the C°-continuous NURBS-DSG procedure with shape functions of
order p represents an interpolation of p + 1 exact solution, higher-continuity NURBS-
DSG formulations yield a least square fit of the p 4+ 1 exact solution and thus ensure
optimal convergence properties (ECHTER AND BISCHOFF (2010)).
An explanation of the coupling phenomenon can be provided by the kinematic linked
interpolation method, which was originally developed in the context of shear deformable
Reissner-Mindlin plate elements. The main idea consists of introducing additional
“linked” shape functions, which are used to enrich the transverse displacement field
by means of rotational degrees of freedom (ZIENKIEWICZ ET AL. (1993), TAYLOR AND
AuRICcCcHIO (1993), AURICCHIO AND LOVADINA (2001)).
The derivation of the aforementioned linked shape functions B (€) will be demonstrated
for a straight Timoshenko beam that is discretized with four elements of second order
and C'-continuity. The corresponding knot vector is B = {0 0,0,% T i, i,l 1, 1} and
ultimately yields in six basis functions.
Starting from the locking-free NURBS-DSG transverse shear strains

PG (1) = uy 254 () + " (2) (6.3)
the modified displacement field can be recovered by integration and reordering of the
kinematic equation.

W DSG () — / (4475 (2) — (@) do+ i (6.4)

T

h,DSG (0)

The integration constant 01 can be determined by the condition u,’ = ui and

consequently gives C) = uy.
The linked shape functions, which are related to the rotational degrees of freedom ¢,

h,DSG (r)

can be ultimately obtained from the DSG displacement field w, . They are of

cubic order due to the integration of the rotation field according to Equation (6.4). The

h, DSG(,L,)

displacement distribution u, reads
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6.1 NURBS-DSG method

where By (¢) are the standard six quadratic NURBS shape functions with local support
and By (&) represent the six linked shape functions, which possess global support in the
entire patch domain, as shown in Figure 6.4.

Standard basis Bo (E) Linked basis ]A33 (.f)
1
- —
¢ 0 — < g
0 i i i 1 0 i i i 1

Figure 6.4: Timoshenko beam — standard and linked shape functions.
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Figure 6.5: Timoshenko beam — K%SG, C°- vs. Cl-continuity.

Figure 6.5 compares the fill-in and the absolute values of the DSG system stiffness ma-
trices on a degree of freedom basis for a straight Timoshenko beam problem with both
a C% and C'-continuous NURBS discretization of second order. Both discrete models
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6 Locking-free Hierarchic Shell Element Formulations

consist of 202 degrees of freedom. Nonzero values are displayed in black and zero stiff-
ness values in white color.

The two pictures on the left side refer to the C°-model. On the right, the results of the
C'-DSG approach are illustrated. With respect to the fill-in, clearly the aforementioned
difference of both NURBS-DSG versions can be ascertained. The band width on the
main diagonal, with stiffness values significantly larger than zero, is of identical size for
both models. Whereas the off-diagonal terms of the C°-approach are exactly zero, the
ones of the continuous DSG stiffness matrix are small but nonzero.

The element stiffness matrix Kfg, consequently becomes a dense matrix with dimen-
sions being equal to the global stiffness matrix K§gs. Simple, and at first sight intuitive,
engineering approaches to recover the band structure with zero off-diagonals of the fully
populated C'-DSG stiffness matrix completely failed. Neither the ansatz of perform-
ing some kind of “stiffness lumping” of the off-diagonal terms on the main diagonal,
accounting for momentum balance nor the neglection of the almost zero off-diagonal
values were successful. So far, no consistent procedure is known to the author to resolve
this issue.

In order to cope with the extensive memory requirements of higher-continuity NURBS-
DSG approaches, an iterative solution procedure with the conjugate gradient (CG)
method has been successfully implemented. It is, however, restricted to beam prob-
lems up to now. Details of the CG method will not be explained herein. For more
information, the reader is referred to DEUFLHARD AND HOHMANN (2008), for instance.
Instead of computing the entire element stiffness matrix Kfgq with both row and col-
umn dimensions being equal to K, only the material matrix and element strain-
displacement matrix Bj)q, are computed. The row dimension of By is equal to the
number of strain components and thus significantly smaller than the one of Kjgn. By
reversing the order of multiplications, an internal force vector is computed instead of
a stiffness matrix expression. Therefore, Bpgg is first multiplied with an initial guess
of the solution vector xg. Afterwards, this intermediate result is multiplied with the
material matrix and finally the outcome is multiplied with the transpose of Bjg. The
displacements and stress resultants obtained with the conjugate gradient DSG approach
are identical to the higher-continuous NURBS-DSG ansatz with computation of an ele-
ment stiffness matrix Kfqq.

For very slender beam structures, however, the convergence properties of the iterative
solution procedure are badly influenced by the very large condition number of the sys-
tem stiffness matrix. This phenomenon will also be of significant importance for thin
shell analysis (GEE (2004)). The topic of preconditioning and the application of the
iterative CG procedure to higher-continuity NURBS-DSG shell problems have not been
investigated so far, but may significantly improve the performance of the method.
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6.1 NURBS-DSG method

6.1.2 Isogeometric NURBS-DSG shell elements

The results of Section 6.1.1 revealed both positive and negative aspects of the higher-
continuity NURBS-DSG approach for one-dimensional beam problems. The positive
effect of locking-free finite elements with optimal convergence properties independent
of the structure of the knot vector, i.e. continuity and polynomial order of the shape
functions, is compromised by coupling of degrees of freedom, which may result in fully
populated stiffness matrices and thus badly affect computational efficiency.

In this section, the equations for modifying the in-plane part of the shell models of
Sections 4.3 to 4.5 with the NURBS-DSG method are defined. They are used to re-
move both membrane and in-plane shear locking, which were observed for the pure
displacement formulations in Chapter 5. Therefore, the conclusions obtained from the
higher-continuity NURBS-DSG ansatz of Section 6.1.1 are adapted to the original ver-
sion presented in KOSCHNICK ET AL. (2002), BISCHOFF ET AL. (2003) and KOSCHNICK
ET AL. (2005), which was derived to remove all geometric locking effects in standard
C-continuous structural and continuum finite elements.

The computation of the modified DSG in-plane strain components sl;’BDSG from the
displacement-based strain components 525 is performed in the parametric domain and
is valid for all isogeometric higher-order and higher-continuity shell elements of this the-
sis. The index n in Equation (6.6) represents the number of element shape functions

Gp
h, DSG . &
, i h
€11 :ZN,Z{ _/ ey dg,
=1 &o

Gp
n i
h,DSG i
20 =3 N, [ an, (6.6)
=1 0
& n®

n n
b0 =N [N, [y ag

i=1 & 9= o
The formal procedure of Equation (6.6) consists of individually integrating and collo-
cating the strain components 523 at the Greville points, followed by interpolation and
differentiation in order to obtain the modified locking-free strain distributions 52’3DSG.
Continuous strains within the patch domain require an integration over several knot
spans. Therefore, the entire strain integral to a specific Greville point location 5? P or
nfp is composed of the sum of several element strain integrals up to the respective Gre-
ville point position. For the in-plane shear part, the aforementioned calculation steps
have to be performed in both parametric directions, which ultimately yields a nested
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6 Locking-free Hierarchic Shell Element Formulations

ansatz.

For further details on the computation of the modified DSG strain components of two-
dimensional continuum elements or the membrane part of the isogeometric shells of this
thesis, the reader is referred to the diploma theses of MAIER (2009) and OESTERLE
(2011) in addition to the literature mentioned before.

6.1.3 Numerical example — cylindrical shell strip (DSG)

In this section, the quality of the modified isogeometric NURBS shell formulations will
be investigated for the cylindrical shell strip with a constant transverse line load @,
analyzed before in Section 5.4.4.

In Figure 6.6, the effect of varying slenderness ? on the discrete displacement results
uﬁ‘? of shear-rigid Kirchhoff-Love shell models is analyzed. The analytical beam solu-
tion is compared to the results of both a pure displacement formulation (3p) and the
DSG ansatz (3p-DSG) with modified membrane strain components si% nDSG \Whereas
the “3p” NURBS model shows significant membrane locking as already determined in
Section 5.4.3, the results of the “3p-DSG” shell element are completely free from spuri-
ous membrane strains, independent of the slenderness, and thus represent a locking-free

shell formulation.

1 : T
Fb\ & B ®
0.8
3& \
206 N\
=
&
< 04
2 02 3p —v—
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0 Beam reference ---f£--
10 100 1000 10000
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Figure 6.6: Cylindrical shell — displacement convergence, 3p shells, DSG.

In addition to the Kirchhoff-Love shell formulations, in Figure 6.7, several shear de-
formable 5-parameter Reissner-Mindlin shell elements are compared to the reference
solution and among each other for the given problem setup. For the standard shell
formulation (5p-stand.) of Section 4.4.1 with a difference vector imposed on the unde-
formed normal, both transverse shear and membrane locking effects are assumed. The
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6.1 NURBS-DSG method

hierarchic difference vector model (5p-hier.) of Section 4.4.2 is free from parasitic trans-
verse shear effects, but is prone to membrane locking in the same way as determined
for the Kirchhoff-Love (3p) model in Figure 6.6. In addition, the DSG versions of the
two aforementioned 5-parameter shell models are examined, which are denoted as “5p-
stand.-DSG” and “5p-hier.-DSG”.

1

0_8\ 2 3 3
\ex

5p-stand. —e—
5p-hier. —a—

0.2 H 5p-stand.-DSG
5p-hier.-DSG —x¢—
0 Beam reference -

2
10 100 1000 10000

Slenderness %

0.6

0.4

Displacement wu,,

Figure 6.7: Cylindrical shell — displacement convergence, 5p shells, DSG.

Figure 6.7 numerically confirms the previous assumptions. The shell element with stan-
dard difference vector (5p-stand.) shows the worst behavior as both unphysical trans-
verse shear and membrane normal stresses deteriorate the accuracy. Looking at the
DSG version of the standard model (5p-stand.-DSG), it turns out that for this example,
removal of unphysical membrane contributions produces significantly better results than
removal of transverse shear locking with the “5p-hier.” shell. Nonetheless, “5p-stand.-
DSG?7 still exhibits transverse shear locking, which becomes particularly pronounced for
a slenderness of % > 1000. The small difference between “5p-stand.” and “bp-hier.” re-
sults from the predominant influence of membrane locking so that the additional effect
of transverse shear does not become as obvious if both locking effects show up simulta-
neously. Finally, the performance of the hierarchic isogeometric NURBS shell element
with DSG modification (5p-hier.-DSG) is evaluated. The formulation is completely free
from geometric locking and matches the reference beam solution very well, independent
of the chosen slenderness. The DSG approach of Section 6.1.2; therefore, successfully
removes the undesired parasitic strain contributions for the case of higher-order and
higher-continuity NURBS shell discretizations.

In Table 6.1, the numerical displacement results of the entire family of NURBS shell
element formulations with DSG modification of the in-plane strain components are dis-
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6 Locking-free Hierarchic Shell Element Formulations

played. In addition to the 3- and 5-parameter models, the three-dimensional 7-parameter
shells with DSG ansatz (7p-stand.-DSG, 7p-hier.-DSG) are also shown. Whereas “7p-
hier.-DSG” is again completely locking-free, the “7p-stand.-DSG” shell element is prone
to both transverse shear and curvature thickness locking, which was already investigated
in Section 5.4.4. The effect of curvature thickness locking on the standard difference vec-
tor formulation can also be determined in Table 6.1 if the results of the “5p-stand.-DSG”
shell element are compared to the “7p-stand.-DSG” version particularly for a large slen-

derness %

Slenderness % 10 100 1000 10000
Shell formulation (2nd order NURBS)

3p-DSG 0.9406  0.9444 0.9445 0.9445
5p-stand.-DSG 0.9396  0.9048  0.7560  0.2652
5p-hier.-DSG 0.9422  0.9445 0.9445 0.9445
Tp-stand.-DSG 0.9403  0.9031  0.7158  0.0895
Tp-hier.-DSG 0.9445  0.9445 0.9445  0.9445

Analytic result
Beam reference 0.9451  0.9425 0.9425  0.9425

Table 6.1: Cylindrical shell — displacements 1, overview of shell formulations, DSG.

So far, only the dependency of the discrete radial displacement u;‘p on the slenderness
of the structure % has been analyzed for the cylindrical shell example. Therefore, in the
following, the quality of the stress resultant bending moment mz will also be investi-
gated for the 5-parameter Reissner-Mindlin shell element formulations studied before in
Figure 6.7.

A fixed slenderness of % = 1000 is selected, for which several shell models, according to
Figure 6.7, already exhibit significant locking in the investigated discrete displacements.
For the computation of the bending moment mz, a local Cartesian coordinate system
is defined along the path P-Q as displayed in Figure 5.16, with the Z- and Z-axes to be
tangential to the parametric #'- and 03-directions, respectively. The curvilinear stress
components ¢* are transformed into the local Cartesian basis €; according to Equa-
tion (5.11).

With the local Cartesian stress components o™ at the two Gauss points in (-direction,
a linearly varying distribution of in-plane normal stresses through the thickness of the
shell body is defined, which is subsequently multiplied with the thickness coordinate
and then integrated in §3-direction of the shell.

In Figure 6.8, the bending moment mz, which was computed from the linear part of
the in-plane normal stresses, is plotted along the path P-Q. The results confirm the
observations and conclusions made for the numerical displacement evaluations.

Both the standard and the hierarchic pure displacement models are very sensitive to lock-
ing for the defined slenderness. The bending moments mz; are approximately zero along
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4.0E-007

0.0E+000 |ee

Bending moment m®*

-4.0E-007

-8.0E-007

= 5p-stand. —e—

-1.2E-006 5p-hier. —a— |7
5p-stand.-DSG

-1.6E-006 5p-hier.-DSG —x— [
Beam reference —g—

-2.0E-006
0 2 4 6 8 10 12 14 16

Path P — @ (arc length)

Figure 6.8: Cylindrical shell — bending moments mzz, 5p shells, DSG.

the entire path P-Q. A modification of the membrane strains with the DSG method gen-
erates significantly better results in the standard model (5p-stand.-DSG), which again
reveals that the dominant locking phenomenon in this numerical test example is mem-
brane locking. Still, however, transverse shear locking compromises the solution quality.
As for the discrete displacement tests, the bending moment of “5p-hier.-DSG” again
conforms very well with the beam reference solution derived in Figure 5.17.

In this section, the DSG approach of BLETZINGER ET AL. (2000) was successfully trans-
ferred to higher-order and higher-continuity NURBS discretizations in order to remove
membrane and in-plane shear locking. The higher continuity of the NURBS basis func-
tions may, however, result in a coupling of degrees of freedom, which compromises the
computational efficiency. For the 3-parameter and the hierarchic isogeometric shell ele-
ments of this thesis, only the membrane part of the strains has to be modified to provide
element formulations, which are completely free from geometric locking.

6.2 Displacement-stress (u-o) mixed approach

Herein, an alternative to the NURBS-DSG method of Section 6.1 for higher-continuity
NURBS is introduced, which is based on the two-field Hellinger-Reissner variational
principle of Section 2.5.2 with an independent displacement field u and stress field o
This mixed approach was first applied to the hierarchic family of NURBS-based shell
finite elements in ECHTER ET AL. (2013) to remove all geometric locking effects from
the in-plane strain components.

The first improvements of pure displacement-based finite elements with assumed stress
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fields date back to the mid-sixties of the last century with the pioneering work of P1AN
(1964) based on the principle of minimum complementary energy. Early hybrid stress
element formulations on the basis of the Hellinger-Reissner principle are mainly associ-
ated with the works of PIAN AND CHEN (1982) and PIAN AND SUMIHARA (1984). The
main idea therein consists of introducing optimal stress patterns on the element level,
which, together with the strain modes from a pure displacement ansatz, avoid undesired
energy contributions.

The class of hybrid-mixed methods with C%-continuous discretizations of the primary
variables utilize additional internal degrees of freedom, which, for a displacement-stress
mixed approach, are the stress parameters that do not have to satisfy the continuity
requirements on element boundaries. These parameters may therefore be eliminated
on element level by static condensation such that the structure of the element stiffness
matrix does not differ from a pure displacement formulation and consequently enables
the application of conventional solution procedures.

As already determined for the higher-continuity NURBS-DSG approach of Section 6.1,
continuous stress and strain fields do not allow for a direct use of unlocking methods de-
signed for C°-continuous discretizations to functions with higher continuity, but require
a treatment on patch level.

6.2.1 Discrete weak form of Hellinger-Reissner principle

In order to obtain a discrete weak form of the Hellinger-Reissner variational principle,
which was introduced in Section 2.5.2, rational bivariate NURBS functions for approx-
imating both the unknown displacement and stress fields are used.

The discretization of the free variables u and o and their variations du and do, respec-
tively, is defined in Equation (6.7). The index (8)" in the subsequent derivations is again
related to the discrete representation of the continuous fields

u ~u' = N,,-d,
ou =oéu' =N,,-id, 67)
c ~o® =M, w, ’

N, , are the bivariate NURBS basis functions according to Equation (3.9) with polyno-
mial orders p and ¢ in the parametric directions ¢ and 7. They are used to approximate
the displacement field. M, ; represent the NURBS basis functions for the discretization
of the membrane stress fields. They are specified in Section 6.2.3. The vector d contains
the control point displacement degrees of freedom and w comprises the discrete stress
parameters. In order to transform the stress components between the natural coordi-
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nate system and global Cartesian reference system, the transformation matrix T is used.
Additionally, the displacement gradient grad u and its variation grad du are replaced by
the strain-displacement matrix B and the vector of control point displacements d and
its variation dd in the discrete weak form, according to Equation (6.8)

0Ty = */5dT‘BT‘TT'Mr,s-wthJr/SdT~N£q~Bth
Qh Qh
+/5¢4T.1\/1I73.<C*1 -TT~MTTS‘wth—/5wT~MIs‘T-B-dth
Qh Qh
+ [ od® N7, €00k 0.
a0n
(6.8)

The displacement boundary term of the continuous form vanishes in Equation (6.8)
as the NURBS basis functions of the displacement field interpolation are at least C-
continuous.

6.2.2 Stress fields for C’-continuous function spaces

The choice of appropriate function spaces for the stresses dependent on the applied
displacement functions follows the principal approach of PIAN AND SUMIHARA (1984),
EISELE (1989) and ANDELFINGER (1991) for standard hybrid stress formulations with
C°-continuous displacement functions and discontinuous stress fields.

First, the procedure of deriving adequate stress functions for a standard four node two-
dimensional continuum finite element on basis of eigenmode investigations is briefly
presented. The associated element displacement modes of ANDELFINGER (1991) are
repeated in Figure 6.9.

Figure 6.9: Displacement modes of a four node quadrilateral element.

An eigenvalue analysis of the 2D continuum element reveals that the formulation with
bilinear (p = ¢ = 1) shape functions is capable of exactly representing the three rigid
body modes, the shear modes and the constant strain deformations. The two bending
modes, rightmost in Figure 6.9, cannot be modeled correctly, which results in unphysical
stresses that are the source of volumetric and shear locking.
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The number of nonzero deformation modes for the bilinear element according to Fig-
ure 6.9 is equal to five. Consequently, the number of linearly independent stress modes
also has to be equal to five. An optimal ansatz space for the stress matrix My 1 (§,7) is
provided in Equation (6.9). The rows of M ; (§,n) represent the trial functions for the

M and o7, The vector w contains

contravariant in-plane stress components O_{{,h, o
the stress parameters {wy, ..., ws}.

Compared to the complete stress space of a standard bilinear element, the highest order
(linear) functions in ¢ are removed from the normal stresses ¢%" and the linear con-
tributions in 7 are eliminated from ™™ in M, ; (£,7). For the in-plane shear stresses
o™ both linear terms in & and 7 are removed to get rid of locking. The element is still
able to reproduce exactly the three constant stress modes and, in addition, correctly
represents the two linear bending deformations without unphysical linear shear stresses
or normal stresses. The invariance of M; ; (§,7) with regard to § and 7 is satisfied, as
every constant and linear strain mode has an associated work conjugate in the stresses.
Increasing the number of stress parameters in Equation (6.9) reintroduces spurious par-
asitic stresses and thus again results in locking, whereas a reduction of stress parameters
yields an unstable element formulation, which may exhibit zero energy modes.

w1

oteh 10000 Wy
oM™l =1 01 0 0 ¢ ws (6.9)

ot 0010 0 Wy

M, 1(&m) Ws

With regard to the higher-order NURBS discretizations to be used in this thesis, the
definition of optimal stress functions for a standard nine node two-dimensional solid
element with biquadratic (p = ¢ = 2) C°-continuous displacement field interpolation is
briefly investigated. The deformation modes of this element type are given, for instance,
in ANDELFINGER (1991). The stress matrix My 5 (§,7) for the contravariant in-plane
stress components reads

100 & n & &2 00 0 0 0 00
Moo (§n)=] 0 1.0 00 0 0 0 & n & & & 00
00100 0 O 0 00 0 0 0 ¢ n

(6.10)

According to the procedure described for the bilinear element, the number of nonzero
deformation modes for the biquadratic element is equal to fifteen, which consequently
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yields the number of required linearly independent stress modes. For the stress compo-
nents 05" and " " again the highest order, i.e. the quadratic terms in ¢ and 5 are
omitted. For the in-plane stresses 0", a linear ansatz is established to avoid locking.
Optimal stress matrices for both continuum and shell finite elements with C°-continuous
basis functions as well as further details on hybrid mixed methods are provided by the
references cited throughout this section.

6.2.3 Stress fields for higher-continuous NURBS function spaces

The geometry and displacement field interpolations of the shell models of Sections 4.3
to 4.5 are based on at least C'-continuous NURBS and thus yield continuous strain
and stress distributions within the patch domain. The element-by-element approach of
Section 6.2.2 can therefore not be pursued without additional considerations.

The choice of appropriate NURBS function spaces for the in-plane stress components of
the isogeometric shell elements of this thesis, which depend on the functions to be used
for the displacements, shows up, among others, in ELGUEDJ ET AL. (2008). Therein,
strain projection methods are applied to incompressible or nearly incompressible ma-
terial elasticity and plasticity by using higher-order and higher-continuity NURBS dis-
cretizations defined on patch level. ELGUEDJ ET AL. (2008) suggest that the projected,
possibly continuous volumetric strain fields be one order and one level of continuity
lower than the spaces of the displacements, except in cases of C%-continuity, which re-
main C°-continuous. C°-continuity is, however, not allowed for the displacement field
approximation of the hierarchic shell formulations in this thesis. According to Elguedj et
al., the accurate and robust numerical results legitimate their procedure, which does not
satisfy the LBB-condition (Equation (2.38)) required for proving stability and optimal
convergence of the mixed finite element formulation.

In the following example, the definition of adequate NURBS displacement and stress
function spaces for the mixed u-o approach defined on patch level is explained for the
spherical shell segment of Figure 3.14 with three elements in both circumferential and
meridian direction.

The curved structure requires at least quadratic NURBS functions for both the &-
and 7-direction, which, according to the isogeometric concept, are also used for the
displacement field. The knot vectors are therefore EF=2 {O 0, O ,1,1,1} and

H? = {O 0,0, :13 é, 1,1, 1} The second order univariate basis functlons of both para-
metric directions { B;» (£)} and { Cj 2 (1)} are displayed in Figure 6.10. The functions for
the stress components are defined to be one order and one continuity level lower than
the displacement functions and thus correspond to linear univariate NURBS derived
from the knot vectors ZF~! {0 0, }s,% 1, 1} and H! {0 0, 1, §71 1} The linear
basis functions are also plotted in Figure 6.10.
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6 Locking-free Hierarchic Shell Element Formulations

Univariate quadratic C' NURBS basis {Bj2(£)} and {Cj2(n)} :

Figure 6.10: Basis functions for displacement and in-plane stress fields.

In Table 6.2, the appropriate knot vectors and univariate basis functions for the defini-
tion of the bivariate NURBS displacement and in-plane stress fields of the isogeometric
shell elements are illustrated.

u' (&) | ETHT? | {Bix(9)} ® {Can)}
ottt (gm) | BT @ HT? | {Bia(§)} ® {Cial
© (
© (

o® M (& n) | BP9 H | {Biy
oM (&n) | B @ H | {Bii()} @ {Cia(n)}

Table 6.2: Order of NURBS displacement and stress basis.

The displacement field u" adopts the biquadratic C'-continuous NURBS functions of

L0 omits the highest order, i.e.

11,h

the geometry representation. The stress component o
the quadratic terms in &-direction, which consequently yields a linear ansatz of o
in £ and quadratic functions to be used for the n-direction, from which the bivariate
tensor product NURBS stress functions are computed according to Equation (3.9). For
0?21 the stresses are quadratic in &- and linear in 7)-direction. Finally, the contravariant

in-plane stress components o> are defined to be linear in each direction and thus yield
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6.2 Displacement-stress (u-o) mixed approach

a bilinear stress field in the patch domain.

Important to notice is the fact that the applied discretizations of both the displacement
and in-plane stress fields utilize the same number of elements, whereas the spatial lo-
cation of the control points and thus the degrees of freedom for the displacements and
the individual stress fields do not coincide in general. Alternatively, a discretization
with coincident location of both the displacement and stress degrees of freedom may be
defined; this, however, yields different meshes for the displacement and stress fields.

6.2.4 Numerical example — cylindrical shell strip (mixed method)

The cylindrical shell with transverse line load §,, which was investigated first in Sec-
tion 5.4.4, is again analyzed for the NURBS shell elements of this thesis, however, with
modification of the membrane part according to the mixed ansatz of Section 6.2.3.
The problem setup additionally coincides with Section 6.1.3 and thus enables a compar-
ison to the NURBS-DSG results. For the interpolation of the displacement and stress
fields, the NURBS function definitions of Table 6.2 are applied.

0;\ . . s
\x

5p-stand. —e—
5p-hier. —A—

0.2 1 5p-stand.-mixed
5p-hier.-mixed —<—
0 Beam reference ---f£3--- &
10 100 1000 10000

Slenderness %

0.6

0.4

Displacement u,,

Figure 6.11: Cylindrical shell — displacement convergence, 5p shells, mixed u-o.

In Figure 6.11, the sensitivity to locking is analyzed for the 5-parameter Reissner-Mindlin
NURBS shell elements. The numerical displacement results u;‘] of the mixed u-o ansatz
are identical to the results of the DSG shell formulations of Section 6.1.3, as displayed
in Table 6.3 for the entire family of isogeometric shell finite elements of this thesis. As
the mixed formulation only improves the in-plane behavior of the shell elements to be
investigated, transverse shear locking is still present for the standard 5- and 7-parameter
NURBS shell models. The 7-parameter standard models additionally exhibit curvature
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6 Locking-free Hierarchic Shell Element Formulations

thickness locking, which was already identified in Section 5.4.4 and the numerical results
with the NURBS-DSG-ansatz in Section 6.1.3. The mixed hierarchic shell formulations

completely remove membrane locking and thus yield discrete displacement results uﬁfp,
R

which are independent of the slenderness 7.

Slenderness % 10 100 1000 10000
Shell formulation (2nd order NURBS)

3p-DSG 0.9406  0.9444 0.9445 0.9445
3p-mixed 0.9385  0.9424 0.9425  0.9425
5p-stand.-DSG 0.9396  0.9048  0.7560  0.2652
5p-stand.-mixed 0.9396  0.9048 0.7560  0.2652
5p-hier.-DSG 0.9422  0.9445 0.9445 0.9445
5p-hier.-mixed 0.9401  0.9424 0.9425  0.9425
Tp-stand.-DSG 0.9403  0.9031  0.7158  0.0895
7p-stand.-mixed 0.9403 0.9031  0.7158  0.0895
Tp-hier.-DSG 0.9445  0.9445 0.9445 0.9445
7p-hier.-mixed 0.9409 0.9424 0.9425 0.9425

Analytic result
Beam reference 0.9451  0.9425 0.9425  0.9425

Table 6.3: Cylindrical shell — displacements u,, overview of shell formulations, DSG vs.
mixed method.

The results obtained with the mixed approach reveal that this formulation is capable
of successfully removing in-plane locking effects of the isogeometric pure displacement-
based shell elements of this thesis. No in-depth mathematical analysis of this method,
however, has been performed so far. Up to now, the knowledge of standard C°-
continuous discretizations with mixed u-o formulation that are carried out on element
level has been adopted for higher-continuous NURBS discretizations on patch level.

6.3 Alternative methods to avoid geometric locking

In this section, alternative strategies to avoid particularly geometric locking, which
are frequently used in standard C°-continuous FEA are briefly discussed. Their prac-
ticability with regard to higher-order and higher-continuity NURBS discretizations is
investigated. Additionally, the most prominent approaches developed so far to remove
locking in the context of isogeometric analysis are described.

Assumed Natural Strain Method (ANS)

The ANS method (HUGHES AND TEZDUYAR (1981), BATHE AND DVORKIN (1985)),
which was briefly discussed in Section 6.1, is widely used in conventional C°-continuous
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6.3 Alternative methods to avoid geometric locking

FEA in order to remove particularly transverse shear locking. The main idea consists
of evaluating discrete shear strain values at appropriate collocation points in the ele-
ment, which are subsequently interpolated with specific assumed strain shape functions,
instead of deriving the transverse shear strains directly from the displacement field
derivatives. The collocation points are located at positions in the element, where the
parasitic transverse shear strains are equal to zero.

As the numerical implementation only requires a modification of the strain-displacement
operator B, the ANS approach is frequently denoted as “B-bar” method (HUGHES
(2000)). In addition to the removal of transverse shear locking, the ANS method may
also be used to eliminate membrane and curvature thickness locking effects. The main
drawback of the ANS ansatz is related to the definition of sampling point locations and
assumed strain shape functions, which depend on both the type of element and the
polynomial order of the basis functions.

For higher-continuous NURBS discretizations, this method appears to be inappropriate
due to the complexity of defining adequate collocation points. This will be explained
in the following for the Timoshenko beam problem of Figure 5.10: A discretization of
the structure with C°-continuous NURBS and pure displacement formulation always
yields the Barlow points as roots of the parasitic shear strains ”/];ar. independent of the
type of loading or the polynomial order of the NURBS basis, which is well-known from
standard FEA. If, however, higher-continuity NURBS functions are used, the zeros of
wé’an no longer coincide with the Barlow point locations and, even more problematic,
change their position in dependence of the type of loading. These facts tremendously
complicate or might even prevent the correct definition of sampling point positions for
the ANS approach in the context of higher-continuity NURBS-based IGA.

Reduced integration

Reduced or selective reduced integration utilizes fewer integration points than required
for the evaluation of quantities, such as stiffness or mass matrices, which may lead to
undesired zero energy modes and consequently numerical instabilities, without the ap-
plication of stabilization techniques. First applications of reduced and selective reduced
integration to continuum and structural finite elements are related to DOHERTY ET AL.
(1969), ZIENKIEWICZ ET AL. (1971) and HUGHES ET AL. (1977).

In BOUCLIER ET AL. (2012), selective reduced integration on element level with Gauss
quadrature is investigated for curved thick Timoshenko beams in the context of IGA.
Although this approach removes the geometric locking effects of a pure displacement
formulation, it will become comparatively complex and laborious for higher-dimensional
NURBS structures with arbitrary polynomial order and continuity, as is explained for
the example of one quadratic 1D B-spline element of an entire patch domain. Due
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6 Locking-free Hierarchic Shell Element Formulations

to the quadratic basis functions, the element may have three different levels of conti-
nuity at its two ends, ie. C°— C° C!'— C° and C' — C*. This ultimately requires
three different reduced integration schemes. For higher-order and higher-dimensional
NURBS discretizations, the number of possible inter-element continuity combinations
significantly increases, which confines the general practicability of this approach.
HUGHES ET AL. (2010) study the use of efficient integration rules for higher-continuity
NURBS in isogeometric analysis; these, however, are not intended to remove locking, but
improve the computational efficiency of numerical integration. Rather than evaluating
the integrals element-by-element, the authors suggest using integration rules on macro-
elements, which require significantly less quadrature points by taking into account the
smoothness of the basis functions. Their ansatz necessitates the numerical computation
of the quadrature points and associated weights by solving nonlinear equation systems
for higher-order and higher-continuity basis functions, which may compromise computa-
tional efficiency. Exact numbers, which compare the time savings due to less quadrature
points and the effort of numerically computing the quadrature points and weights are
not presented in this paper, however.

Enhanced Assumed Strain Method (EAS)

The method of enhanced assumed strains (EAS) was first developed in SIMO AND Ri-
FAI (1990) on the basis of the three-field Hu-Washizu variational principle (Hu (1955),
WasHIZU (1955)). Instead of skipping undesired contributions in the strain quanti-
ties, the compatible displacement-based strains are enhanced by additional incompatible
terms, in order to balance the parasitic strain part and thus avoid locking. This approach
is closely related to the method of incompatible modes (TAYLOR ET AL. (1976)), as both
formulations add additional degrees of freedom not globally, but on element level.

Compared to the methods to avoid locking described so far in this chapter, the EAS
approach is also capable of removing material-based locking effects, i.e. volumetric and
Poisson thickness locking, in addition to transverse shear and membrane locking.

A stable element formulation requires the enhanced strains to be linearly independent
from the compatible displacement-based strains. Otherwise, identical strain modes show
up in an element, which leads to a singular stiffness matrix. A further requirement in the
EAS method is the orthogonality of the stress functions to the enhanced strains, such
that associated energy expressions become zero. The incompatibility of the enhanced
strain field additionally enables an elimination of the corresponding degrees of freedom
on element level via static condensation, as for hybrid stress elements. The modified ele-
ment stiffness consequently has the same structure as a pure displacement-based element
and thus enables the application of standard assembly and solution methods. Details
on the derivation of element stiffness matrices and the definition of adequate enhanced
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6.3 Alternative methods to avoid geometric locking

strain functions are not provided herein. Further information in addition to the afore-
mentioned references is provided, for instance, in ANDELFINGER (1991), ANDELFINGER
AND RAaMM (1993), BUCHTER ET AL. (1994) and BISCHOFF ET AL. (1999).

First applications of the EAS method to higher-order and higher-continuity NURBS by
the author of this thesis have not been successful so far. The unsolved problems are,
for instance, continuous strain distributions in the entire patch domain and the depen-
dency of the strains on the applied load, while simultaneously accounting for the linear
independence of the enhanced and compatible strain fields as well as the orthogonality
to the stresses.

Isogeometric mixed method for Reissner-Mindlin plates

In BEIRAO DA VEIGA ET AL. (2012), isogeometric finite elements for plates with
Reissner-Mindlin kinematics are derived which do not suffer from transverse shear lock-
ing. The authors adopt the procedures that were originally developed to smoothly
approximate the differential forms of Maxwell equations or the Stokes problem (BUFFA
ET AL. (2010), BUFFA ET AL. (2011)) by taking advantage of the regularity of spline
functions for the discretization of Reissner-Mindlin plate problems.

This mixed approach utilizes smooth discrete function spaces for both the transverse
displacements and the rotations, which enables the satisfaction of the Kirchhoff con-
dition in the thin limit and thus yields isogeometric plate elements that are free from
parasitic transverse shear effects by construction. Mathematical proof of stability and
optimal convergence properties of the formulation are provided by the authors.

B strain projection ansatz

In the original paper ELGUEDJ ET AL. (2008) the B strain projection approach was ap-
plied to higher-order and higher-continuity NURBS discretizations of incompressible or
nearly incompressible material elasticity and plasticity problems to remove volumetric
locking. The authors therein suggest that the projected, possibly continuous volumetric
strain fields are one order and one level of continuity lower than the spaces of the dis-
placements except for cases of C%-continuity which remain C°-continuous. BOUCLIER
ET AL. (2012) adopt this procedure to remove both membrane and transverse shear lock-
ing in NURBS-based curved Timoshenko beam elements. Linear projection operators
are defined to project both the membrane and transverse shear strain components onto a
lower-dimensional basis in order to remove locking. For the Timoshenko beam problem
additionally the equivalence of the B formulation and mixed methods is determined.
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Numerical Examples

In the previous two chapters the accuracy of the hierarchic family of isogeometric shell
element formulations of this thesis with both pure displacement ansatz and additional
modification of the membrane strain components was tested in basic problem setups.
This approach enabled the detailed and separate investigation of individual shell ele-
ment properties and, moreover, a comparison of the finite element results to analytic
reference solutions.

In this chapter, these isogeometric shell elements are tested in popular and more complex
benchmark examples for the analysis of shell structures including multipatch NURBS
domains. All numerical evaluations account for both geometric and material linear be-
havior. In addition to the pure displacement shell elements derived in Chapter 5, the for-
mulations with modification of the membrane part by means of the mixed displacement-
stress approach of Section 6.2 are investigated. The NURBS-DSG ansatz of Section 6.1,
which is also capable to remove geometric locking effects of higher-order and higher-
continuity NURBS elements and which was analyzed in detail in the previous chapter
is not evaluated herein to confine the number of applied element formulations. These
are summarized in the following for clarity:

e 3p: 3-parameter formulation (Kirchhoff-Love), pure displacement ansatz, cf.
Section 4.3,

e 3p-mixed: 3-parameter formulation with mixed displacement-stress ansatz
for modification of membrane part, cf. Sections 4.3 and 6.2
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e 5p-stand.: standard 5-parameter formulation (Reissner-Mindlin), pure dis-
placement ansatz, update of director with difference vector added to the un-
deformed normal, cf. Section 4.4.1,

e 5p-stand.-mixed: standard 5-parameter formulation (Reissner-Mindlin),
mixed displacement-stress ansatz for modification of membrane part, cf. Sec-
tions 4.4.1 and 6.2,

e 5p-hier.: hierarchic 5-parameter formulation (Reissner-Mindlin), pure dis-
placement ansatz, update of the director with difference vector added to the
rotated normal, cf. Section 4.4.2,

e 5p-hier.-mixed: hierarchic 5-parameter formulation (Reissner-Mindlin),
mixed displacement-stress ansatz for modification of membrane part, cf. Sec-
tions 4.4.2 and 6.2

e Tp-stand.: standard 7-parameter formulation (Reissner-Mindlin), pure dis-
placement ansatz, update of director with difference vector added to the un-
deformed normal, cf. Section 4.5.1,

e 7p-stand.-mixed: standard 7-parameter formulation (Reissner-Mindlin),
mixed displacement-stress ansatz for modification of membrane part, cf. Sec-
tions 4.5.1 and 6.2,

e 7p-hier.: hierarchic 7-parameter formulation (Reissner-Mindlin), pure dis-
placement ansatz, update of the director with difference vector added to the
rotated normal, cf. Section 4.5.2,

e 7p-hier.-mixed: hierarchic 7-parameter formulation (Reissner-Mindlin),
mixed displacement-stress ansatz for modification of membrane part, cf. Sec-
tions 4.5.2 and 6.2

7.1 Scordelis-Lo roof

The first example to be investigated is the Scordelis-Lo roof according to MACNEAL
AND HARDER (1985), which represents a famous benchmark problem for the analysis of
shell structures. The cylindrical singly-curved shell is supported with rigid diaphragms
at either end (y = —50,y = 0) and is subjected to uniform gravity load of ¢ = 90 per
unit area, as shown in Figure 7.1. The system response of this numerical example is
dominated by both membrane and bending action. At the supports, the structure allows
for a motion in longitudinal direction and additionally for rotations. In the discrete
model homogeneous displacement boundary conditions of v, = v, = 0 are applied to the
control point degrees of freedom of the associated edges. The roof has a fixed slenderness
of % =100 and for FEA no symmetry conditions are imposed on the discrete models
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E=432-10%
v =0.0
t=0.25

Y

z

Figure 7.1: Scordelis-Lo roof — problem setup.

in this thesis. The structure is therefore calculated as a whole. Due to the rectangular
topology of the shell domain single patch calculations are performed.

For the discretization of the geometry and the displacement field NURBS basis functions
of at least second-order and C'-continuity are used in both parametric directions ¢ and
7 throughout all computations. The investigated quantity is the vertical deflection v,, of
point “A” at the midspan of the free edge which is calculated for various discretizations.
The results are compared to the reference solution of MACNEAL AND HARDER (1985),
which is 0.3024, and to the isogeometric Kirchhoff-Love shell of KIENDL ET AL. (2009).

Pure displacement formulation

In Figure 7.2 the displacement convergence of the hierarchic shell elements (5p-hier.,
7p-hier.) and the basic Kirchhoff-Love shell (3p) with pure displacement formulations
is analyzed for biquadratic to biquartic NURBS discretizations.

It turns out that with increasing polynomial order the numerical displacement results
converge more rapidly towards the reference solution of MACNEAL AND HARDER (1985).
These observations conform with the experience from conventional FEA and the NURBS
results of Sections 5.3 and 5.4. Whereas the second-order discretizations are significantly
prone to locking and for convergence to the reference solution require a mesh with at
least 20 control points per edge, the cubic and quartic NURBS approaches already pro-
vide the same accuracy with less than ten control points in each direction of the patch.
The charts in Figure 7.2 moreover illustrate that for this problem setup the displace-
ment results of the thin shell (3p), the Reissner-Mindlin formulation (5p-hier.) and the
3D shell (7p-hier.) are practically identical. This fact can be explained first by the
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Figure 7.2: Scordelis-Lo roof. Displacement convergence of “3p”, “5p-hier.”, “7p-hier.”
displacement models.

homogeneous shape of the structure and the homogeneous type of loading, which yields
a membrane dominated load-carrying behavior of the shell except edge disturbances at
the supports. Secondly, the slenderness of % = 100 significantly reduces the influence
of transverse shear and higher-order mechanical effects on the system response, which
became already evident in the numerical examples of Chapters 5 and 6.

In Figure 7.3 the displacements u, of the hierarchic 5-parameter shell (5p-hier.) are
visualized for the 2nd to 4th order NURBS discretizations in contour plots for a mesh
size of nine control points per edge. The plots are scaled with a factor of ten.

Quadratic Cubic Quartic
- e - - = o
0.01777 0.20774 0.04042 0.29810 0.04293 0.30095

Figure 7.3: Scordelis-Lo roof. Displacement plots v, of “5p-hier”” shell — quadratic to
quartic NURBS.

In order to analyze in more detail, which type of locking significantly affects the con-
vergence properties of the displacement-based NURBS shell elements, the results of the
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7.1 Scordelis-Lo roof

hierarchic and the standard formulations with second-order shape functions are com-
pared to each other and to the 3-parameter Kirchhoff-Love shell element of KIENDL
ET AL. (2009) in Table 7.1.

Control points per edge 7 11 19 35
Shell formulation (2nd order NURBS)

3p 0.1151  0.2584  0.2967  0.3003
5p-stand. 0.1101  0.2480  0.2956  0.3008
5p-hier. 0.1151  0.2585  0.2970  0.3008
Tp-stand. 0.1101  0.2480  0.2956  0.3008
Tp-hier. 0.1151  0.2585  0.2970  0.3008

KIENDL ET AL. (2009)
3p 0.0764  0.2480  0.2966  0.3003

Table 7.1: Scordelis-Lo roof. Displacements v,, of 2nd order NURBS shells — hierarchic
vs. standard.

The results in Table 7.1 clearly reveal that for the given problem setup both transverse
shear locking and curvature thickness locking have no significant influence on the dis-
crete displacements v,, . Both approaches yield almost identical values for all mechanical
shell models. The displacement results of Kiendl et al. conform well with the family of
displacement-based isogeometric shell elements developed in this work for fine discretiza-
tions but differ clearly in the coarse mesh regime. In KIENDL ET AL. (2009) symmetry
boundary conditions were applied to the Scordelis-Lo roof and only one quarter of the
entire shell structure was computed. This fact is accounted for in the number of “control
points per edge”. Differences in modeling the roof as a whole or by the coupling of four
patches, however, show up in the spatial location of the control points. The application
of open uniform knot vectors results in a nonuniform distribution of control points at the
ends of a patch domain in order to obtain a uniform parametrization. See, for instance,
Figure 5.6. The coupling of patches based on open uniform knot vectors therefore yields
different control point locations in the vicinity of the patch interface than a discretization
of the same domain with one single patch with the same number of control points. A
second possible reason for the differences in the coarse mesh regime may result from the
definition of the symmetry boundary conditions along curved NURBS edges in KIENDL
ET AL. (2009) whose influence diminishes with mesh refinement.

The cubic and quartic NURBS shell discretizations perform analogously and will there-
fore not be reproduced in the table.

Mixed u-o formulation

The Scordelis-Lo roof is now investigated by using the hierarchic family of NURBS shell
elements with modification of the membrane part by means of the mixed u-o approach
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of Section 6.2. Apart from this difference, the problem setup is identical to the pure
displacement model.

Figure 7.4 displays the displacement convergence of the hierarchic shell elements with
mixed formulation (5p-hier.-mixed, 7p-hier.-mixed) and the Kirchhoff-Love shell (3p-
mixed) again for biquadratic to biquartic NURBS discretizations.
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% Reference —8—
A 0.1 3p-mixed
A ’ 5p-hier.-mixed

0.05 Tp-hier.-mixed

0
0 5 10 15 20 25
Number of control points
Figure 7.4: Scordelis-Lo roof.  Displacement convergence of “3p-mixed”;, “Hp-hier.-

mixed”, “7p-hier.-mixed” shell formulations.

As for the displacement-based shell elements increasing the polynomial order of the
NURBS functions leads to improved convergence properties of the mixed isogeometric
shells to the reference solution of MACNEAL AND HARDER (1985). The displacement
results of the thin shell (3p-mixed), the Reissner-Mindlin formulation (5p-hier.-mixed)
and the 3D shell (7p-hier.-mixed) are again identical. The removal of geometric locking
effects from the in-plane part of the shell elements moves the convergence curves signif-
icantly closer to the reference solution for the same number of control points. Whereas
the second-order displacement model required a mesh of at least 25 control points per
edge to match the reference solution, the mixed model has the same accuracy with only
seven control points per edge and thus needs less than ten percent of the number of
degrees of freedom. Furthermore, the differences in the results due to the application of
different polynomial orders (2nd to 4th order) are significantly smaller among the mixed
than among the displacement formulations. The improved convergence properties of the
mixed isogeometric shell elements that were already determined in the numerical exam-
ple of Section 6.2.4, carry over to the Scordelis-Lo roof benchmark problem. For clarity,
the displacement results v,, of the pure displacement models and the mixed approaches
are displayed for the family of 3-, 5- and 7-parameter shells with both standard and
hierarchic parametrization of the difference vector for 2nd order NURBS discretizations
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in Table 7.2. The behavior among the shell formulations with cubic and quartic NURBS

is analogous to the second-order shells and is therefore not included in the table.

Control points per edge 5 9 13 20 25 30
Shell formulation (2nd order NURBS)

3p 0.04400  0.20768  0.28013  0.29751  0.29940  0.30004
3p-mixed 0.25169  0.29999  0.30050  0.30060  0.30061  0.30061
5p-hier. 0.03998  0.20774  0.28030  0.29781  0.29978  0.30049
5p-stand. 0.04014  0.19586  0.27362  0.29672  0.29942  0.30035
5p-hier.-mixed 0.25173  0.30013  0.30070  0.30090  0.30099  0.30107
5p-stand.-mixed 0.22912  0.27528  0.29241  0.29756  0.30050  0.29993
Tp-hier. 0.03998  0.20774  0.28030  0.29781  0.29978  0.30049
Tp-stand. 0.04014  0.19586  0.27362  0.29672  0.29942  0.30035
7p-hier.-mixed 0.25173  0.30013  0.30070  0.30090  0.30099  0.30107
Tp-stand.-mixed 0.22913  0.27527  0.29241  0.29756  0.30050  0.29993

Table 7.2: Scordelis-Lo roof. Displacements v,, of 2nd order NURBS shells (standard,

hierarchic, mixed).

7.2 Pinched hemisphere

The next example to be investigated in this chapter is a pinched hemispherical shell.

This structure is doubly-curved and subjected to four radial point loads F' = £2 at its

bottom (z = 0) at 90° intervals, which yields a bending dominated deformation.

z

Figure 7.5: Pinched hemisphere (gray) and bending strips (green) — problem setup.

E =6.825-10"
v=0.3
t=0.04
R=10

F=2

The pinched hemisphere benchmark problem follows BELYTSCHKO ET AL. (1985) and
compared to the setup of MACNEAL AND HARDER (1985) no hole is introduced at
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the top of the shell. The circumferential edge of the hemisphere at z = 0 is free. The
entire structure is fixed at its top at z = y = 0, z = 10, which conforms with the setup
of KIENDL ET AL. (2009) to which the displacement results are also compared. Again,
no symmetry boundary conditions are imposed on the model as for the example of
Section 7.1. The discrete structure consists of four NURBS patches with compatible
discretizations along common edges. In order to ensure slope continuity the bending
strip method described in Section 3.6 is applied to the analysis models at the patch
interfaces as shown in green in Figure 7.5. The radius of the shell is ten and the
thickness ¢ = 0.04, which yields a slenderness of % = 250. The doubly-curved geometry
and the displacement field require a discretization with NURBS functions of at least
second-order and C*'-continuity for both parametric directions & and 1. The quantity
to be monitored is the radial displacement at the loaded point “A”, which according to
BELYTSCHKO ET AL. (1985) is equal to 0.0924.

Pure displacement formulation

For the pinched hemisphere the displacement convergence of the hierarchic shell ele-
ments (5p-hier., 7p-hier.) and the Kirchhoff-Love shell (3p) with pure displacement
ansatz is analyzed for 2nd order to 4th order NURBS discretizations in Figure 7.6. The
“number of control points per edge” refers to the number of control points to be used for
one patch. For the entire shell problem spatially coincident control points along patch
interfaces share the same degrees of freedom in the analysis models.
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Figure 7.6: Hemisphere. Displacement convergence of “3p”, “5p-hier.”, “7p-hier.” dis-
placement models.
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7.2 Pinched hemisphere

Several results from the Scordelis-Lo roof benchmark problem carry over to the pinched
hemisphere. With increasing polynomial order of the NURBS basis the numerical dis-
placement results converge more rapidly towards the reference solution as displayed in
Figure 7.6. The ability of the displacement-based shell elements to correctly model the
almost pure bending deformation of the shell for the applied load, however, is worse
than determined in the numerical example of Section 7.1. The 2nd order NURBS dis-
cretizations require more than 35 control points per edge for each of the four patches
to match the reference solution of BELYTSCHKO ET AL. (1985) and therefore exhibit
significant locking sensitivity. Also for the cubic and quartic shell elements satisfactory
displacement results do not show up if less than 15 control points are defined per edge.
The choice of a reliable bending strip stiffness follows the investigations of KIENDL
(2011) for this problem setup. It is defined such that it ensures the smooth coupling
of the four surface patches during deformation on the one hand and to avoid numerical
instabilities based on very large stiffness values of the strip on the other.

Differences in the displacement results of the shear-rigid 3-parameter shell and the shear-
deformable 5- and 7-parameter formulations are again negligibly small as for the previous
example of this chapter. Singularities in the displacements due to concentrated point
loads showing up in shear-deformable theories of elasticity problems are neither pro-
nounced nor evident for the investigated mesh sizes. For the thin hemispherical shell
with a slenderness of % = 250 also the influence of transverse shear and higher-order
mechanical effects on the overall system response is not apparent.

Mixed u-o ansatz

As for the Scordelis-Lo roof, the multipatch hemisphere is now investigated by using
the mixed u-o ansatz of Section 6.2 for the membrane part of the hierarchic family of
NURBS shell elements. Apart from that, the problem setup coincides with the pure
displacement model.

In Figure 7.7 the displacement convergence of the mixed hierarchic shell elements (5p-
hier.-mixed, 7p-hier.-mixed) and the shear-rigid Kirchhoff-Love model (3p-mixed) is
displayed again for 2nd order to 4th order NURBS discretizations.

The conclusions drawn from Figure 7.7 for the pinched hemisphere coincide with those
of the mixed models of Section 7.1: Improved convergence properties of the mixed iso-
geometric shells to the reference solution with increasing order of the NURBS basis can
be ascertained. Additionally, the displacement results of all three shell formulations
are practically identical. The locking-free shell elements, moreover, converge signifi-
cantly faster to the reference solution for the same number of control points than the
displacement models of Figure 7.6. Furthermore, the differences in the results due to

145



7 Numerical Examples
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Figure 7.7: Hemisphere. Displacement convergence of “3p-mixed”, “5p-hier.-mixed”,
“Tp-hier.-mixed” shells.

the application of different polynomial orders (2nd to 4th order) is significantly smaller
among the mixed than for the displacement formulations.

7.3 Highly-curved shell, model adaptivity

For the shell obstacle course examples Scordelis-Lo roof (Section 7.1) and hemispher-
ical shell (Section 7.2) no evident differences showed up for the discrete displacement
results among the different mechanical models (Kirchhoff-Love, Reissner-Mindlin, 3D
shell). As concluded, slenderness values of ? > 100 significantly reduced the influence
of transverse shear and higher-order mechanical effects on the system response, which
was also determined in the examples of Chapters 5 and 6.

Vg

Figure 7.8: Curved shell — problem setup.
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7.3 Highly-curved shell, model adaptivity

In Figure 7.8 a structure which is composed of eight 90° NURBS surface segments is
depicted. To enforce slope continuity bending strips are used along patch interfaces.
Both the geometry and displacement fields are discretized with second-order NURBS
and C*-continuity for both parametric directions ¢ and 1 throughout all calculations.

Influence of shell models on displacement results

In the numerical example of this section the mechanical behavior of the three differ-
ent models (Kirchhoff-Love, Reissner-Mindlin, 3D shell) of this thesis is analyzed for the
cylindrical shell with high curvature by varying the slenderness from ? =1to ? = 1000.
The radius to the mid-surface of the shell R = 0.5 is fixed, whereas the thickness is var-
ied from ¢ = 0.5 to ¢ = 0.0005. In z-direction the structure has unit length. The shell is
simply supported at both ends and subjected to a constant line load of g, = 10 which
is scaled with the 3rd power of the thickness to keep the displacement results in the
same range. In addition to bending also contributions from both transverse shear and
in-plane normal forces contribute to the overall deformation for this particular model
problem. The material constants for the linear elastic computations are Young’s mod-
ulus F = 1000 and Poisson’s ratio v = 0.

To avoid locking and to focus on the mechanical performance of the shell models, only
the hierarchic shell elements with mixed formulation (5p-hier.-mixed, 7p-hier.-mixed)
and the Kirchhoff-Love shell (3p-mixed) are employed. Additionally, a fine mesh with
50 elements in circumferential direction for every half cylinder and one element in z-
direction of the structure is used. A numerical reference solution to the NURBS shell
element “5p-hier.-mixed” is provided with the commercial software ANSYS by using
the four node Reissner-Mindlin-type “SHELL181” (ANSYS (2011)). The number of
isogeometric shell elements coincides with the mesh size defined in ANSYS.

5p-hier.-mixed SHELL181
vy =v,=0 vy =10, =0
z z
z z
v =y =0, =0 vy =0y =v,=0
HE T | N u
0.0000 0.1203 0.0000 0.1208

Figure 7.9: Curved shell — displacement plots v, (5p-hier.-mixed, SHELL181).
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In Figure 7.9 the identical mechanical behavior of both shell formulations is demon-
strated in the displacement contour plots v, for % = 1. The small deviations in the
displacement results in the fourth decimal place are based on numerical effects such as
for example implementation and applied finite element technology rather than due to
the employed shell mechanics.

Next, the displacement results v,, as displayed in Figure 7.8 are evaluated and com-
pared among the aforementioned shell element formulations in Table 7.3 for a varying

slenderness %
Slenderness [E 1 10 100 1000
Shell formulation (2nd order NURBS)
3p-mixed 0.1059  0.0946  0.0943  0.0943
5p-hier.-mixed 0.1203  0.0948 0.0943  0.0943
7p-hier.-mixed 0.1280  0.0949  0.0943  0.0943

ANSYS reference
SHELL181 (5p) 0.1208  0.0944  0.0941  0.0941

Table 7.3: Curved shell - displacements v, , overview of shell formulations.

Table 7.3 confirms that independent of the slenderness the shell elements “SHELL181”
and “5p-hier.-mixed” which discretize the same shell model (Reissner-Mindlin) yield ap-
proximately the same results. Locking effects on the displacement results are considered
to be insignificant for the fine mesh and the mixed element formulations applied for
discretization.

For very thick shells obvious differences in the displacements of point “A” show up
among the Kirchhoff-Love (3p), the Reissner-Mindlin (5p) and the 3D shell (7p) models
due to significant contributions of bending, transverse shear and higher-order effects.
The difference in v,, between the “3p-mixed” and “5p-hier.-mixed” shells amount to
12% based on the influence of transverse shear for § = 1. Between “5p-hier.-mixed”
and “7p-hier.-mixed” three-dimensional mechanical effects yield a discrepancy of 6% for
the same ratio of % With increasing slenderness up to % = 1000 further insight can be
derived from the results of Table 7.3: Thin shells are predominately affected by mem-
brane and bending action. Whereas the displacement values v,, of the NURBS-based
shell elements (3p-mixed, 5p-hier.-mixed, 7p-hier.-mixed) clearly differ from each other
in the very thick regime they convergence very fast to the same value as the slenderness
increases. Even for the slenderness ratio of % = 10, which can be still considered as
thick, the differences between the Kirchhoff-Love and the Reissner-Mindlin model are
only in a range of 0.2%. Also the deviation of “5p-hier.-mixed” to “7p-hier.-mixed”
amounts to 0.1% only which underlines the fast reduction of transverse shear action and
effects in thickness direction on the evaluated deformation results.
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7.3 Highly-curved shell, model adaptivity

Model adaptivity — Reissner-Mindlin to Kirchhoff-Love

In Chapter 1, the “blended” isogeometric shell of BENSON ET AL. (2013) was briefly
presented. This ansatz links the shell theories of Kirchhoff-Love and Reissner-Mindlin
by a linear combination of the kinematics of both models. The main intention is to apply
the Kirchhoff-Love model in regions which are dominated by membrane and bending
action, whereas Reissner-Mindlin kinematics is applied in areas where transverse shear
has a significant influence, i.e. in non-smooth domains of low continuity, such as folds,
intersections or boundaries.

With regard to model adaptivity this approach can be adopted straightforward to the
hierarchic Reissner-Mindlin-type (5p-hier.) and Kirchhoff-Love-type (3p) shell formula-
tions developed in this thesis. By imposing zero displacements on the degrees of free-
dom related to the difference vector w1 the strain tensor coefficients €27 of the
Reissner-Mindlin shell become equal to the shear-rigid Kirchhoff-Love formulation; see
Equations (4.12) and (4.25). As both mechanical shell models apply the stress assump-
tion 0** = 0 for asymptotic correctness no further action with respect to the material
law has to be carried out. In Table 7.4 the displacement values v,, of the 3-parameter
Kirchhoff-Love shell (3p-mixed), the hierarchic 5-parameter Reissner-Mindlin model (5p-
hier.-mixed) and the constrained hierarchic 5-parameter Reissner-Mindlin formulation
(5p-hier.-mixed-constr.) with mixed ansatz of the in-plane strain components are com-
pared among each other. The mesh size coincides with the setup of the previous section.
The discrete displacement results exactly confirm the aforementioned explanations. The
constrained hierarchic Reissner-Mindlin shell (5p-hier.-mixed-constr.) yields exactly the
same results as the shear-rigid Kirchhoff-Love model (3p-mixed) by simply fixing the
displacement parameters related to the shear vector.

Slenderness £ 1 10 100 1000
Shell formulation (2nd order NURBS)

3p-mixed 0.1059  0.0946  0.0943  0.0943
5p-hier.-mixed 0.1203  0.0948  0.0943  0.0943
5p-hier.-mixed-constr. 0.1059  0.0946  0.0943  0.0943

Table 7.4: Curved shell — displacements v,, , model adaptivity.

For the hierarchic 3D shell (7p-hier.) in addition to transverse shear also the degrees of
freedom of the linear and quadratic transverse normal displacement fields w® and w™
can be set to zero such that the strain tensor coefficients e ™" (see Equation (4.39))
again coincide with the 3-parameter Kirchhoff-Love shell. The material equations of the
7-parameter formulation, however, do not account for the stress assumption o>* = 0.
In order to switch from the 3D shell to the Kirchhoff-Love (3p) or Reissner-Mindlin

(5p-hier.) model the constitutive law has to be modified accordingly.
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Summary and Conclusions

8.1 Summary

This work is concerned with the isogeometric analysis of shells. A new hierarchic family
of NURBS-based shell finite elements was developed.

Besides a shear-rigid 3-parameter shell element formulation with Kirchhoff-Love kine-
matics, both a shear flexible 5-parameter Reissner-Mindlin-type and a 7-parameter 3D
shell element which accounts for thickness change were derived.

Compared to existing isogeometric shell elements the hierarchy showing up in the shell
mechanics (3p, 5p, 7p) is transferred to the parametrization of the kinematic shell equa-
tions. This represents the key innovation of this thesis. The minimalistic 3-parameter
shell model can be gradually enhanced with additional degrees of freedom in order to
systematically increase the approximation quality of the shell formulation. The en-
hancement of the extra displacement parameters is performed such that a complete
reformulation of the 5- and 7-parameter shell kinematic equations is not required. With
regard to model adaptivity, the hierarchic construction also allows for a straightforward
coupling of the different shell element formulations of the hierarchy.

The continuity requirements on the displacement functions for the proposed hierarchic
shell models are identical to those of the 3-parameter formulation, i.e. C?, which can,
however, be naturally satisfied with the applied higher-continuity NURBS discretiza-
tions. All shell models of the hierarchy utilize a pure displacement ansatz. For the
hierarchic shell models the concept of a difference vector is used to account for trans-
verse shear deformations. In contrast to existing isogeometric Reissner-Mindlin-type
shell formulations, the vector is added to the rotated director of the deformed configura-
tion and thus effectively splits the displacement field into contributions due to bending
and transverse shear which naturally avoids transverse shear locking. For the 3D shell
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8 Summary and Conclusions

the hierarchic concept in addition avoids curvature thickness locking by default which
was demonstrated in several numerical experiments.

Second, new strategies to remove geometric locking effects from higher-order and higher-
continuity NURBS discretizations were developed and applied to the in-plane part of
the family of isogeometric shell finite elements to remove membrane locking. Therefore
a NURBS-based Discrete Strain Gap method and a mixed displacement-stress formu-
lation were derived which ultimately lead to isogeometric shell finite elements that are
completely free from geometric locking. The higher-continuity of the NURBS shape func-
tions to be used for the discretization of the displacement fields may result in continuous
strain and stress distributions which consequently do not allow for the application of
finite element technology on element level but require considerations on patch level and
may additionally lead to coupling of degrees of freedom.

For more complex geometries which require the definition of several patches and ad-
equate coupling techniques the bending strip method of KIENDL ET AL. (2010) was
adopted. This penalty-type method weakly imposes the constraint of connecting sur-
face patches with slope continuity. The choice of appropriate stiffness parameters for
the bending strips follows the analyses and recommendations of KIENDL (2011). The
shell obstacle course examples evaluated in this thesis conform well with the results from
literature; see, for instance, KIENDL ET AL. (2009).

Numerical analyses of a very thick and highly-curved shell with a ratio of radius to
thickness equal to one revealed significant differences in the displacement response of
the structure for the three different shell models (3p, 5p, 7p). With increasing slen-
derness a fast diminution of the influence of both transverse shear and higher-order
mechanical effects on the investigated displacement results could be observed even for
a moderately slender structure. For the same problem setup systematic deactivation of
degrees of freedom was tested for the 5-parameter Reissner-Mindlin shell by imposing
zero displacements on the shear vector degrees of freedom. The results obtained, per-
fectly match the 3-parameter Kirchhoff-Love solution and thus provide an ideal basis
for a model adaptive approach.

8.2 Prospect

The kinematics of all shell elements of this thesis were developed and tested for the
geometrically linear case. Therefore a first upcoming task will cover the extension of
the element formulations to geometric and material non-linearity. For the shear-rigid
Kirchhoff-Love shell the procedure is straightforward by formulating the non-linear ro-
tation of the undeformed director A to the current configuration as. The extension to
large deformations for the 5-parameter Reissner-Mindlin shell model may be based on
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8.2 Prospect

either a difference vector ansatz or alternatively resort to hierarchic rotations. Atten-
tion, however, has to be paid to the satisfaction of the inextensibility condition for both
approaches. For information on the theory of large rotations and the classification of
different algorithmic concepts, the reader is referred to ARGYRIS (1982) and BETSCH
ET AL. (1998), for instance. By all means, the principal concept of a hierarchic update
of the shell director can be applied to all shell models (3p, 5p, 7p) developed in this
work also in the geometrically non-linear regime.

The hierarchic parametrization applied to the shell models in this thesis enabled an
elegant and effective split into bending and shear deformations and thus avoids trans-
verse shear locking in a pure displacement formulation. A desirable extension of this
concept might be the respective hierarchic split of bending and membrane deformations
in order to avoid membrane locking and thus derive shell element models that are purely
displacement-based and at once completely free from geometric locking.

The NURBS-based shell finite elements derived in this work possess several promising
properties and advantages compared to standard Lagrange discretizations. Further stud-
ies will demonstrate the competitiveness of the isogeometric analysis and in particular
isogeometric shell analysis to Lagrange-based finite element methods.
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Appendix

A.1 Vector and tensor algebra fundamentals

Vectors (first-order tensors) in co- and contravariant form:

a=aqg =dg. (A1)

e Scalar product (simple contraction) of two vectors:

a-b=b-a=(ag) (b"gm,) =ab™=adb,. (A.2)

e Vector (cross) product of two vectors (permutation symbol ")

c=axb=-bxa=c¢cy,db"g"=c"ab,g,. (A.3)

Mixed product of three vectors:

a-(bxc)=epab™c =" ab,c,. (A4)

Tensorial (dyadic) product of two vectors yields second-order tensor:

a®b =C
C =d g g =ab.g g =db,gRg" =aub"g @gn
= Clmgl ®gm = Clmgl X gm = Clmgl ®gm = Clmgl X Zm -
(A.5)



A Appendix

Scalar product (double contraction) of two second-order tensors:

C:D=C"D,,=D:C. (A.6)

Tensorial (dyadic) product of four vectors yields fourth-order tensor:

a®b®cd =C
C =d b " R D, D, (A7)
= Clmnogl@)gm@gn@go'

Product rule (divergence operator):

div(C-a) = C" : grada + (divC") -a. (A.8)

e Divergence theorem:

JdideQ :64C~n89

/divadQ :/'a.nm. (A.9)
Q

o0

Partial integration (combination of product rule and divergence theorem) with
substitutions o = CT ju = a):

/ o™ graddu dQ = / su-o'™.n o0 — / Su: dive'™dQ. (A.10)
) b O
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Ralph Echter

This work is concerned with the isogeometric analysis of shells. A new hierarchic family of
NURBS-based shell finite elements is developed. Besides a shear-rigid 3-parameter shell
element formulation with Kirchhoff-Love kinematics, both a shear flexible 5-parameter
Reissner-Mindlin-type and a 7-parameter 3D shell element which accounts for thickness
change are derived.

Compared to existing isogeometric shell elements the hierarchy showing up in the shell
mechanics is transferred to the parameterization of the kinematic shell equations by
gradually enhancing the minimalistic 3-parameter shell model with additional degrees of
freedom in order to systematically increase the approximation quality of the shell
formulation. This represents the key innovation of this thesis with significant benefits both
with regard to finite element technology and model adaptivity.

The continuity requirements on the displacement functions for the proposed hierarchic
shell models are C', which can be naturally satisfied with the applied higher-continuity
NURBS discretizations. All shell models of the hierarchy utilize a pure displacement
ansatz. Due to the concept of a hierarchic parameterization both transverse shear locking
and curvature thickness locking are avoided by default for the Reissner-Mindlin-type and
the 3D shell formulations. In order to remove membrane locking two new strategies for
higher-order and higher-continuity discretizations — a NURBS-based Discrete Strain Gap
method and a mixed displacement-stress formulation — are developed and applied to the
in-plane part of the isogeometric shell finite elements, which ultimately lead to isogeometric
shell element formulations that are completely free from geometric locking.
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