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Zusammenfassung

In dieser Arbeit werden Materialoptimierungs-Verfahren für faserverstärkte Verbundwerk-
stoffe vorgestellt, insbesondere für neuartige Faser-/Textilbetone. Diese Werkstoffe sind
aus einem Bewehrungsnetz aus langen Karbon- oder Glasfasern aufgebaut, das in eine
feinkörnige Betonmatrix eingelegt wird. Im Gegensatz zu herkömmlicher Stahlbewehrung
sind Textilfasern korrosionsfrei. Aufgrund der hohen Alkalibeständigkeit trifft das auch
auf alkaliresistente Glasfasern zu. Dies erlaubt die Herstellung von leichten, dünnwandigen
Verbundkonstruktionen. Die kritische Eigenschaft von Faserbeton ist ein eventuell sprödes
Versagen aufgrund des spröden Verhaltens beider Komponenten Beton und Fasern sowie
des komplexen Verbundverhaltens. Diese Charakteristik stellt eine ideale Anwendung für
die Materialoptimierung dar, wobei bei vorgegebenem Faservolumen die maximale Duk-
tilität der Struktur als Zielfunktion dient. Hierzu reicht es nicht aus, den Optimierungs-
prozess auf einem linear-elastischen Materialmodell aufzubauen, da materielle Nichtlinea-
ritäten berücksichtigt werden müssen. Im Rahmen dieser Arbeit wird für Matrix- und
Fasermaterial ein gradienten-erweitertes, isotropes Schädigungsmodell verwendet und für
deren Kombination ein diskretes Verbundmodell.
Die Strukturantwort von Faserbeton hängt von verschiedenen Parametern ab, wie z. B.
der Fasergröße, -länge, -position, -ausrichtung, Imprägnierung, Oberflächenrauhigkeit und
dem Material der Fasern. Von den Entwurfsvariablen werden für die Optimierung die
Dimensionierung der Fasern und die Faserposition als die einflussreichsten Parameter
ausgewählt. Eine klassische Materialoptimierung verwendet meistens im Element “ver-
schmierte” Fasern zur Optimierung der Faserausrichtung. Hier ist dieses Modell ist aller-
dings zu grob, um die oben genannten Parameter zu untersuchen.
Für die Optimierung der Duktilität von Faserbeton werden in dieser Arbeit drei Arten
von Materialoptimierungs-Verfahren, die Mehrphasen-Materialoptimierung , die Material-
Formoptimierung und die Mehrphasen-Layoutoptimierung vorgestellt.
Die Mehrphasen-Materialoptimierung legt die optimale Verteilung mehrerer Materialien
innerhalb eines vorgeschriebenen Entwurfsraums bei festem FE-Netz fest. Diese Metho-
de ähnelt der Topologieoptimierung, insbesondere dem dort häufig eingesetzten SIMP-
Ansatz. Hierbei werden die optimale Fasergröße, Faserlänge und Kombination verschiede-
ner Fasermaterialien ermittelt. Die Material-Formoptimierung verbessert die Duktilität,
indem die Fasergeometrie unabhängig vom festen FE-Netz variiert wird. Dabei vereinfacht
die Verwendung einer “embedded” Finite-Elemente-Formulierung die komplexe Diskreti-
sierung dünner Fasern bei klassischen FE-Modellen. Die Mehrphasen-Layoutoptimierung
ermittelt nicht nur die optimale Fasergeometrie, sondern gleichzeitig die optimale Faser-
größe und die Art des Fasermaterials. Diese Methode entsteht durch Kombination von
Mehrphasen-Materialoptimierung und Material-Formoptimierung.
Zur Lösung des Optimierungsproblems werden gradienten-basierte Verfahren eingesetzt.
Aufgrund ihrer numerischen Effizienz und Robustheit werden sowohl das Optimalitätskri-
terien-Verfahren als auch das Verfahren der beweglichen Asymptoten verwendet. Die Sen-
sitivitätsanalyse erfolgt durch analytische oder semi-analytische Verfahren. Das Verhalten
der vorgestellten Methoden wird an einer Reihe von numerischen Beispielen untersucht,
wobei die Duktilität des Faserbetons wesentlich verbessert werden kann. Die vorgestellten
Methoden zur Ermittlung optimaler Entwürfe sind methodisch anspruchsvoll und vielver-
sprechend und auch auf andere faserbewehrte Verbundwerkstoffe wie z. B. faserverstärktes
Glas anwendbar.



Abstract

The present thesis proposes material optimization schemes for fiber reinforced composites,
specifically for a new composite material, denoted as Fiber Reinforced Concrete (FRC)
or Textile Reinforced Concrete (TRC); here a reinforcement mesh of long carbon or glass
fibers is embedded in a fine grained concrete (mortar) matrix. Unlike conventional steel
reinforcement, these textile fibers are corrosion free; this holds also for AR-glass due to
its high alkali-proof. This favorable property allows to manufacture light-weight thin-
walled composite structures. However the critical aspect of this composite is that the
structural response of FRC may show brittle failure due to the material brittleness of
both constituents concrete and fiber in addition to their complex interfacial behavior.
This specific characteristic of FRC is an ideal target for material optimization applying
the overall structural ductility as objective which ought to be maximized for a prescribed
fiber volume. For this objective it is of course not sufficient to base the optimization
process on a linear elastic material model, so that it is mandatory to consider material
nonlinearities. In the present study a gradient enhanced isotropic damage model is applied
for both matrix and fiber materials and a discrete bond model is used for their interface.
The structural response of FRC depends on several parameters, e.g. fiber size, fiber
length, fiber location/orientation, impregnation, surface roughness of fiber, and the kind
of fiber material itself. From these the most influential parameters like fiber dimensions
and locations are chosen as design variables for optimization. Conventional material
optimization applying simply ‘smeared-type elements’ mostly concentrate on the fiber
orientation defined at each finite element. This approach is not detailed enough when the
influence of other important parameters mentioned above ought to be investigated.
Considering the design requirements for the present objective, this thesis proposes three
kinds of material optimization schemes, namely multiphase material optimization, mate-
rial shape optimization, and multiphase layout optimization.
Multiphase material optimization determines an optimal distribution of several materials
over a prescribed design domain in a fixed finite element mesh. This methodology is
related to topology optimization, especially to the Solid Isotropic Microstructure with
Penalization (SIMP) approach. With this method optimal fiber size, fiber length, and
combination of different fiber materials can be obtained. The task of material shape
optimization is to improve the structural ductility of FRC with respect to ‘fiber geometry’
which is independent of the fixed finite element mesh. By applying a so-called embedded
finite element formulation, the complexity of discretization for thin fibers in a conventional
finite element formulation is diminished. Multiphase layout optimization provides not
only optimal fiber geometry but also optimal fiber size or the kind of fiber materials
simultaneously. This methodology is achieved by combining above multiphase material
and material shape optimization.
For the optimization problems a gradient-based optimization scheme is assumed. An
optimality criteria method and a method of moving asymptotes are applied considering
their numerical high efficiency and robustness. For the sensitivity analyses variational
direct analytical/semi-analytical methods are utilized. The performance of the proposed
methods is demonstrated by a series of numerical examples; it is verified that the duc-
tility of FRC can be substantially improved. The proposed methods providing optimal
designs are promising and methodically challenging. They are also applicable to other
fiber reinforced composites, for example Fiber Reinforced Glass (FRG).
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Nomenclature

The following abbreviations and symbols will be addressed several times throughout the
thesis. Additionally, rarely occurring abbreviations and symbols are noted in the corre-
sponding context.

Abbreviations

CAD Computer Aided Design
CAGD Computer Aided Geometric Design
CARAT Computer Aided Research and Analysis Tool - FEM Program system
CCARAT C-programming version of CARAT
FE Finite Element
FEM Finite Element Method
OC Optimality Criteria method
MP Mathematical Programing method
MMA Method of Moving Asymptotes
SQP Sequential Quadratic Programming method
PVW Principle of Virtual Work

Symbols

( •̂ ) free function parameters
( •̇ ) time derivatives
( • )∗ solution of optimization problem, values at optimum

( • )h approximate function

( • )(k) iteration index in optimization algorithms

( • )(n) iteration index in path-dependent algorithms
( • )t+1 values at the actual time step
( • )t values at the reference (previous) time step
( • )e values on element level
( • )s values of optimization
( • )x vector component of x-direction
( • )y vector component of y-direction
( • )c term relevant to concrete matrix

( • )f term relevant to fiber

( • )i term relevant to interface between matrix and fiber

( • )c+f term relevant to concrete matrix and fiber
δ ( • ) variation
d ( • ) infinitesimal increment

v



vi Nomenclature

Δ ( • ) increment value

Gradient operators

∇s ( • ) partial derivatives with respect to an optimization variable ŝi, by which other
variables ŝj for j �= i are regarded as constant

∇ex
s ( • ) explicit part of partial derivatives ∇s ( • )

∇imp
s ( • ) implicit part of partial derivatives ∇s ( • )

∇2 Laplacean operator

Function spaces, mathematical functions

L∞ (Ω) Lebesgue space
R set of all real numbers
Z set of all integer numbers
V subspace
‖ • ‖ L2 norm
〈•〉 Macauley bracket

Optimization values, functions

L Lagrangian function
f objective function
h equality constraint
g inequality constraint
h vector of equality constraints
g vector of inequality constraints
s design function, design variable
ŝ vector of optimization variables
sr design function for material design
ŝr vector of material design variables
sg design function for shape design
ŝg vector of shape design variables
ŝL, ŝU lower and upper bounds of optimization variables
η vector of the Lagrange multipliers for equality constraints
γ vector of the Lagrange multipliers for inequality constraints
μ adjoint vector/vector of the Lagrange multipliers
ns number of design variables
nf number of objective functions
nh number of equality constraints
ng number of inequality constraints
ng, active number of active inequality constraints
ζ effective material parameter for damage

Geometry

B material body
Φ shape function of geometry
ϑ local coordinate of design element or of fiber geometry



Nomenclature vii

χ indicator function
Ω volume, design space
Ωe subspace on element level
Ωϑ subspace on local coordinate ϑ
Ωξ subspace in natural coordinate system
Γ boundary
Γu displacement boundary
Γσ traction boundary
Γe boundary on element level
Γξ boundary in natural coordinate system
x position vector of material point in actual configuration
xk position vector of control nodes
xe position vector of FE-nodes
J Jacobian matrix
|J| determinant of Jacobian matrix

J̃ metric tensor

|J̃| determinant of metric tensor
N matrix of shape function for displacement vector field

Ñ matrix of shape function for non-local equivalent strain field
N̄ matrix of shape function for interfacial slip field

Kinematic measures

u displacement vector field
uL local displacement field along axis of one-dimensional fiber
ε stain tensor
εL stain tensor in local coordinate system
εL local strain field along axis of one-dimensional fiber
εa adjoint strain tensor
εpre prescribed strain
d nodal displacement vector
e nodal non-local strain vector
d̄ nodal slip vector (nodal relative displacement vector)
L differential operator
B discretized constant differential operator for displacement field

B̃ discretized constant differential operator for non-local equivalent strain field
B̄ discretized constant differential operator for interfacial slip field
I1 first invariant of the strain tensor
J2 second invariant of the deviatoric strain tensor

Forces, loads, stresses

σ Cauchy stress tensor
σL Cauchy stress tensor in local coordinate system
σL local stress along axis of one-dimensional fiber
t Cauchy traction vector

t̂ prescribed surface traction vector
t0 reference surface traction vector



viii Nomenclature

b̂ prescribed body force vector per unit volume
P external load vector
Ppse pseudo load vector
Fint internal force vector
Fext external force vector
λ load factor

Works, stiffness matrices

Wint internal work
Wext external work
δW virtual work
δWu part of virtual work relevant to displacement field
δWe part of virtual work relevant to non-local equivalent strain
K stiffness matrix
KT tangential stiffness matrix

Materials

C, Cel elastic material stiffness tensor or matrix
Ced elasto-damage secant material stiffness tensor or matrix
CT tangential material stiffness tensor or matrix

Td rotation matrix
Tε strain transformation matrix
Tσ stress transformation matrix
ρ density
θ angle
E Elastic modulus
ν Poison’s ratio
κ0 threshold variable which determines damage initiation
α softening parameter which defines final softening stage
β softening parameter which governs rate of damage growth
k ratio of compression relative to the tension strength
D damage parameter
κ history variables of damage
η penalization factor
η̂ fitting parameter
εv local equivalent strain
ε̃v non-local equivalent strain
c dimension length squared regularizing localization of deformation
ui

1, ui
2, ui

3 slip length defining change of interfacial behavior
kL tangential stiffness of interface
σm, 0, σm initial and current adhesion strength
σf, 0, σf initial and current sliding friction strength
rs fiber radius
h surface roughness of a fiber
αr, αf constants assuming lateral deformation of fiber
fc uniaxial compressive strength of concrete



Nomenclature ix

εs uniaxial strain of fiber
Rs radius of curvature at slip ui

1

σR stress perpendicular to fiber

Optimization method

Ys iteration rule for optimization variables (OC method)
Yη, Yγ iteration rule for Lagrange multiplier (OC method)
� shift factor (OC method)
ε̄ stop criterion (OC method)

β, β move limits for i -th design variable (MMA)
Li, Ui lower and upper asymptotes for i -th design variable (MMA)
α̃ variation for asymptotes (MMA)





Chapter 1

Introduction

1.1 Motivation

Optimal design has always been a common interest for engineers in all fields. Engineers
usually make every effort to come up with the optimal design in terms of their experi-
ence, knowledge, engineering sense and of course the theoretical background as the basis
for structural analysis. In this approach mechanical principles are applied to determine
the structural response, for example deflections and stress states, while loads, boundary
conditions, and geometry of a structure, i.e. topology and shape of a structure, are given.
However in the case in which the structural problem is highly nonlinear or in which the ob-
jective to be requested is beyond human/engineering experience, the traditional approach
does not provide necessarily reasonable optimal designs.

In the meanwhile the mechanical laws can also be used to determine the conceptual
layout, topology and shape of a structure, for a prescribed structural response. This
inverse method is called structural optimization.

With respect to optimization variables, structural optimization is usually divided into
four levels which differ in their degree of complexity, in particular topology optimization,
shape optimization, section sizing optimization, and material optimization, see Fig. 1.1.

The task of the topology optimization is to generate a first ideal structural layout. Once
the topology is determined, the external and/or internal boundaries may be varied to
meet the mechanical requirements. This is the task of shape optimization. As the lowest
level of structural optimization, sizing and material optimization contributes to the final
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Figure 1.1: Levels of structural optimization (Ramm et al. [149])
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Figure 1.2: FRC pedestrian bridge (Curbach & Jesse [50]), FRC thin plate and textile
fiber mesh (Brameshuber et al. [34]), textile fiber in concrete matrix (Hund [85])

detailing of a given structure; for instance, for cross sectional size of structural members
or orientation of fibers in composites. Due to their different complexities, the individual
classes of optimization have reached different stages of application. Sizing and material
optimization is still the most advanced class while shape optimization and in particular
topology optimization have been developed extensively and may already be standard
design tool today. Of course, some ideas are still in the developing phase.

In this study structural optimization is applied to fiber reinforced composites, specifically a
new composite material, Fiber Reinforced Concrete (FRC), often called Textile Reinforced
Concrete (TRC). The most widely used fiber reinforced composites are Fiber Reinforced
Polymers (FRP), where often long glass, carbon or aramid fibers are placed into a polymer
matrix leading to a good-natured ductile material. FRC differs from FRP in that the fibers
are placed in a fine grained concrete or mortar matrix, often as a reinforcement mesh
with a relatively low fiber content. Unlike conventional steel reinforcement, this kind
of textile fiber is corrosion free due to its high alkali-proof; this property allows for the
manufacturing of light-weight thin-walled composite structures, see Fig. 1.2. Nowadays
the developments of FRC with long textile reinforcement may be a major concern for that
long fibers oriented in the direction of tensile stress provide clearly higher strength than
randomly oriented short fibers. This new composite material has received attention in
civil engineering due to its great advantage and new possibilities involved.

However the critical aspect of this composite is that the structural response of FRC shows
brittle failure behavior due to material brittleness of both concrete and fiber in addition
to complex interfacial behavior between above constituents. Thus the failure mechanism
of FRC is highly complex, e.g. influenced by matrix cracking, slip of filaments in a roving,
debonding of fibers from matrix and breaking of fibers.

The specific characteristic of FRC is an ideal target for material optimization applying the
overall structural ductility as objective which ought to be maximized for a prescribed fiber
volume. For this objective it is of course not sufficient to base the optimization process
on a linear material model, so that it is mandatory to consider material nonlinearities.

The structural response of FRC strongly depends on many parameters, e.g. fiber size,
fiber length, fiber location/orientation, impregnation, surface roughness of fiber, and the
kind of fiber material itself.

For this case conventional material optimization applying ‘smeared-type elements’ is not
sufficient because this approach concentrates more or less simply on the fiber orienta-
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tion defined at each finite element and has less flexibility to deal with other parameters
mentioned above. Furthermore this approach often results in discontinuous fiber repre-
sentations between adjacent elements, namely incompatible fibers, which are unfavorable
to consider realistic structural behavior especially for nonlinear structural response.
Consequently, these two demands motivate the development of a new class of material
optimization schemes based on the material nonlinearities which can provide a design
flexibility.
However the development of material optimization encounters extra challenges underly-
ing in the modeling of fiber reinforced composites. One of the difficulties is the spatial
discretization. The thickness of fibers is in general very small and constant along the fiber
length; this requires ‘fine’ discretization if a conventional FE-mesh is used, and also pro-
vides a strict constraint to the thickness in the discretization process. Another difficulty
is on the evaluation of the interface model between two constituents. The analysis model
may become quite complex depending on the interface model adopted.
Unlike the well-developed ‘topology optimization’ or ‘shape optimization’, material opti-
mization is still in academic phase caused by these problems.

1.2 Scope and objective

The first objective of this thesis is to develop a potential new class of material optimization
scheme which can substantially improve the structural ductility of FRC. In the present
study the structural ductility means energy absorption capacity, which is measured by
integral of the area below the stress-strain curve along the entire structure. The design
variables investigated in this study are not only fiber orientation but also fiber size, fiber
geometry (fiber length, location) and combination of different fiber materials. In order to
consider the realistic structural response of FRC, the nonlinear failure behavior of matrix,
fiber, and interface is considered.
With respect to the selected design variables, the following three kinds of material op-
timization schemes are proposed, namely ‘multiphase material optimization ’, ‘material
shape optimization ’ and ‘multiphase layout optimization’.
Each method is briefly described as follows:

• Multiphase material optimization :
The task of the present methodology is to determine an optimal ‘multiple’ ma-
terial distribution over a prescribed design domain, denoted as ‘design element’,
for example a layer in the structure of Fig. 1.3. This methodology is strongly re-
lated to topology optimization, especially to the Solid Isotropic Microstructure with
Penalization of intermediate densities for a one-phase material, the so-called SIMP
approach (Bendsøe et al. [18]; Zhou & Rozvany [213]). Each finite element in the
design element has properties of a smeared material, depending on the ‘mixture’
of the constituents. Material parameters of the design element are controlled by
the volume fraction of the constituents. In this study, fiber length, fiber size, and
combination of different fiber materials are chosen as the design variables.

• Material shape optimization
The purpose of this methodology is to improve the structural ductility of FRC with
respect to ‘fiber geometry’ which is independent of the fixed Finite Element mesh.
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Figure 1.3: Concept of multiphase material optimization , (a) original and (b) optimized
structures
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Figure 1.4: Concept of material shape optimization , (a) conventional approach for fiber
orientation and (b) material shape optimization

This methodology makes it possible to represent ‘continuous long’ fibers by ap-
plying a so-called embedded finite element formulation, which are more physically
realistic than discontinuous fiber distributions resulting from the application of a
conventional material optimization scheme, see Fig. 1.4. The fiber geometry is ap-
proximated by continuous functions such as Bézier-splines; the coordinates of control
points of the functions are chosen as design variables. Therefore, this methodology
is based on shape optimization.

• Multiphase layout optimization
The purpose of the third methodology is to determine not only optimal fiber geome-
try but also fiber size or the kinds of fiber materials simultaneously for a prescribed
fiber volume. This method is achieved by combining multiphase material opti-
mization and material shape optimization . In material shape optimization strict
restrictions are present in the design process, e.g. each fiber size is invariant and
the number of fiber does not change during optimization process. These restrictions
may lead to an unexpected local minimum, which is a consequence of the underly-
ing non-convex optimization problem. As a result structurally ‘unexploited’ fibers
may appear in the final optimal design, see Fig. 1.5 (a). The present methodology
improves this problem by varying each fiber size. The size of structurally signifi-
cant fibers becomes larger while the unexploited fibers may result in ‘zero-thickness’
which does not have any mechanical property. Consequently, this method may elim-
inate the unexploited fibers from the final optimal structure and provides a more
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Figure 1.5: Concept of multiphase layout optimization, (a) material shape optimization
and (b) multiphase layout optimization

consistent design than material shape optimization.

Second focal point is how the nonlinear structural response of FRC is considered in sen-
sitivity analysis. A large amount of research effort has been devoted to the development
of optimal design process for structural problems with linear structural response. This
is mainly due to the fact that most often structures have been designed and used in
a linear elastic range. However increasing attention to the use of new materials having
nonlinear properties and the design requirement for structures to survive under severe con-
ditions urge the development of optimal design processes considering nonlinear structural
response.
Nonlinear structural response is often distinguished between path-independent and path-
dependent problems. In general if structural response is path-dependent, its sensitivity
analysis also has to be path-dependent. For example path-dependent sensitivity analysis
is discussed using plasticity models. In this study path-dependent sensitivity analysis is
utilized for a damage model. The difference between damage and plasticity models in
sensitivity analysis is also described.

1.3 Outline

The present thesis consists of nine chapters and each chapter is headed by general intro-
ductory remarks which include a summary of relevant literatures. The text is organized
mainly by four parts.
In the first part, the fundamentals of structural optimization are introduced, where the
general formulations of optimization model, design model, analysis model, and sensitivity
analysis are described (chapter 2). In chapter 5 the description of sensitivity analysis for
a materially nonlinear problem is shown. In particular the derivation of sensitivities for
a damage model is extensively discussed; this assists the comprehension of the complex
sensitivity analyses involved in chapters 6 to 8.

In the second part, the characteristics of textile reinforced concrete and its modeling are
presented (chapter 3). Firstly, the applied material models are introduced. Secondly,
the representation of reinforcement for fiber reinforced composites is discussed, where the
following three kinds of formulations are introduced, a discrete reinforcement element, a
smeared element, and an embedded reinforcement element. The discrete reinforcement
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formulation is used in chapter 6 and the embedded reinforcement element is applied in
chapters 7 and 8, respectively. As the embedded reinforcement element is based on a
specific assumption, its description is given in sections 3.4 and 3.5. Some details are shifted
to the Appendix A, e.g. the transformation matrices relevant to the fiber orientations and
the linearization of the model.

In the third part, design variables for the present optimization problem are discussed
(chapters 4). As mentioned in the previous section, the structural response of FRC
depends on several kinds of parameters. Thus it is very important to identify influential
key parameters on the structural response of FRC before starting a detailed optimization.
The selected key parameters are to be used as design variables for the present optimization
problem.

Three kinds of material optimization schemes as defined above are proposed in the final
part. In chapter 6 multiphase material optimization is presented, where the basic concept
and the corresponding sensitivity analysis are described. In chapter 7 material shape
optimization is mentioned, where special attention is paid to the concept of global layout
of fiber geometry and the procedure to define the fiber geometry. In chapter 8 multiphase
layout optimization is introduced, in which the basic idea of this method and the procedure
to combine the aforementioned two optimization methods are described. In these three
chapters, the performance of the proposed methods is demonstrated by corresponding
numerical examples and advantages and disadvantages of each scheme are shown.
A final valuation of the thesis’ content and a perspective on future work concludes the
thesis in chapter 9.



Chapter 2

Fundamentals of structural
optimization

2.1 Introduction

Mechanical principles are usually applied to determine the structural response, for ex-
ample deflections and stress states, while loads, boundary conditions, and geometry of
a structure, i.e. topology and shape, are given. However the mechanical laws can also
be used to determine the conceptual layout (topology) and shape of a structure for a
prescribed structural response. This inverse method is called structural optimization.

Problems of optimal design can be traced back to the origins of structural mechanics. In
1638 Galileo Galilei (1564-1642) already dealt with an optimum shape of cantilever beams
in his famous “Discorsi” (Szabo [188]).

For the early developments of structural optimization, the first analytical work was done
by Maxwell [121] in 1895, followed by the better-known work of Michell [126] in 1904.
These two works introduced theoretical lower bounds on the weight of trusses. These
early developments considerably influenced the subsequent researches of optimization.
Afterwards, a very important generalization was made by Prager [145] and Rozvany &
Prager [164]. These studies introduced a methodology based on optimality criteria using
an analytical procedure (see Rozvany et al. [165]).

However few academic optimization problems can be analytically solved. Therefore, today
numerical methods are applied to approximate the optimization solution. This method-
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Figure 2.1: Numerical modeling
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ology is based on a discretization of the design function s(x) and the structural response,
e.g. displacements u(x)

s (x) ≈ sh (x) = sh (x, ŝ) ; u (x) ≈ uh (x) = uh (x, û) . (2.1)

The vectors ŝ, û are discrete variable parameters of piecewise smooth approximations sh

and uh. According to the discretization three numerical models can be distinguished (see
Fig. 2.1),

• Optimization model:
The original continuous problem is formulated as a parameter optimization problem
based on the following design and analysis models. The set of problem is defined
by objective function, constraints, and design variables.

• Design model:
The design model provides a connection between the optimization model and the
following analysis model. Geometry or material properties of a structure are in-
terpolated by numerical schemes. Based on a spatial discretization, the material
properties or shape is approximated by local shape functions. For example, param-
eters of the shape functions such as coordinates of control nodes of splines are the
typical optimization variables ŝ for shape optimization.

• Analysis model:
In structural optimization the finite element method is most often applied to de-
termine the structural response û and to evaluate the mechanically oriented design
criteria, e.g. objective function and constraints. The calculation of sensitivity, i.e.
the gradients with respect to design variables ŝ, is of utmost interest.

The optimization problem is in general nonlinear in ŝ and û. Thus the optimization
solution is obtained by iterative methods. However most often the structural response
û is already determined within the analysis model in terms of efficient finite element
procedures. In this case, the state variables û are eliminated in the optimization problem
and the optimization only determines the optimization variables ŝ.
Optimization algorithms are applied at the final stage after each structural analysis in
order to obtain a new set of design variables. The optimization problems are solved
by numerical methods depending on the characteristics of the problems. The following
sections are devoted to further explanations for the above three models.

2.2 Optimization model

2.2.1 General

An optimization problem can be generally formulated as follows,

min f (ŝ) ; f (ŝ) ∈ R

h (ŝ) = 0 ; h (ŝ) ∈ Rnh

g (ŝ) ≤ 0 ; g (ŝ) ∈ Rng

ŝ = {ŝ ∈ Vs | ŝL ≤ ŝ ≤ ŝU }

(2.2)
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where f (ŝ) is objective function, h (ŝ) , g (ŝ) are equality constraints and inequality con-
straints, respectively. The upper and lower bounds of the optimization variables ŝ are
denoted by ŝU and ŝL. One can distinguish between a discrete optimization problem,
where only discrete values of optimization variables can be accepted (Vs ⊂ Zns), and a
continuous problem (Vs ⊂ Rns).
The optimization problem is called linear programming if all equations in Eq. (2.2) are
linear in ŝ, while it is called nonlinear programming if the objective function or the
constraints or both contain nonlinear parts.
Whether or not the design criteria are smooth with respect to optimization variables ŝ
is a significant distinction. The smooth optimization problem is reduced to a system
of nonlinear equations in ŝ which can be solved by mathematically or mechanically ori-
ented optimization algorithms, such as mathematical programming or optimality criteria
methods, i.e. gradient-based methods.
Non-smooth (discrete) optimization problems, like integer problems, can be solved by
stochastic schemes such as evolutionary strategies or genetic algorithms, i.e. gradient-free
methods.
All optimization problems introduced in the present study are categorized as nonlinear
smooth constrained optimization problems. For the basic knowledge to solve linear and
nonlinear constrained problems it can be referred to the books by Gill et al. [64], Kirsch
[96] and Haftka et al. [68].

Notion of local and global minima

In constrained optimization problems the feasible domain of optimization variables is
determined by the existing constraints. Fig. 2.2 (a) shows a simple situation of a con-
strained problem with two optimization variables. In general the global minimum under
a constrained problem differs from that of the unconstrained problem. In many cases the
optimization problem shown in Eq. (2.2) may have several local minima. Existence of
a single global minimum could be assured only under special circumstances. Most often
the local and global minima stay on the boundary of the active constraints. The local or
global minima are mathematically determined by the important necessary conditions for
optimality, so-called the Karush-Kuhn-Tucker (KKT) conditions, often only referred to
as Kuhn-Tucker conditions.

Lagrangian function and Kuhn-Tucker conditions

The necessary conditions for a minimum of the constrained problem are obtained by
applying the Lagrange multiplier method. The Lagrangian function is defined as follows,

L (ŝ,η,γ) = f (ŝ) + ηTh (ŝ) + γTg (ŝ) → stationary. (2.3)

The vectors η ∈ Rnh and γ ∈ Rng are defined as the Lagrange multipliers. The station-
ary value of Lagrangian function L (ŝ∗,η∗,γ∗) stays at a saddle point in (ns + nh + ng)
dimensional space,

L (ŝ∗, η, γ) ≤ L (ŝ∗, η∗, γ∗) ≤ L (ŝ, η∗, γ∗) . (2.4)

For the variables of the Lagrangian function, ŝ is called the primary variable and η, γ the
dual variables. The necessary Kuhn-Tucker conditions for the saddle point are derived
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from the partial derivative of the Lagrangian function with respect to the primal and
dual variables. If ŝ∗ is a local minimum, then there exist the vectors of the Lagrange
multipliers η, γ such that

∇sf (ŝ∗) + ηT∇sh (ŝ∗) + γT∇sg (ŝ∗) = 0

h (ŝ∗) = 0

γ∗j gj (ŝ
∗) = 0 with gj (ŝ

∗) ≤ 0, γ∗j ≥ 0 .

(2.5)

Since g (ŝ∗) ≤ 0 and γ∗ ≥ 0 it follows that if the j-th inequality constraint gj (ŝ
∗) is

non-zero then the corresponding γ∗j is zero. Any component of g (ŝ∗) which is zero is said
to be an active constraint function at ŝ∗. The geometrical interpretation of the Kuhn-
Tucker conditions is illustrated in Fig. 2.2 (b) for the case of two constraints. ∇sg1, ∇sg2

denote the gradients of the two constraints g1, g2 and are orthogonal to the respective
constraint surfaces. Here ∇s ( • ) (= ∂ ( •) /∂s) is the partial derivative with respect to
an optimization variable ŝi, regarding other variables ŝk for k �= i as constants. s in the
denominator of the partial derivative is the abbreviation for ŝi. ŝ denotes a component
of the design variable vector ŝ and is equivalent to ŝi. s except the above abbreviation
stands for a design function in this study.
The negative gradient of objective function, i.e. (−∇sf) is defined by the linear combina-
tion of the gradients of the active constraints ∇sg1, ∇sg2 for γ∗j ≥ 0. If the Kuhn-Tucker
conditions are satisfied at the saddle point, it is impossible to find any direction which
can further reduce the objective value f without violating the constraints.
The sufficient condition for a local minimum requires the second derivatives of the La-
grangian function. Assuming that f, h, and g are twice differentiable functions with
respect to ŝ, the sufficient condition for optimality is that the Hessian matrix of the
Lagrangian function is positive definite:

ṽT∇2
sLṽ > 0 ;

{
ṽ ∈ Rns | ṽ �= 0, ṽT∇sh = 0, ṽT∇sgj = 0 with γ∗

j ≥ 0
}
.
(2.6)

In some cases the necessary conditions are also sufficient for optimality. This is the case
that the objective function and the inequality constraints are continuously differentiable
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Figure 2.2: (a) Notion of local and global minima and (b) Kuhn-Tucker conditions
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Figure 2.3: Classification of functions and feasible domains on convexity, (a) convex
function, (b) non-convex function, (c) convex domain, (d) non-convex domain

convex functions and the equality constraints are linear functions. This is the so-called
convex optimization which guarantees any local minimum to be a global one. If a non-
convex equality constraint is present, then it always defines a non-convex feasible domain
for the problem, i.e. this case is not a convex optimization problem (Kirsch [96]). In
order to assist the above explanation the convex/non-convex functions and domains are
visualized in Fig. 2.3.

2.2.2 Optimization method

Despite the variety of optimization strategies, it is possible to classify these strategies into
the several groups. The traditional classification of optimization methods can be shown
by referring to Venkayya [193] and Kirsch [96] as follows:

• Mathematical Programing (MP) methods

• Optimality Criteria (OC) methods

• Stochastic methods

The MP and OC methods are widely used for smooth optimization problems while the
stochastic methods are often applied for non-smooth ones, such as integer optimization
problems. The first two schemes are often called the gradient-based methods and the other
is the gradient-free scheme. This classification can be quite nebulous because there can
be a great deal of overlapping. For instance, the MP methods include linear, nonlinear,
geometric and integer programming methods.
The stochastic methods, e.g. the evolutionary strategies, simulated annealing or genetic
algorithms, incorporate probabilistic (random) elements, either in the problem data (ob-
jective function, constraints) or in the algorithm itself, see Rechenberg [151].
As mentioned in section 2.2.1, the present thesis deals with nonlinear smooth constrained
optimization problems. Therefore, the methods discussed in this section are devoted to
the gradient-based schemes.
First of all, the MP methods to solve nonlinear constrained structural optimization prob-
lems are described. The first work using the nonlinear MP method for constrained prob-
lems was introduced by Schmit [170] in 1960. Since then, many solution methods have
been developed. The nonlinear MP methods for constrained problems can be categorized
into indirect and direct approaches. Indirect approaches convert the problem first into
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an equivalent ‘unconstrained’ optimization problem in terms of Lagrange multipliers or
penalty parameters while direct approaches deal with the constrained formulation as it
is. The representative indirect methods are, for example, the exterior/interior penalty
function methods and the augmented Lagrange multiplier method. In the meanwhile
the direct methods often used are the feasible direction method, the dual method, the
gradient projection and reduced gradient methods. These methods were attractive due
to the generality and rigorous theoretical basis. However there was a drawback that the
application of the MP method was limited to relatively small optimization problems due
to its high computational efforts and time consumption.

One of the most efficient modern MP methods for constrained problems is the Sequential
Quadratic Programming (SQP) method (Schittkowski [169]). The SQP method employs a
quadratic approximation to the Lagrangian in this space and applies the direction seeking
algorithm. This method is more complex than other MP methods mentioned above,
however it is numerically efficient and improves the shortcoming of other MP methods to
a certain degree.

In the late 1960’s an alternative approach, called optimality criteria method (OC), was
presented in an analytical formulation by Prager & Shield [146] and in a numerical for-
mulation by Venkayya et al. [195]. The OC method is based on a rigorous optimality
criterion derived from the KKT conditions and on a heuristic resizing rule. This method
is numerically robust and shows the quick convergence. Furthermore, the OC method is
relatively independent of problem size. For these reasons, nowadays the OC method has
been applied in many fields of structural optimization. However it is pointed out that
the existing frame work of the OC method is limited to an optimization problem with
a single constraint (Sigmund & Torquato [177]). Although Yin & Yang [208] propose
an optimality criteria method which can deal with multiple constraints, it has not been
widely recognized yet. The other problem is that on occasion this optimization scheme
leads to a non-optimal solution. This problem arises especially when the constraint is a
non-monotonic function with respect to optimization variables. A review for OC methods
is given by Venkayya [193], [194] and the limitation of OC methods is discussed in Patnaik
et al. [136].

Another alternative approach is the Method of Moving Asymptotes (MMA) developed by
Svanberg [183] in 1987, which can be classified as an advanced MP method. The MMA
is based on a special type of convex approximation and can deal with relatively large-
scale optimization problems. The approximation of objective function and constraints
is achieved in terms of asymptotes. This method can handle non-monotonic constraints
unlike the OC method.

Here, the three nonlinear optimization methods mentioned above are compared from a
practical point of view. The SQP method has a certain generality even for complex op-
timization problems. However this method needs certain computational efforts to obtain
optimum solutions compared to the OC method and the MMA.

The OC method is numerically the most robust scheme and shows a quick convergence.
This method can deal with a large number of design variables. However the constraint is
generally limited to a single linear or monotonic nonlinear equality constraint. Therefore,
this method is often used for conventional topology optimization with a single equality
constraint.

The MMA is a flexible scheme in that it can give reliable optimum solutions even for a
optimization problem with non-monotonic constraints. This method can also deal with
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a relatively large number of design variables (Duysinx et al. [55]). Compared to the
OC method, the optimization convergence may be slow and less reliable for the optimum
solution of large-scale optimization problems.
In this study the OC method is used to solve the optimization problems described in
chapters 6 and 7 and the MMA is employed in chapter 8.

Optimality criteria method

OC methods can be grouped into physical (or intuitive) OC methods and mathematical (or
rigorous) OC algorithms. A physical OC method applies explicit recurrence relations for
redesign based on approximate expression of the constraints in terms of design variables.
The mathematical OC method is more general and flexible than the physical one. It is
based on the KKT conditions of optimality Eq. (2.5) with a heuristic resizing rule. The
solution ŝ of the mathematical OC method is searched in (ns + nh + ng)-dimensional
space with the iterative rules,

ŝ(k+1) = Ys

(
ŝ(k),η(k),γ(k)

)
; Ys ∈ Rns (2.7)

and the Lagrange multipliers η, γ for the active constraints,

η(k+1) = Yη

(
ŝ(k),η(k),γ(k)

)
; Yη ∈ Rnh

γ(k+1) = Yγ

(
ŝ(k),η(k),γ(k)

)
; Yγ ∈ Rng, active

(2.8)

The index k indicates the actual iteration step in an optimization process. This iteration
scheme is modified if the actual optimization variables are bounded to the lower and upper
values, i.e. ŝL and ŝU, or are exceeding the step length defined by the maximum allowable
step size ᾱ during iteration procedure,

ŝ(k+1) : ŝL ≤ ŝ(k) (1 − ᾱ) ≤ Ys

(
ŝ(k),η(k),γ(k)

)
≤ ŝ(k) (1 + ᾱ) ≤ ŝU. (2.9)

This iteration is continued until the norm of gradient of Lagrangian function or the change
of objective value becomes less than a prescribed tolerance ε̄ , i.e.

∥∥∇sL
(k)
∥∥ ≤ ε̄ or

∣∣∣∣ f(k) − f(k−1)

f(k)

∣∣∣∣ ≤ ε̄ . (2.10)

The OC method presented here follows basically the modified OC method described in
Maute [118]. For simplicity the optimization problem is reduced to a problem with a
single equality constraint.
Rearranging the KKT conditions Eq. (2.5) yields

∇sf + η∇sh = 0 → η = −∇sf

∇sh
. (2.11)

In the KKT conditions, the sign of the Lagrange multiplier η (scalar in this case) is
not restricted. However it must be positive in the resizing rule of the OC algorithms,
otherwise the optimization variables are not updated correctly. Taking a conventional
topology optimization problem for maximizing stiffness under a prescribed mass as an
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example, the signs of the gradient of the objective and the equality constraint are most
often expressed as ∇sf ≤ 0 and ∇sh > 0.
If both the objective function and the constraint are monotonic functions with respect to
the design variable, η > 0 is always satisfied. However η > 0 may not be satisfied if either
the objective function or the equality constraint is non-monotonic. In order to overcome
this problem the shift factor � is introduced.
Assuming a case that ∇sf ≥ 0 occurs during optimization and ∇sh > 0 is held, Eq. (2.11)
can be rewritten in term of the shift factor � as follows

(∇sf − �∇sh) + (η + �)∇sh = 0 . (2.12)

The shift factor is determined such that the term in the first parenthesis turns out to be
negative. Eq. (2.12) can be simply reformulated

∇sf̃ + η̃∇sh = 0 ; f̃ = f − �h and η̃ = η + � , (2.13)

where η̃ > 0 is satisfied. Note that Eqs. (2.12) and (2.13) are equivalent to the original
KKT conditions Eq. (2.11). Therefore, Eq. (2.13) is applicable without loss of generality
for optimality of the KKT conditions.

From here, a recurrence formulation for optimization variables and the constraint is in-
troduced. For simplicity, a power law algorithm is introduced as follows

ŝ
(k+1)
i = ŝ

(k)
i

[
Ỹ(k)

si

]q
; i = 0, ..., ns , q ∈ R (2.14)

Ỹ(k)
si

= − ∇sf̃
(k)

η̃(k)∇sh(k)
; Ỹ(k)

si
> 0 (2.15)

where q is a step size parameter. Other recurrence algorithms are also applicable, e.g.
a linear formulation used in Maute [118] or an inverse approximation of an exponential
formulation introduced in Ma et al. [114], [115], [116].
The approximation of an equality constraint is expressed by the linearization with respect
to the primal variable, giving

h(k+1) = h(k) + (∇sh)(k)T
(
ŝ(k+1) − ŝ(k)

)
= 0 . (2.16)

Inserting Eq. (2.16) into Eq. (2.14), the Lagrange multiplier is expressed as follows

(
η̃(k)
)q

=

[
(∇sh)(k)T ˜̃Y

(k)

s

]
�
[
(∇sh)(k)T ŝ(k) − h(k)

]
, (2.17)

˜̃Y
(k)

si
= ŝi

[
−∇sf̃

(k)

∇sh(k)

]q

= ŝi

[
�(k) − ∇sf

(k)

∇sh(k)

]q
. (2.18)

The OC method is useful for the simple case such as ∇sf ≤ 0 and ∇sh > 0 and for special
case in which the sign of ∇sf changes, i.e. ∇sf � 0 and ∇sh > 0.
However the OC method may turn to be not useful for a problem with a non-monotonic
constraint since the sign of constraint changes during optimization; then it is not guaran-
teed for η̃ always to be positive. This results in one of the limitations of the OC method.
Despite it, the OC method would be still useful if the magnitude of the nonlinearity of
the equality constraint is moderate.
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Method of moving asymptotes

The MMA is a gradient-based algorithm which generalizes the Conlin scheme (Fleury &
Braibant [59]). It holds the conservative approximation which implies that all intermediate
solutions lie in the feasible domain of the original problem (Kirsch [96]), see Fig. 2.4 (a).
The conservative approximation has the advantage of being a convex approximation and
giving a closer solution to the theoretical optimum ŝ∗global.
This conservative approximation is achieved by introducing two sets of parameters, the
lower and upper asymptotes L

(k)
i and U

(k)
i , given

g̃j (ŝ) = gj

(
ŝ(k)
)

+
ns∑
+,i

pij
(k)

(
1

U
(k)
i − ŝi

− 1

U
(k)
i − ŝ

(k)
i

)

+

ns∑
−,i

qij
(k)

(
1

ŝi − L
(k)
i

− 1

ŝ
(k)
i − L

(k)
i

)
(2.19)

with

pij
(k) =

(
U

(k)
i − ŝ

(k)
i

)2 ∂gj

(
ŝ(k)
)

∂s
if

∂gj

(
ŝ(k)
)

∂s
> 0 , (2.20)

qij
(k) = −

(
ŝ
(k)
i − L

(k)
i

)2 ∂gj

(
ŝ(k)
)

∂s
if

∂gj

(
ŝ(k)
)

∂s
≤ 0 , (2.21)

where j = 0, .., ng and g0 denotes the objective function, i.e. g0 ≡ f. The symbols
∑

+,i

and
∑

−,i indicate the summations over terms having positive and negative first order

derivatives. pij
(k) and qij

(k) are coefficients and only one of them is used in the approxima-

tion according to the sign of the first order derivative ∂gj

(
ŝ(k)
)
/∂s. The ns asymptotes

L
(k)
i and U

(k)
i are also updated according to the following heuristic rules,

Li
(k) = ŝ

(k)
i − α̃i

(
ŝ
(k−1)
i − L

(k−1)
i

)
, (2.22)

Ui
(k) = ŝ

(k)
i + α̃i

(
U

(k−1)
i − ŝ

(k−1)
i

)
, (2.23)

where the parameter α̃i is calculated based on the variation of the corresponding design
variable ŝ

(k)
i . Figure 2.4 (b) visualizes an approximate function defined at the current

design variable ŝ
(k)
i for the situation ∂gj

(
ŝ(k)
)
/∂s < 0.

The original implicit optimization problem Eq. (2.2) is reformulated into a so-called ex-
plicit subproblem based on the approximate functions, giving

min g̃0 (ŝ)

g̃j (ŝ) ≤ 0 ; j = 1, ..., ng

Li ≤ β
i
≤ ŝi ≤ βi ≤ Ui.

(2.24)

This subproblem is solved by the dual method in terms of its Lagrangian function. The
parameters β

i
and βi are called ‘move limits ’ which are explicitly determined. The move
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Figure 2.4: (a) Conservative approximation, (b) approximate function g̃j at the design

variable ŝ
(k)
i

limits β(k)

i
and β

(k)

i are dealt with as the candidates for the new optimization solution,

i.e. ŝ
(k+1)
i .

Finally, the optimization variables ŝ are updated according to the signs of gradient of
the Lagrangian function with respect to ŝi. For the detailed algorithms it is referred to
Svanberg [183].

In original MMA by Svanberg [183], the same asymptotes are used for all the ng + 1 design
functions g̃j. This definition sometimes lacks the necessary flexibility of adjusting the
approximation to each design function since the approximate function g̃j is fundamentally
steep especially on the region close to the asymptote Li or Ui. In order to achieve more
flexible and also accurate approximations, several modified methods have been introduced,
for example, by Svanberg [184], [185], Bletzinger [22], Bruyneel et al. [37], and Bruyneel
& Duysinx [36].

2.3 Design model

The design model provides a connection between the abstract formulation in the opti-
mization model Eq. (2.2) and the physical structural problem in the analysis model. In
order to link above two models, geometry or material properties of structures have to
be formulated in terms of optimization variables. As briefly mentioned in section 1.1,
topology, shape, and sizing optimization can be understood to be a tool in order to ob-
tain the optimal geometry of a structure. These optimization tools including material
optimization are related hierarchically to each other. Material optimization has a wide
variety depending on the definition of design variables and its methodology often can be
derived by applying the basic concepts of topology or shape optimization. For example,
the methodology proposed in chapter 6 is derived from conventional topology optimiza-
tion and that introduced in chapter 7 from shape optimization, respectively. Therefore in
the present section topology and shape optimization are briefly introduced.
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2.3.1 Topology optimization

Topology optimization, sometimes called generalized shape optimization, means ‘varying
the connectivity’ between structural members of discrete structures or between domains
of continuum structures.

Most of the early developments of topology optimization are based on the so-called dis-
crete ground-structure approach (see Rozvany et al. [163]). Due to the lack of manifold
(no other elements are applicable except truss or beam elements) a continuous topology
optimization approach has gained substantial interest.

Continuous topology optimization can be subdivided into geometrical and material ap-
proaches, see Fig. 2.5 (a), (b). In the geometrical approach, inserting small holes changes
the topology of a structure, e.g. a heuristic approach (Rosen & Grosse [160]) or ‘bubble
method’ (Eschenauer et al. [57]). The main difficulty of these methods comes up when
holes must be generated in a continuum structure. This leads to a violation of the contin-
uum assumption and a non-differentiable step in optimization procedure (Eschenauer &
Olhoff [58]). Recently, more advanced geometrical methods are introduced, for example,
by Allaire et al. [3], Luo et al. [113] and Rong et al. [159]. These methods apply the level
set functions for defining the boundaries between void and solid in a structure. Ruiter
[166] proposes a similar scheme using the level set method, denoted as topology descrip-
tion function approach. In this method a number of base functions are superimposed to
define one geometrical function which separates a structural domain between void and
solid using a cut-off level. For other approach Sokolowski & Zochowski [180] introduce
a new method in which shape functionals are approximated by the so-called ‘topological
derivatives’. However this kind of geometrical approach is still academic. Therefore, the
predominant number of topology optimization methods use the material approach.

In material topology optimization the geometry of the structure is described by “0-1”
material distribution in a given design space Ωs (Fig. 2.5 (b)). This leads to an indicator
function χ (x):

χ (x) =

{
0 → no material : ∀ x ∈ Ωs\Ωm

1 → material : ∀ x ∈ Ωm.
(2.25)

The body is defined by the set Ωm of all material points x with χ (x) = 1. The topology
optimization problem is to find the indicator function χ (x) which minimizes an objective
subjected to constraints. Thus, it is often called a material distribution problem.
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Figure 2.5: Continuous topology optimization, (a) geometrical description (b) material
description (c) ill-posed “0-1” optimization
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In general, material topology optimization cannot be solved analytically. Applying the
numerical approach in terms of a standard finite element discretization, the indicator
function χ (x) and the displacements u are approximated.
However “0-1” formulation leads to an integer optimization problem, where the material
distribution problem suffers from lack of existence of solutions. This is a so-called ill-
posed non-convex problem. In order to cure this numerical shortcoming, a regularization
of the problem formulation is required. For this problem, many investigations have been
performed already in the early times, for example, Armand & Lodier [4], Cheng & Olhoff
[41], Olhoff et al. [132].
Kohn & Strang [101] eventually developed mathematically rigorous methods to solve this
kind of ill-posed material distribution problem by combining three disciplines, i.e. struc-
tural optimization, relaxation of non-convex functionals, and homogenization of micro-
structured materials. Consequently, this approach had a significant impact on the devel-
opments of material model considering a physical material behavior on the microscopic
level.
The first material model is a so-called periodically structured rank-n laminates (e.g.
Francfort & Murat [61]). Up to now, only this model can provide exact regularization in
the microscopic approach. However the rank-n laminates model becomes quite complex
especially for multiple load cases and is theoretically restricted to compliance or eigenfre-
quency optimization problem. Therefore, Ringertz [157] and Bendsøe et al. [16] propose
to vary directly the coefficients of the material tensor on a macroscopic level without any
microscopic material model.
It is also mentioned in Ramm et al. [149] that although the rank-n laminates model leads
to optimal material distribution, it remains a large amount of porous material (0 < ρ < 1).
The optimum topology of a structure built up of one homogeneous material can hardly be
determined. Therefore, material models with non-optimal properties are often used, like
the hole-in-cell microstructures by Bendsøe & Kikuchi [17] or the macroscopic approach,
Solid Isotropic Microstructure with Penalization of intermediate densities, called SIMP
approach by Zhou & Rozvany [213], Bendsøe [14], Bendsøe et al. [18]:

E (ρ) =

(
ρ

ρ0

)η

E0 ; ρ = {ρ ∈ R | 0 < ρ ≤ ρ0} ; η = {η ∈ R | η ≥ 1} (2.26)

where E denotes the effective Young’s modulus. The density ρ is the optimization variable
and η plays the role of a penalization factor without a physical meaning, see Fig. 2.6. The
index ‘0’ marks the properties of the isotropic homogeneous material. These models
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Figure 2.6: Representation of SIMP approach
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lead to a more or less clear “0-1” material distribution in design space. However since
these models do not correctly regularize the original integer problem the optimization
results depend on the discretization of the design space. The SIMP approach is simply
the conceptual method applicable only for the macroscopic isotropic material. Therefore,
this simple approach is extended to a macroscopic orthotropic model by Maute & Ramm
[119], in which the mesh dependency of SIMP method is clarified. For all non-optimal
material models, additional methods, like the perimeter method by Haber et al. [66] or
the filtering techniques by Sigmund [175], are necessary in order to obtain numerically
stable optimization results.

2.3.2 Shape optimization

The method of shape optimization determines the detailed shape of edge surfaces, namely
internal and external boundaries, of a continuum structure without changing the topology
of the structure.

In shape optimization the change of geometry can be basically represented by the following
three main approaches. The first method is introduced by Zienkiewicz & Campbell [214],
where the positions of FE-nodes x̂e in FE-model are directly controlled as the design
variables. However this approach often leads to numerical instability due to the distortion
of finite elements (Kikuchi et al. [95]). The second is a scheme to determine the optimal
shape in terms of a set of fictitious loads (Belegundu & Rajan [11]; Weck & Büßenschütt
[200]). In this method the displacements produced by the fictitious loads are added
onto the initial mesh to obtain the new shape or inner FE-grid location. However this
approach turns to be inflexible when a geometrical constraint is subjected to FE-nodes x̂e.
The third one is a method which is called computer aided geometrical design (CAGD).
Like the finite element methods, this method divides a structure into pieces called design
elements, by which the shape of boundaries of a structure is approximated. This means
that often only a small number of design elements are necessary to define the total shape.
In this method the positions of control nodes of design elements are design variables in
the optimization process, e.g. Imam [86], Braibant & Fleury [33], Bennett & Botkin [20].

Nowadays, CAGD is the standard tool in many pre-processors and shape optimization
procedures. The basic concept of this method is extensively discussed in the literature,
e.g. Böhm et al. [30] and advanced techniques are also introduced in Höllig [80].

However shape optimization using CAGD is in general applied only for small design
modifications in a relatively late stage of product development. In order to make use
of the efficiency of shape optimization from early design stages, so-called ‘CAGD free
optimization’ methods have been developed. In the methods the finite element nodes are
taken as design variables and mesh regularization algorithms are applied for the obtained
optimal but distorted structure. Recently one of the successful algorithms is introduced
by Bletzinger et al. [25], in which ‘minimal surface regularization (MSR) derived from
form finding strategy is described assuming membrane structures.

Taking requirements for the present research into account, CAGD methods are used in
this study. The methods are applied to approximate the geometry of long continuous
fibers in chapters 7 and 8. For this the CAGD concept is briefly described in the following
assuming a one-dimensional design element for long continuous fibers.



20 Chapter 2. Fundamentals of structural optimization

(.�! ������� �! �!�(

%������ 3������" ! %���
��

�

�
'
-

�
'
(

�
'
) �

'
4

 
��
���

56��� 57����������
� 8�
��
��� �����

9(

9)

9���

� � -

	���

�(

�)

�
'
-

�
'
(

�
'
)�

'
4

�
'
:

�
'
;

�
'
<

�
'
= �

Figure 2.7: Design elements (Bletzinger [21])

CAGD-oriented geometrical modeling

The shape of a structure can be represented by the segments of design elements. Within
each design element, the resulting shape x is parameterized in terms of shape function Φ,
giving

x : ϑ → x (ϑ) =

nj∑
j=1

Φj (ϑ) x̂j ; ϑ ∈ R1,2 (Ωϑ) → x ∈ R3 (Ωx) . (2.27)

The index j indicates the number of design nodes (control nodes) which define a design
element. x̂j denotes the coordinate of the j -th control node and ϑ is the local coordinate
of the design element, respectively. The resulting shape x (ϑ) is the position vector of a
material point which is defined by the subspace Ωϑ. In Fig. 2.7 selected shape functions
are introduced. Bézier splines are often used for shape optimization due to their simplicity
but a change of one coordinate of a control node influences the entire shape of the design
element. B-splines offer more flexibility because a change of one control node influences
only a local part of the structure. Recently a generalization of both Bézier and B-splines,
the so-called NURBS (Non-Uniform Rational B-Spline), have received special attention
due to their flexibility and precision for handling both analytical and free-form shapes.
The choice of a type of design element depends on the geometrical properties of the
structure.
In many cases, the coordinates of control nodes x̂ are also parameterized by variables on
a lower level for practical reasons and in turn these variables are considered as design
variables ŝ,

x̂ = x̂0 + Lsŝ , (2.28)

where x̂0 is the current position vector of control nodes and Ls denotes a matrix to relate
the optimization variables ŝ to the design parameter x̂. The matrix Ls also plays a role in
reducing the number of design variables when some control nodes are coupled or related
to other control nodes based on a prescribed geometrical rule. This is called variable
linking.
The further basic description of shape optimization is referred to, for example, Ramm
et al. [147], Bletzinger [21], Bletzinger et al. [26], Zhang & Belegundu [212], Haftka &
Grandhi [67], and Hinton et al. [77].
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2.4 Analysis model

In structural optimization, the design criteria generally depend on the structural response.
The structural response, of course, depends on the optimization variables. The calculation
of this dependency on optimization variables is called ‘sensitivity analysis’.
In analysis model, the following four tasks are carried out.

(a) mechanical modeling of a structure

(b) calculation of structural response for the actual design ŝ

(c) update of objective function and constraints

(d) calculation of sensitivity of objective function and constraints

First of all, the mechanical modeling of a structure must be determined according to the
characteristics of the structure, e.g. boundary conditions, element types, material models
and kinematic assumption.
For the task (b), the predominant finite element method (FEM) is applied. Other method
such as the boundary element method (BEM) is not used so often in structural optimiza-
tion. The fundamentals of structural analysis applying the FEM are given in section
2.4.1.
Once the structural analysis is executed, the objective value and constraints can be eval-
uated in terms of the structural response obtained, e.g. stresses and strains. The repre-
sentative design functions are introduced in section 2.4.2.
Sensitivity analysis requires close attention in order to achieve the reliable optimal solu-
tion, where suitable choice of sensitivity formulation is essential. Taking the importance
and also complexity of sensitivity analysis into account, section 2.5 is specially devoted
to the detailed explanation for sensitivity analysis.

2.4.1 Finite element analysis

The present study deals with fiber reinforced composites under materially nonlinear and
geometrically linear conditions. The detailed explanation of the modeling and finite ele-
ment procedures for the composites applying a damage formulation is devoted to chapter
3. Therefore, this section summarizes only the fundamentals of a nonlinear finite element
analysis.
For deeper comprehension of linear/nonlinear solid mechanics and finite element analysis,
several excellent books have been published. The books by Zienkiewicz & Taylor [215] and
Bathe [10] provide basic knowledges of finite element analyses and also useful introductions
to nonlinear finite element analysis. The books dealing mainly with nonlinear finite
element analyses are, for example, Crisfield [46], Zienkiewicz & Taylor [216]. The books
mainly devoting to nonlinear solid mechanics are Simo & Hughes [178], Holzapfel [81],
Bonet & Wood [32], and Belytschko et al. [12].

(i) Boundary value problem

If the data are independent of time, the problem is referred to as statics. For this case
nonlinear boundary-value problem (BVP) is established, i.e.
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div σ + b̂ = 0

u = û on Γu

t = σ · n = t̂ on Γσ

(2.29)

where σ is the Cauchy stress tensor and b̂ denotes the prescribed body force. u is the
displacement vector field. t denotes the Cauchy traction vector and n is unit vector
normal to the infinitesimal spatial surface.
The first row is the balance of linear momentum. The second and third rows denote
Dirichlet boundary conditions, which correspond to a displacement field u, and von Neu-
mann boundary conditions, which are identified physically with the surface traction t,
respectively. t̂ describes the prescribed surface traction force.

(ii) Principle of virtual work

In order to develop the weak form, the trial functions u and the test functions δu are
needed. Applying the fundamental theorem of calculus and some mathematical arrange-
ments, the principle of virtual work can be formulated as follows

δW (u, δu) ≡
∫
Ω

δε : σ dΩ

︸ ︷︷ ︸
δWint

−
∫
Ω

δu · b̂dΩ −
∫
Γ

δu · t̂ dΓ

︸ ︷︷ ︸
− δWext

= 0 ∀ δu , (2.30)

where ε denotes the strain tensor. δWint is the internal virtual work and δWext the
external virtual work, respectively. As can be seen in Eq. (2.30), no statement concerning
a particular material is invoked. Therefore, the principle of virtual work is applicable to
any material including inelastic materials.

(iii) Discretization

The discrete equations for a displacement finite element model are obtained from the prin-
ciple of virtual work by using finite element interpolations for the test and trial functions,
i.e.

u ≈ uh = Nd, δu ≈ δuh = Nδd : εh = Bd, δεh = Bδd (2.31)

where d denotes the nodal displacement vector and δd the virtual nodal displacement
vector, respectively. N and B are the shape function and B-operator, respectively. Note
that tensor notation used in Eq. (2.30) is replaced by the matrix notation.
Inserting Eq. (2.31) into Eq. (2.30) gives the discretized formulation of the principle of
virtual work,

δW (d, δd) =

nele⋃
e=1

δdT
(∫

Ω

BTσ dΩ

︸ ︷︷ ︸
f int

−
∫
Ω

NTb̂ dΩ −
∫
Γ

NTt̂ dΓ

︸ ︷︷ ︸
− f ext

)
= 0 ∀ δd , (2.32)
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where
⋃nele

e=1 symbolizes summation of nele number of finite elements. f int indicates the
internal force vector of an element and f ext the external one, respectively.

Considering the arbitrariness of the virtual nodal displacement δd, Eq. (2.32) is reformu-
lated into the following equilibrium condition,

Fint (d) − Fext = 0 : Fint (d) =

nele⋃
e=1

f int (d) and Fext =

nele⋃
e=1

f ext (2.33)

where Fint and Fext are the internal and external force vectors of the entire discretized
system.

For linear elastic problems Eq. (2.33) is expressed by the following linear algebraic equa-
tion

Kd = P (2.34)

with

K =

nele⋃
e=1

Ke =

nele⋃
e=1

∫
Ωe

BTCB dΩe , (2.35)

P =

nele⋃
e=1

Pe =

nele⋃
e=1

(∫
Ωe

NTb̂ dΩe +

∫
Γe

NTt̂ dΓe

)
, (2.36)

and ∫
Ωe

dΩe =

∫
Ωξ

|J|dΩξ ,

∫
Γe

dΓe =

∫
Γξ

|J̃|dΓξ . (2.37)

K denotes the linear stiffness matrix and P is the external nodal load vector. C is the
linear material stiffness matrix of an element. The subscript (•)e describes that the value
(•) is defined in the finite element space. |J| is the determinant of a Jacobian matrix,
which maps the local element domain ξ onto its global one. The metric |J̃| maps a line
or surface differential on the boundary.

(iv) Linearization

Eq. (2.33) is generally nonlinear in unknown nodal displacement vector d. In order to solve
the nonlinear equation, the reliable incremental/iterative solution technique of Newton’s
type procedure can be employed. This technique requires a ‘consistent linearization’ of
all the quantities associated with the considered nonlinear problem. Defining the residual
vector function R as the first step,

R(n) = Fint

(
d(n)
)
− Fext = 0 , (2.38)

where the index n denotes the iterative number for path-dependent structural analysis in
a load increment. For the next step, the linearization is formulated as follows,

Lin R(n+1) = R(n) +
∂R

∂d

∣∣∣
d(n) Δd(n+1) = 0 , (2.39)
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where Δd(n+1) = d(n+1) − d(n). Arranging Eq. (2.39) gives finally the expression of linear
equation, i.e.

K
(n)
T Δd(n+1) = −R(n) : K

(n)
T =

∂R

∂d

∣∣∣
d(n) (2.40)

where KT is called the tangent stiffness matrix. As can be seen in Eq. (2.40), the nonlinear
problem is replaced by a sequence of linear problems solved at each iteration.

2.4.2 Objective functions and constraints

The representative objective functions and constraints are shown in Fig. 2.8. The mini-
mizing ‘weight of structure’ is often applied for generating light-weight structures in terms
of topology optimization or section sizing optimization. This objective function is only
indirectly relevant to the structural response, e.g. stresses or strains.
The most popular objective function may be ‘maximizing stiffness’ of a structure, which
can be physically interpreted as ‘minimizing strain energy’ of a structure.
The more design requirements for structures to survive under severe or extreme conditions
are involved, the more attention to the objective ‘maximizing ductility’ has to be given.
The formulation of ductility shown in Fig. 2.8 means ‘maximizing energy absorption
capacity’ which is measured by the area below the stress-strain curve summed along the
entire structures. This study focuses on this objective.
Constraints are in general also formulated in a normalized format such as the normal-
ized design variables; otherwise unreliable optimization solutions may appear due to the
influence of different magnitudes of constraints and design variables.

2.5 Sensitivity analysis

2.5.1 Overview

Sensitivity analysis describes the change of mechanical behavior of deformed structures
based on the geometrical or material configuration of undeformed structures with respect
to a change of the design variables. The quality of the optimum solution may depend
on the accuracy of the sensitivity analysis. This tendency becomes distinct especially for
optimization problems assuming a nonlinear structural response.
In general the method of sensitivity analysis can be divided into the (global) finite differ-
ence method, the analytical method, and the semi-analytical method. The global finite
difference method derives the gradients of design functions with respect to the design
variables by a finite difference approximation. For example the gradient of objective f
with respect to a design variable ŝi can be approximated as follows

∇sf ≈ f (ŝ + Δs̃) − f (ŝ)

Δŝi

or ∇sf ≈ f (ŝ + Δs̃) − f (ŝ− Δs̃)

2Δŝi

with Δs̃j = δijΔŝi .

(2.41)
The first approximation in Eq. (2.41) is called a ‘forward difference’ and the second one
a ‘central difference’ scheme, respectively. This method is numerically robust and easy to
implement since the sensitivities are independent of the chosen finite element model.
However the value of sensitivity depends on the size of perturbations Δŝi and the resulting
truncation errors are not avoidable. Large and also too small perturbations Δŝi may
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Figure 2.8: Design criteria in structural optimization (Ramm et al. [148], Lipka [109])

provide unacceptable numerical errors. In addition, this method requires considerable
computational efforts because additional structural analyses have to be carried out for
the change of each design variable.
Therefore the analytical method is often used which provides an exact sensitivity and
is numerically efficient. The design functions in general depend on the design variables
ŝ defined in the design model and also on the deformation as the structural response
described in the analysis model (see Haber [65]). The structural response in turn depends
on the design variables; this leads to the following mathematical expression, for example
for the objective function f = f (ŝ, d (ŝ)).
Thus the gradient of design functions can be formulated as follows

∇sf = ∇ex
s f + ∇df

T ∇sd , (2.42)

where ∇ex
s (•) describes the explicit derivative with respect to the design variables. In

general the calculation of the explicit part can be derived in a straight forward manner.
The main effort of sensitivity analysis is the calculation of implicit part ∇sd, which is
derived in terms of the ‘equilibrium condition’. The equilibrium condition is in general an
‘energy-based formulation’ such as the principle of virtual work (PVW) in its incremental
or rate form.
In order to calculate the sensitivity efficiently, some kinds of analytical approaches were
developed depending on the type of optimization problems. The analytical method can
be subdivided into two branches; a discrete approach and a variational approach. In the
discrete method first the discretization of the equilibrium equation is carried out and then
the gradient of its discretized equation with respect to design variables is derived, while in
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the variational approach first the gradient of the equilibrium condition is formulated which
is subsequently discretized. The discrete approach seems to be easier to follow and more
straightforward to use than the variational approach. However the variational method is
advantageous since it offers great flexibility especially for the case that shape sensitivity or
nonlinear structural response is considered. Both the discrete and variational approaches
are further subdivided into a direct method and an adjoint method.
In this study the ‘variational analytical direct method’ is applied in chapter 6 and the
‘variational semi-analytical direct method’ is used in chapters 7 and 8. The basic principles
of the discrete and variational methods for linear elastic problems are described in the
following. Furthermore the semi-analytical method, which is somehow between the global
finite difference method and the analytical method, is also mentioned. Although the
adjoint scheme is not used in this study it is briefly explained.
The basic concepts for sensitivity analyses with underlying examples are given by Haftka
et al. [68]; for details it is referred to Kleiber et al. [99] and Haug et al. [72].

2.5.2 Discrete method

Recalling the discretized linear algebraic equation (2.34) together with the dependency of
the design variables ŝ yields to

K (ŝ)d (ŝ) = P (ŝ) , (2.43)

where K and P are assumed to explicitly depend on the design variable ŝ while d depends
on ŝ implicitly. Note that Eq. (2.43) is a ‘force-based’ equilibrium condition which was
reduced from energy-based formulation in the discretization procedure.
After solving the linear equation (2.43) for d, the derivative of Eq. (2.43) is taken with
respect to the design variable ŝ, i.e.

K∇sd = Ppse with Ppse = ∇sP − ∇sKd , (2.44)

where Ppse is called ‘pseudo load vector’, which is determined analytically or numerically.
For the analytical approach ∇sK and ∇sP are formulated in terms of the element stiffness
matrix Ke in Eq. (2.35) and the element load vector Pe in Eq. (2.36) considering the
parametric space ξ of an finite element, giving

∇sKe =

∫
Ωe

(∇sB
TCB + BT∇sCB + BTC∇sB

)
dΩe +

∫
Ωξ

BTCB∇s|J| dΩξ,(2.45)

∇sPe =

∫
Ωξ

NT
(
∇sb̂|J| + b̂∇s|J|

)
dΩξ +

∫
Γξ

NT
(
∇st̂|J̃| + t̂∇s|J̃|

)
dΓξ . (2.46)

Inserting Eqs. (2.45) and (2.46) into Eq. (2.44) with consideration of element assembly
describes the pseudo load vector as follows

Ppse =

nele⋃
e=1

∇sPe −
nele⋃
e=1

∇sKed . (2.47)
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The pseudo load vector Ppse can be obtained explicitly from the finite element level in
the analytical method. After determining the pseudo load vector, linear equation (2.44)
is solved for ∇sd. Once ∇sd is obtained, the total sensitivity of the objective function
with respect to the design variable can be calculated by inserting ∇sd into Eq. (2.42), i.e.

∇sf = ∇ex
s f + ∇df

T
(
K−1Ppse

)︸ ︷︷ ︸
∇sd

. (2.48)

This approach is called the direct (differentiation) method.
An alternative scheme to the direct method is known as the adjoint method. This method
is formulated by transforming Eq. (2.48) to another expression as follows

∇sf = ∇ex
s f + ∇df

TK−1︸ ︷︷ ︸
μT (ŝ)

Ppse (2.49)

with

KTμ = ∇df , (2.50)

where μ is the so-called ‘adjoint vector variable’ which is defined as the solution of the
set of linear equations (2.50).
At first glance there seems to be little difference between the direct method and the
adjoint method. The direct method is more efficient than the adjoint method when the
number of design variables ns is smaller than the total number of design functions, i.e.
(nf + nh + ng) because the matrix multiplication (K−1Ppse) is carried out only ns times.
On the other hand the term (∇df

TK−1) is calculated (nf + nh + ng) times in the adjoint
method. The difference between above two methods in the computational cost depends
on the condition of the number of design functions and design variables, and also on the
fact how matrices and vectors are set up and evaluated in a program.
It turns out to be instructive to repeat the derivation of the adjoint method by employing
a more general technique of Lagrange multipliers. First the Lagrangian function for the
objective is generated

f̄ (ŝ, μ (ŝ) , d (ŝ)) = f + μTR with R = P − Kd = 0 , (2.51)

where f̄ is the Lagrangian function for the objective and R denotes a residual force vector
describing the equilibrium condition (2.43). μ is the Lagrange multiplier and equivalent
to the adjoint vector mentioned above. Taking the derivative of Eq. (2.51) with respect
to a design variable ŝ yields

∇sf̄ = ∇ex
s f + ∇df

T∇sd︸ ︷︷ ︸
∇sf

+∇sμ
T R︸︷︷︸

= 0

+ μT (∇sP − ∇sKd − K∇sd)︸ ︷︷ ︸
∇sR = 0

(2.52)

= ∇sf . (2.53)

Eq. (2.53) indicates that the gradient of the extended functional f̄ is identical to that of
the original one f.
Arranging Eq. (2.52) and dropping the third term but retaining the fourth one reads
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∇sf̄ = ∇ex
s f + μT (∇sP − ∇sKd)︸ ︷︷ ︸

= ∇ex
s R = Ppse

+
(∇df

T − μTK
)∇sd . (2.54)

The Lagrange multiplier μ is assumed in such a way that the functional f̄ shown in
Eq. (2.51) is stationary with respect to the primal variable d, i.e.

∇d f̄ = ∇df − (μTK
)T

= 0 → KTμ = ∇df . (2.55)

In other words, the Lagrange multiplier μ is selected so that it eliminates the term ∇sd
from Eq. (2.54). Inserting Eqs. (2.53) and (2.55) into Eq. (2.54) leads to an identical
formulation to Eq. (2.49).

The analysis of both the direct method and the adjoint method shows that these methods
require the calculation of the explicit design derivatives of the stiffness matrix and the
load vector. However the calculation is often difficult to be carried out analytically.
Most often isoparametric elements are used for problems of the shape design sensitivity in
which the design variables are not defined on the finite element level but on the global one.
For this case the pseudo load vector Ppse can be directly obtained by a finite difference
approximation, i.e.

Ppse ≈ ΔP

Δŝi
− ΔK

Δŝi
d . (2.56)

This approach is called the ‘semi-analytical method’. Due to less computational costs
compared to the global finite difference method and its easier derivation of sensitivities
than that of the analytical method, the semi-analytical method is often used for shape
optimization problems. However it has been shown that this method may lead to severe
inaccurate sensitivities in certain cases (Olhoff & Rasmussen [133], Olhoff et al. [134]).
This inaccuracy arises when relatively large rigid body rotations exist for individual el-
ements because the rigid body mode is strongly connected with the truncation errors
resulting from the finite difference approach.

Many researches have investigated to cure this inaccurate sensitivity, e.g. Olhoff & Ras-
mussen [133], Olhoff et al. [134], Cheng & Olhoff [42], Mlejnek [127], Dems & Mróz [51],
Boer & Keulen [28], [29], and Keulen & Boer [94]. However the complete elimination of
the errors has not been accomplished. Recently Bletzinger et al. [24] introduce a method
which can eliminate the errors completely by using a so-called ‘correction factor’ for the
derivative of the approximated stiffness matrix. This method is very simple and easy to
implement.

2.5.3 Variational method

In the discrete approach the nodal (or integration point) quantities in the discretized
formulation are determined to obtain the sensitivities of the stiffness matrix and the load
vector. However the variational method directly deals with physical fields of the structural
response, e.g. stress, strain, and displacement fields.

For the direct method the derivative of the nodal displacement ∇sd is calculated first,
starting from the weak form of continuous equilibrium condition, the principle of virtual
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work (2.30). Assuming that the material is linear elastic and the external load is indepen-
dent of design variables ŝ for simplicity, the derivative of the equilibrium condition with
respect to ŝ is written as∫

Ω

(
∇s (δε)T σ + δεT∇sσ

)
dΩ +

∫
Ωξ

δεTσ∇s|J| dΩξ = 0 . (2.57)

The stress derivative can be decomposed into two parts

∇sσ = ∇sCε + C∇sε . (2.58)

Inserting Eq. (2.58) into Eq. (2.57) reads to∫
Ω

δεTC∇sε dΩ = −
∫
Ω

∇s (δε)T
Cε dΩ −

∫
Ω

δεT∇sCε dΩ −
∫
Ωξ

δεTσ∇s|J| dΩξ . (2.59)

For linear kinematics the strain is a linear differential of the displacement field. As
the differential operator L is considered to be independent of the design variables, the
derivative of the virtual strain ∇sδε is

∇s (δε) = δ (∇sε) = δ (∇sLu + L∇su) = L∇s δu . (2.60)

For the next step the discretization of the strain and the virtual strain is carried out, i.e.

∇sε = L∇s u ≈ L∇s (N)d + LN∇sd = ∇s (B)d + B∇sd , (2.61)

∇s (δε) = L∇s δu ≈ L∇s (N) δd + LN∇sδd = ∇s (B) δd , (2.62)

where the virtual nodal displacement is assumed to be arbitrary, so that its derivative
∇sδd vanishes.
Finally, inserting Eqs. (2.60) to (2.62) into Eq. (2.59) yields∫

Ω

BTCB dΩ∇sd = −
∫
Ω

∇sB
TCB dΩd −

∫
Ω

BT∇sCB dΩd

−
∫
Ω

BTC∇sB dΩd −
∫
Ωξ

BTCB∇s|J| dΩξ d .
(2.63)

In conventional topology optimization, the first, third and fourth terms on the right
hand side of Eq. (2.63) vanish since B and |J| relevant to the geometrical description
are independent of material design parameters. On the other hand in the general shape
optimization the second term can be omitted from Eq. (2.63) since the material stiffness
matrix C does not depend on the shape design variables.
Incidentally the variational adjoint method is more efficient than the variational direct
method from viewpoint of computational efforts as the number of design variables in-
creases. However for the variational and also discrete adjoint methods it needs special
attention for the derivation of the adjoint vector if the stiffness matrix is unsymmetric,
see Eq. (2.50).
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Chapter 3

Modeling of fiber reinforced
composites

3.1 Overview of fiber reinforced concrete

Fiber Reinforced Concrete (FRC), often called Textile Reinforced Concrete (TRC), is a
relatively new composite material. As mentioned in section 1.1 this kind of textile fiber
is corrosion free and does not need thick cover layers; this property enables the manu-
facturing of light-weight thin-walled composite structures, see Fig. 3.1. For instance, the
thickness of FRC plate often used is 10–20mm while the minimum thickness of a conven-
tional steel reinforced concrete plate is 80–100mm in practical use. Fig. 3.2 emphasizes
the difference in the section sizes between conventional steel reinforced concrete and FRC
structures.
Recently, a FRC pedestrian bridge with 9.1m span was built in Oschatz, Germany, in
which the minimum thickness of the structural elements is 10mm, see Curbach et al. [48].
Also another FRC pedestrian bridge with approximately 16m span was constructed in
Kempten, Germany, see Fig. 3.1 (a). For other practical applications, sandwich panels
stiffened by FRC layers with 15mm thickness were produced, see Hegger et al. [76]. These
successful light-weight FRC structures have received great attention in civil engineering.

In the early development of textile reinforced concrete, chopped short glass fibers were
often embedded in a cement matrix. The randomly oriented short fibers increase the
fracture toughness of the matrix; this provides substantial structural ductility. Recently
suitable and available materials for FRC were intensively investigated from mechanical
and chemical points of view, e.g. German Collaborative Research Centers, SFB528 in
Dresden [47] and SFB532 in Aachen. Also the aspect of manufacturing this composite
played an important role.

The critical aspect of this composite is that the structural response of FRC may exhibit
brittle failure behavior due to material brittleness of both concrete and fibers in addition
to complex interfacial behavior between above constituents. Thus the failure mechanism
of FRC is highly complex and for example influenced by matrix cracking, slip of filaments
in the fiber, debonding of fibers from the matrix and breaking of fibers.

In the following the characteristics of two constituents, i.e. concrete matrix and fiber, and
of the interface between matrix and fiber are described.

Matrix material

A mortar like fine grained concrete used for FRC is not identical to conventional concrete.
The grained concrete is a mixture of high strength with a maximum particle size of 1–2mm,
which is highly flowable due to the good saturation of the textile fibers, see Häußler-Combe

31
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Figure 3.1: FRC structures: (a) FRC pedestrian bridge with 16m span in Kempten,
Germany (Curbach & Jesse [50]), (b) FRC grid arch (RWTH Aachen), (c) FRC plate
with a few textile layers (INNtex Innovation Netzwerk textil e.V.), (d) FRC plate with
single layer (Hund [85])
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Figure 3.2: Classification of fiber reinforced concrete structures (Molter [128])

et al. [74]. The compressive strength of fine concrete often used is 30–60 N/mm2. The
fine concrete which is produced exclusively with Portland cement contains a large volume
of calcium hydroxide and is therefore highly alkaline. Used as matrix of FRC with glass
fibers, this concrete deteriorates the property of glass fibers due to the alkali-reaction and
eventually reduces the structural property of the composite, if exposed temporarily or
permanently under moist conditions. Meyer [125] mentions that the bending strength of
the composite may decrease from initially 20-30 N/mm2 to 15 N/mm2 and its ultimate
strain from initially 0.6–1% to below 0.1%. This alkalinity of the fine concrete can be
reduced by ‘carbonizing’ to a certain degree. Although the long term behavior of textile
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Figure 3.3: (a) Direct tension test of roving (Krüger et al. [107]), (b) test of FRC bending
beams with different fiber lengths (Curbach et al. [49])

fibers has not yet been cleared, the carbonized fine concrete is appropriate if glass fibers
are embedded.

Textile fiber

Textile reinforced concrete has a wide variety on its design components, especially on
the properties of fibers, e.g. choice of fiber materials, fiber length, fiber shape, surface
roughness of fiber, fiber layout, and coating/impregnation/“sizing” of fiber etc.
Glass fibers allow an economical use. However commercially available glass fibers, often
called E-glass, are not suited for FRC due to their poor alkaline-resistance. For this, much
more durable alkaline-resistant glass (AR-glass) is often used. Other fiber materials, such
as carbon or aramid, are of secondary significance for the time being due to their high
cost. Synthetic fibers such as polypropylene (PP) are unsuitable due to their low Young’s
modulus (4–12 GPa) and poor fire-proof.

In general carbon fiber has high Young’s modulus (200–450 GPa) but shows brittle behav-
ior while AR-glass fiber has less Young’s modulus (approximately 70 GPa) than carbon
but introduces more ductile behavior in tension. For a detailed description of properties
of fiber materials it is referred to Reinhardt [152].

It can be observed that the fibers embedded in concrete matrix show a highly complex and
sensitive mechanical behavior, which is considerably different from that of the individual
fibers. The cause of this delicate response has been investigated in detail, for example,
the slip of filaments in a roving (Ohno & Hannant [129], Häußler-Combe et al. [74]), the
defects of filaments in a roving (Mäder et al. [117]), interfacial debonding between matrix
and fiber (Krüger et al. [107]), and size effect of fiber with respect to fiber section and
length (Vořechovský & Chudoba [198], Chudoba et al. [45]).

As one of the remedies for this problem Raupach et al. [150] and Krüger et al. [105],
[107] introduce the effectiveness of ‘impregnated’ fiber. These investigations show that the
impregnated fiber can reduce the slip between filaments in a roving and also interfacial
debonding between concrete matrix and fiber; this drastically improves the structural
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behavior of FRC. Thus nowadays the impregnated fibers are usually applied for FRC
structures. Fig. 3.3 (a) displays the results of tension tests for AR-glass and carbon
fibers (roving) introduced by Krüger et al. [107], in which it is shown that the epoxy
impregnation improves the mechanical behavior of both rovings considerably.

For the influence of fiber length, the effectiveness of randomly oriented short fibers is
clearly lower than that of textile reinforcement with long fibers oriented in the direction
of tensile stress, see Dugas et al. [53]. Fig. 3.3 (b) taken from Curbach et al. [49] and
Richter [155] presents the results of FRC bending beams with different fiber lengths, in
which the beam with long fibers shows higher strength and more ductile behavior in
spite of less fiber content than that with chopped short fibers. This result motivates the
development of FRC structures with long textile fibers, by which a reliable design can be
performed because no randomness of fiber location and orientation is present. However
short fibers have also distinct advantages in certain applications, e.g. if old concrete has
to be rehabilitated or the fracture toughness of concrete should be improved. For the
modeling of FRC with short fibers it is referred to Kunieda et al. [108] and Bolander &
Yip [31], in which numerically efficient methods are proposed.

Textile reinforcement allows not only a two-dimensional fiber layout but also applying
three-dimensional textile fabrics, see e.g. Roye et al. [162]. Furthermore, the efficiency
of ‘hybrid fiber systems’ recently gets also attention; Xu & Hannant [202], [203] and Xu
et al. [207], [205] investigate the combined effects of different fiber materials in terms of
the following three kinds of layers, (i) polypropylene (PP) net, (ii) randomly orientated
chopped AR-glass strand layer, and (iii) continuous AR-glass rovings. It has been verified
in these works that AR-glass fibers play an important role in controlling cracking and
promoting post-cracking load-carrying capacity while PP fibers provide toughness and
long-term durability.

Xu et al. [206] introduce the combined effects of continuous polyvinyl alcohol (PVA)
fibers by adding it to the above three kinds of layers in a cement matrix. The reason for
choosing PVA fibers is that PVA is hydrophilic in nature and has larger Young’s modulus
(20–40 GPa) than PP fibers. It is emphasized that introduction of PVA fibers into PP or
AR-glass fiber composites can result in composites with superior properties compared to
reinforced composites with only one kind of fiber. In particular, the load-bearing capacity
after cracking and the ultimate strength of the hybrids can be greatly improved. Peled et
al. [143] also investigate the effect of hybrid fibers consisting of (i) low modulus fibers like
PP or polyethylene (1.8 GPa) and (ii) high modulus fibers such as AR-glass or aramid
(55 GPa) in a fine concrete. Peled [142] also describes the possibility of hybrid fiber
systems for FRC applying the combination of PP and AR-glass fibers.

The wide variability of these fiber combination is one of the great advantages of FRC
structures and provides a possibility to design innovative new composite materials.

Interface between matrix and fiber

The interfacial behavior between two phases can be described on different structural levels,
e.g. the molecular level and the microscopic level. On the molecular level the interaction
between two phases is determined by their chemical structure and is due to van der
Waals forces. On the microscopic level the interaction is usually described in terms of
various interface parameters which characterize the load transfer across the interface, for
example model on the bond strength or critical energy release rate. From the viewpoint
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of engineering applications, the microscopic level is sufficient and appropriate (Zhandarov
& Mäder [211]).
For FRC structures the interface response plays a key role because the fiber of FRC is con-
siderably prone to slip on the interface; this phenomenon may cause brittle failure which
eventually ends in a complete structural failure. Unlike conventional steel reinforcement
a textile fiber has in general no hooks at the ends of the fiber and no ribs on the surface
which mechanically prevent the fiber from slipping out of the concrete.
It is well-known that use of plain textile fibers leads to poor interfacial resistance together
with other mechanical problems such as defects of filaments, see for example Krüger et
al. [105], [106], [107]. This drawback can be avoided to a great extent by applying
impregnated fibers as mentioned above. The interface response strongly depends on the
parameters on a small scale level; several interface models considering these parameters
have been developed.

3.2 Material models

For both constituents, concrete matrix and fibers, an isotropic gradient enhanced damage
model has been applied. For their interface a discrete bond model has been chosen.

3.2.1 Isotropic gradient enhanced damage model

The stress-strain relation of a continuum damage model is formulated as follows

σ = (1 − D) Celε = Cedε , (3.1)

where σ represents the Cauchy stress tensor, ε the linear strain tensor, and Cel the fourth-
order elasticity tensor, respectively. Ced is the so-called secant elasto-damage material
tensor and D stands for the damage parameter.
Whether damage growth is possible is decided on the basis of a damage loading function
Ψ in terms of the strain components:

Ψ (εv, κ) = εv − κ , (3.2)

where εv indicates a positive equivalent measure of the strain state and κ is a threshold
variable. The equation Ψ = 0 defines a loading surface in strain space. The damage
variable D increases only when the equivalent strain reaches the threshold value κ, namely
Ψ ≥ 0. For the strain state within the loading surface Ψ < 0, no damage growth occurs
and the material behavior is elastic. Unloading from a damage range follows an elastic
path with the reduced modulus Ced. When the deformation is increased again from the
unloading situation to reloading and further loading, the elastic domain in strain space
has to grow for increasing damage such that the strain state remains on the loading
surface. This means that the damage threshold κ is always equal to the largest value of
the equivalent strain εv which was locally attained during loading history. This conditions
can be formulated by the set of the Kuhn-Tucker relations,

Ψκ̇ = 0, Ψ ≤ 0, κ̇ ≥ 0 , (3.3)

where (•̇) indicates a time derivative. These conditions have to be supplemented by an
initial equivalent strain κ0 which defines the limit of the linear elastic domain.
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For the damage evolution the present study uses an exponential damage law introduced
by Mazars & Pijaudier-Cabot [123] as

D (κ) = 1 − κ0

κ

(
1 − α + αe−β(κ−κ0)

)
if κ ≥ κ0 , (3.4)

where α defines the final softening stage and β governs the rate of damage growth. In this
damage evolution law the damage variable approaches D = 1 asymptotically (0 ≤ D < 1);
for a uniaxial case the stress σ reaches (1 − α) Eκ0 for ε → ∞. κ represents the most
severe deformation the material has experienced during loading. Fig. 3.4 (a) and (b)
display the exponential damage law and uniaxial stress-strain relation of the damage
model, respectively.
In the next step an equivalent strain measure is defined. Two different equivalent strain
measures are introduced in this section. For engineering materials, the compressive
strength is often higher than the tensile strength. This difference has to be considered in
the equivalent strain measures. The first strain measure is Mazars’s definition (Mazars &
Pijaudier-Cabot [123]):

εv =

√√√√ 3∑
i=1

〈εi〉2 , (3.5)

where εi (i = 1, 2, 3) is the principal strain and 〈•〉 denotes the Macauley bracket 〈x〉=
(x + |x|) /2. The dependence on the positive principal strains renders the equivalent strain
more sensitive to tensile deformation than to compressive one. This simple definition of
the equivalent strain is applied for a one-dimensional fiber in the embedded reinforcement
element which will be introduced in section 3.4. In this case Eq. (3.5) can be reduced to

εv =
√
〈εf

L〉2 , (3.6)

where εf
L denotes the one-dimensional fiber strain.

The second definition follows de Vree’s proposal (de Vree et al. [199]):

εv (I1, J2) =
k − 1

2k(1 − 2ν)
I1 +

1

2k

√
(k − 1)2

(1 − 2ν)2
I1

2 − 12k

(1 + ν)2
J2 , (3.7)

where I1 denotes the first invariant of the strain tensor and J2 the second invariant of
the deviatoric strain tensor. ν is Poisson’s ratio and k indicates the ratio of compression
relative to the tension strength. This definition originates from plasticity models and can
provide a physically more realistic strain measure than Mazars’s definition by choosing a
reliable sensitivity parameter k.
In a conventional damage model based on a local definition of the strain tensor, it is
well-known that strain softening causes loss of ellipticity of the differential equation and
consequently numerical solutions do not converge to a physically meaningful result. In
order to avoid this ill-posed problem ‘non-local damage models’ can be introduced. In
non-local damage models the history variable κ is related to a weighted volume average
of the local equivalent strain εv, denoted as non-local equivalent strain ε̃v.
In the gradient-enhanced damage model (Peerlings et al. [141], [140], Peerlings [139]) ε̃v

is approximated implicitly as follows
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Figure 3.4: (a) Exponential damage law and (b) corresponding uniaxial stress-strain
response of damage model, (c) stress-strain relation of discrete bond model

ε̃v − c∇2 ε̃v = εv , (3.8)

where ∇2 denotes the Laplacean operator and c is a positive parameter of the dimension
length squared regularizing the localization of the deformation. Thus εv is replaced by the
non-local equivalent strain ε̃v in the loading function, namely Ψ (ε̃v, κ); ε̃v is discretized
in the finite element sense. In this model elastic unloading is included in the traditional
way.

3.2.2 Discrete bond model for interface

In this study nonlinear interfacial behavior between fiber and matrix is expressed by a
discrete bond model, see Krüger et al. [105]. This model was obtained by experiments
using two kinds of textile fiber materials and leads to a realistic interface response of
FRC. The significant factors governing interfacial response are the bond strength and the
debonding behavior. The influence of material properties at a small scale level and the
stresses perpendicular to the fiber direction are included in the material formulation as
important parameters. The bond stress - slip (σi

L − ui
L) relation is expressed as

σi
L = ũi ·

{
b + (1 − b) ·

(
1

1 + (ũi)Rs

) 1
Rs

}
· σ0 for ui

L ≤ ui
1 , (3.9)

where ui
L is the slip length which will be introduced in section 3.4. ũi = ui

L/u
i
0 denotes

the normalized slip. ui
0 is a factor defined by the initial tangent k1. k2 is the tangent

at slip ui
1 where the bond stress achieves the maximum bond strength, see Fig. 3.4 (c).

b = k2/k1 and σ0 = k1 · ui
0 are parameters to calculate the stresses and Rs defines the

radius of curvature at slip ui
1. The stress-slip relation for the range ui

L > ui
1 is simply

described by the adhesion strength σm and the friction bond strength σf , see Fig. 3.4 (c)

σm = σm, 0 ψ , σf = σf, 0 ψ (3.10)

with

ψ = 1 + tanh

[
αr

σR

0.1fc
− αf ν εs

(
1 − rs

2

(rs + h)2

)−1
]
. (3.11)
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Here ψ denotes an additional parameter (1 < ψ < 2) which considers the influence of
the kind of fiber material, the loading condition and the stresses perpendicular to a fiber
direction. σm, 0 and σf, 0 denote the initial adhesion strength and sliding friction strength,
respectively. rs describes a fiber (roving) radius, ν is Poisson’s ratio of a fiber and h is the
surface roughness of a fiber. αr and αf are constants assuming the lateral deformation
of a fiber. These properties depend on the kind of fiber material used. fc is the uniaxial
compressive strength of concrete, εs is the uniaxial strain of a fiber and σR defines the
stress perpendicular to a fiber. For a detailed description of this model it is referred to
Krüger et al. [105] to [107]. In this model loading and unloading conditions are also
considered.

This one-dimensional interface model is originally formulated for a fiber in a three-
dimensional setting. If this model is utilized in a two-dimensional space as in this study,
the interface has to be approximated to hold the original total interface area.

3.3 Alternatives for representations of reinforcement

In general a long fiber reinforcement can be represented: (a) as discrete one-dimensional
truss element, beam element or thin finite element; or (b) as being uniformly distributed
(smeared) over the matrix element, in which case an effective matrix-fiber constitutive
relation may be used; or (c) as being built into the solid element, called an embedded
formulation, see Fig. 3.5.

Perfect bond between matrix and fiber is usually assumed when the smeared elements are
used. The bond-slip phenomenon may be represented in conjunction with the discrete
reinforcement element shown in Fig. 3.5 (a) as: (i) link elements, which consist of discrete
orthogonal springs with no physical dimension and which connect and transmit shear
and normal forces at the nodes of the reinforcement; (ii) interface bond elements which
are continuous elements of zero thickness, often called ‘numerically integrated elements’
(Rots [161], Schellekens [168], Menrath [124]), with the constitutive relation formulated
in terms of the relative displacement of the corresponding nodes; (iii) bond zone elements
of finite dimension wherein the contact surface between fiber and matrix as well as the
matrix in the bond zone are considered to have some separated individual constitutive
relationships. Since all above bond elements are associated with discrete representations
of fiber, the finite element mesh layout is controlled by the fiber locations.

If the layout of fiber is simple, e.g. a single fiber or some parallel straight fibers, the
discrete reinforcement elements are numerically efficient and easy to implement. In many
references the discrete formulation is applied for its simplicity; for example Hegger et al.
[75] use the discrete formulation considering the slip of filaments in a roving. Krüger et
al. [106] utilize discrete elements for the development of a bond-slip relation for FRC.
Konrad et al. [103], Konrad & Chudoba [102] and Häußler-Combe & Hartig [73] apply this
formulation to model FRC with a multi-level concept in which the slip between filaments
in a roving together with the interfacial response between fiber and matrix is considered.
The research of Konrad et al. [104] describes numerical and experimental investigations
for the evaluation of the cyclic behavior of FRC using the discrete representation.

The smeared and embedded representations become appropriate when a complex layout
of fibers is requested, for example in the case that some fibers cross each other. As
mentioned above, the smeared elements usually do not often represent a physically reliable
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Figure 3.5: Representation of fiber (a) discrete reinforcement element, (b) smeared ele-
ment, (c) embedded reinforcement element

bond-slip behavior because of its coarse approximation. For example Holler et al. [79]
introduce a computational model for a multi-layered textile reinforced shell structure,
in which the matrix-fiber constitutive relation is approximated in a smeared sense using
perfect bond in the linear elastic range. After crack initiation of the matrix, the smeared
material model is replaced by a special fiber material model, in which the influence of slip
between internal and external filaments in the roving and also between matrix and fiber
is considered in a pragmatic way. The bond behavior between matrix and fiber may also
be incorporated by a homogenization scheme. Richter [155] and Richter & Zastrau [156]
apply homogenization for a tensile plate of FRC including damage and cracking, in which
the interfacial response of multi-directional long fibers is numerically integrated.
The embedded reinforcement formulation, in which the integration value of a fiber is
superimposed onto that of the matrix element, see Fig. 3.5 (c), is numerically more flex-
ible and includes the bond behavior. These elements have been originally introduced
by Phillips & Zienkiewicz [144]. Chang et al. [40] modified the concept allowing for
straight reinforcement segments to be placed at any angle with respect to the local axes
of isoparametric concrete elements. Balakrishnan & Murray [5] introduced an embedded
formulation with bond-slip relation between concrete and fiber. Further improvements by
Elwi & Hrudey [56] allow for a general curved reinforcement formulation in the embedded
element. Hofstetter & Mang [78] apply the embedded reinforcement formulation for a
thin-walled prestressed concrete shell structure where the geometry of curved tendons is
introduced by an analytical expression. The extension to a three-dimensional formulation
is discussed by Barzegar & Maddipudi [9]. Recently Huber [84] applies the bond-slip
relation by Balakrishnan & Murray [5] for a 3D model with straight reinforcement bars
considering nonlinear material models for both concrete and steel reinforcement.

The present study applies the discrete as well as the embedded reinforcement formula-
tions considering the bond-slip relation between matrix and fiber. Assuming that well-
impregnated fibers are used, the interface between filaments in a roving is not modeled for
simplicity. The discrete reinforcement formulation is applied for the numerical examples
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in chapter 6, where the numerically integrated elements are adopted for their kinematic
relation within the discrete bond model. The embedded formulation in turn is utilized
in chapters 7 and 8, where the kinematic assumption by Balakrishnan & Murray [5] is
considered.
In the following section 3.4 the kinematic assumption for the embedded reinforcement
formulation is described. In the present study, fibers are allowed to have a curvilinear
geometry. However for simplicity the curved fiber is approximated by a polygonal layout,
see Fig. 3.6 (a), i.e. a straight fiber is assumed within each individual finite element. The
finite element formulation of FRC applying the embedded representation is introduced
in section 3.5, which is composed of three individual material formulations, namely the
gradient enhanced damage for both concrete and fibers and the interface model. Some
details are shifted to Appendix A, e.g. the transformation matrices relevant for the fiber
orientations and the linearization of the model.
Note that in the present study the following superscripts (•)c, (•)f , and (•)i denote the
terms for ‘concrete’, ‘fiber’, and ‘interface’, respectively. In some cases a compact ex-
pression is utilized, e.g. (•)c+f= (•)c + (•)f . A subscript (•)L or (•)G indicates that the
value (•) is measured in the local or global coordinate system, respectively. However the
notion (•)G is introduced only when it has to be emphasized, otherwise it is skipped for
simplicity.

3.4 Kinematic assumption for embedded reinforce-

ment formulation

In the kinematic assumption by Balakrishnan & Murray [5] the slip at an arbitrary point
is considered as the relative displacement between concrete and fiber measured along the
axis of a fiber. The components of the displacements can be written as

uf
L = uc

L + ui
L , (3.12)

where ui
L is the slip length or relative displacement introduced in section 3.2.2. uf

L and
uc

L are the displacements of fiber and concrete at the considered point, respectively, see
Fig. 3.6 (b). The slips of the fiber between two adjacent elements have to be equal;
however this is not automatically the case for the polygonal geometry assumed above.
In order to satisfy the compatibility at least in an average sense the slip length ui

L is
projected onto the global x-axis

d̄ = cos θ · ui
L → ui

L = t̄ d̄ with t̄ = (cos θ)−1 , (3.13)

where θ is the angle between fiber axis and x-axis, see Fig. 3.6 (a). Thus the compatibility
of the slip-length is enforced for d̄. From ui

L the local bond strain εi
L is obtained which in

turn leads to the local fiber strain εf
L

εf
L = εc

L︸︷︷︸
Tε

1ε
c
G

+ εi
L . (3.14)

Matrix Tε transforms the global strain εG of a two-dimensional continuum into the local
one εL under plane stress condition (see Appendix A.1). Tε

1 represents the first row of Tε

extracting the local strain εc
L in fiber direction from the global concrete strain εc

G.
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Figure 3.6: (a) Embedded reinforcement element patch and (b) notion for displacements
of slip

3.5 Finite element formulation of fiber reinforced com-

posites

3.5.1 Virtual work

Since the present study applies a gradient enhanced damage model for both concrete and
fibers and uses a nonlinear interface model between fiber and matrix, the virtual work
δW is decomposed into

δW = δWint − δWext = δWc
int + δWf

int + δWi
int − δWext = 0 , (3.15)

where δWc
int, δW

f
int, and δWi

int stand for the internal virtual work of concrete, fibers and
interfaces, respectively, and δWext denotes the external virtual work.

The gradient enhanced damage model leads to a two-field formulation at the actual time
t + 1

δWu (u, δu) =

∫
Ω

δε : σ dΩ −
∫
Ω

δu · b̂ dΩ −
∫
Γ

δu · t̂ dΓ = 0 , (3.16)

δWe (ε̃v, δε̃v) =

∫
Ω

δ∇ε̃v · τ dΩ +

∫
Ω

δε̃v (ε̃v − εv (ε)) dΩ = 0 , (3.17)

where ‘time’ t does not mean the ‘real time’ but simply the ‘loading step number’ for a
nonlinear static problem. The domain Ω in the above equations includes both matrix and
fibers, i.e. Ω = Ωc ∪ Ωf . δu and δε̃v are the virtual displacement and non-local equiv-
alent strain fields, respectively. Eq. (3.16) is the usual virtual work expression whereas
Eq. (3.17) defines the weak form of an additional equilibrium equation for the non-local
equivalent strain, where τ = c∇ε̃v is a work equivalent stress vector (see Peerlings et al.
[141], [140], Peerlings [139]). Without loss of generality the body force is omitted in this
study.
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Both equations of the virtual work can be split up into the parts of concrete and fibers,
δWc

u/e, δW
f
u/e, the latter one being reduced to a one-dimensional expression referring to

the local stress and strain field in the fibers

δWf
u, int =

∫
Ωf

δεf
Lσ

f
L dΩf =

∫
Ωf

(
δεc

L + δεi
L

)
σf

L dΩf , (3.18)

δWf
e =

∫
Ωf

δ∇ε̃f
v, Lτ

f
L dΩf +

∫
Ωf

δε̃f
v, L

(
ε̃f
v, L − εf

v, L

(
εf
L

))
dΩf . (3.19)

According to Eq. (3.14) the fiber strain εf
L can be decomposed into a contribution of the

local concrete strain εc
L and that of the interface εi

L, as indicated in Eq. (3.18). The work
of the latter part together with the virtual work inside the interface due to the slip length
ui

L ∫
Ωi

δui
Lσ

i
L dΩi

defines the total virtual work of the interface slip:

δWi
int =

∫
Ωf

δεi
Lσ

f
L dΩf +

∫
Ωi

δui
Lσ

i
L dΩi = 0 ∀ δui

L . (3.20)

3.5.2 Discretization

The virtual work expressions (3.16)/(3.17) and (3.18)/(3.19) together with (3.20) contain
three independent variables, namely the displacement field in the concrete element u, the
non-local equivalent strain ε̃v and the slip length ui

L which are discretized in the finite
element sense. In the present study a two-dimensional 8-node quadratic plane stress
element is applied for the concrete matrix. The non-local strain is discretized by bilinear
shape functions within this element. Note that the interface slip is discretized as a 3-node
quadratic one-dimensional element (ni = 3), whereas the non-local strain enhancement of
the fibers is only linearly interpolated based on the two values at the fiber beginning and
end obtained from the non-local strain values in the concrete element

u =
nc∑

k=1

Nkd
k or u = Nd , (3.21)

ε̃v =
ne∑

k=1

Ñke
k or ε̃v = Ñe , (3.22)

ui
L =

ni∑
k=1

Ni
k

(
ui

L

)k
=

ni∑
k=1

Ni
k

(
t̄ d̄
)k

=

ni∑
k=1

N̄kd̄
k or ui

L = N̄d̄ , (3.23)

where d is a vector with 8 nodal displacements, e with four nodal values and d̄ contains
3 nodal slip values.
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The three nodal values of the projected slip lengths are summed in the vector d̄

d̄ =
[
d̄1 d̄2 d̄3

]T
. (3.24)

N̄ contains the shape function for the interface defined in the global coordinate system.
Analogously the local bond strain εi

L of Eq. (3.14) in one element can be expressed as

εi
L =

ni∑
k=1

Bi
k

(
t̄ d̄
)k

= t̄Bid̄ = B̄d̄ , (3.25)

where Bi and B̄ stand for B-operator matrices for the interface defined in local and global
coordinate systems, respectively. The local fiber strain εf

L can be written according to
Eq. (3.14)

εf
L = Tε

1ε
c
G + εi

L = Tε
1B

fd + B̄d̄ . (3.26)

Introducing Eqs. (3.21) to (3.23) and Eqs. (3.25), (3.26) into the virtual work expressions
leads to

δWu = δWc
u, int + δWf

u, int − δWext ∀ δd

=

nele⋃
e=1

δdT

[ ∫
Ωc

BcTσcdΩc

︸ ︷︷ ︸
f c
int, u

+

∫
Ωf

BfT (Tε
1)

T σf
L dΩf

︸ ︷︷ ︸
f f
int, u

− λt+1

∫
Γ

NcTt0 dΓ

︸ ︷︷ ︸
fext

]
= 0 (3.27)

δWe = δWc
e + δWf

e ∀ δe

=

nc
ele⋃

e=1

δeT

[ ∫
Ωc

(
B̃c
)T

τ cdΩc +

∫
Ωc

(
Ñc
)T

(ε̃c
v − εc

v) dΩc

︸ ︷︷ ︸
f c
int, e

]

+

nf
ele⋃

e=1

δeT

[ ∫
Ωf

(
B̃f
)T (

Td
1

)T
τ f
L dΩf +

∫
Ωf

(
Ñf
)T (

ε̃f
v, L − εf

v, L

)
dΩf

︸ ︷︷ ︸
f f
int, e

]
= 0 (3.28)

δWi
int =

ni
ele⋃

e=1

δd̄T

[ ∫
Ωf

B̄Tσf
L dΩf +

∫
Ωi

N̄Tσi
L dΩi

︸ ︷︷ ︸
f i
int, i

]
= 0 ∀ δd̄ . (3.29)

Bc is the usual kinematic operator matrix; B̃c is derived from the gradient of the non-local
equivalent strain

∇ε̃c
v = B̃ce , (3.30)
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and B̃f that of the corresponding part in the fiber

∇ε̃f
v, L = Td

1∇ε̃f
v, G = Td

1B̃
fe , (3.31)

where Td
1 is the first row of a rotation matrix Td, see Appendix A.1. λ inserted in

Eq. (3.27) denotes the load factor with respect to a reference traction load t0.

3.5.3 Element matrices

Introducing damage and interface models into the virtual work expressions and linearizing
with respect to the primary variables d, e and d̄ leads after assembly to the following
stiffness expression

⎡
⎢⎢⎣

Kc+f
dd Kc+f

de Kf
dd̄

Kc+f
ed Kc+f

ee 0

Kf
d̄d

0 Ki
d̄d̄

⎤
⎥⎥⎦

︸ ︷︷ ︸
KT

(n) ⎡
⎢⎣

Δd

Δe

Δd̄

⎤
⎥⎦

︸ ︷︷ ︸
Δu

(n+1)

= −

⎡
⎢⎣

f c
int, u + f f

int, u − fext

f c
int, e + f f

int, e

f i
int, i

⎤
⎥⎦

︸ ︷︷ ︸
R

(n)

, (3.32)

where KT, Δu and R stand for the tangential stiffness matrix, the incremental displace-
ment/strain vector and the residual force vector, respectively. The superscripts n and
n + 1 on the matrix and vectors indicate the iteration number within an increment. For
the derivation of the corresponding stiffness matrices in KT and the forces in R it is
referred to Appendices A.2 to A.4.



Chapter 4

Design variables for optimization

4.1 Preliminary investigation for influential parame-

ters

As mentioned in the previous section the structural response of FRC depends on many
parameters. Thus it is very important to identify the influential key parameters to the
structural response of FRC before starting a detailed optimization procedure. For this,
firstly the present study identifies the possible parameters and then begins an investigation
with an extensive parametric study, varying the typical design parameters in order to
determine the influential key parameters.

According to the characteristics of FRC these parameters may be divided into two groups.
The first one contains parameters involved in the interface between fiber and concrete
matrix. The interface response plays a key role because the fiber of FRC is considerably
prone to slip on the interface and this phenomenon may cause brittle failure which may
eventually end in a complete structural failure. In Krüger et al. [105], [106], [107], fiber
size, impregnation, surface roughness of fiber, and stress perpendicular to the direction of
the fiber are introduced as the significant parameters for the interface. They are derived
from experiments for FRC using AR-glass and carbon fibers.

The second group contains the design parameters relevant to the material layout in the
structure, e.g. number of fiber, fiber size, location, orientation, spacing and length. An
investigation for influential optimization parameters on FRC structures is also mentioned
in Kato et al. [89].

The subsequent numerical investigation is carried out analysing pull-out and tensile plate
tests. In the pull-out test the sensitivity of the interfacial response is investigated with
respect to the parameters involved in interface while in the tensile plate test the sensitivity
of the overall structural response of FRC is observed with respect to selected parameters.
Both numerical investigations are described in the sequel.

Pull-out test

The model of the investigated pull-out test follows an experiment introduced by Krüger
et al. [106], [107]. Fig. 4.1 (a) shows the structural situation and the material properties
used in the investigation. The details of the test sample and its material properties of
interface, concrete and fibers are given in Krüger et al. [106].

In the present investigation a three-dimensional plate used in the experiment is approx-
imated by a two-dimensional plane stress plate for simplicity. Due to symmetry only
one half of the structure is analysed. For the two-dimensional model the total interface
area (contact area) between fiber and matrix leads to be identical to that of the orig-
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inal three-dimensional contact area. The radius of fiber rs is set to be 0.55mm, which
means that the two-dimensional plate thickness tp is equal to half of the perimeter of
the fiber (tp = πrs). Linear elasticity is assumed for both concrete and fiber in order to
observe the pure interfacial response. Quadrilateral eight-node elements are used for both
concrete and fiber. The interface is formulated by the discrete bond model mentioned
in section 3.2.2 together with the numerically integrated one-dimensional elements (Rots
[161], Schellekens [168], Menrath [124]). The material properties of interface are referred
to Appendix C.

A displacement controlled loading is applied at the control point c shown in Fig. 4.1
(a). In this simulation the influence of ‘impregnation’ and ‘surface roughness’ of fiber is
addressed. In addition, the influence of ‘different fiber materials’ is investigated.

Firstly, Fig. 4.1 (b) shows the influence of epoxy-impregnation using a carbon fiber. These
results show a good agreement with the experimental values described in Krüger et al.
[106]. It is described in some references, e.g. Mäder et al. [117], that plain fibers (no
impregnation or no coating) are prone to get scratched (micro-damage) easily by the
friction between concrete and fiber or between filaments in a fiber; this causes a poor
interfacial behavior and also reduces the strength of fiber. For this reason impregnation
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Figure 4.1: Preliminary investigation using pull-out test
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is in general necessary for FRC structures. It is also shown in Krüger et al. [106] that
the adhesion and friction strength in the interface can be improved once an impregnated
textile fiber is adopted.

Fig. 4.1 (c) reflects the influence of surface roughness of an impregnated AR-glass fiber.
The surface roughness h is measured by the difference between the base and average lines
on the surface of a fiber in a microscopic level, see Fig. 4.1 (c). The measured surface
roughness h was 0.02μm in the experiment. In this numerical test the surface roughness
is varied from 0.01 to 10.0μm numerically. It is verified that the interfacial behavior is
not so sensitive to the variation of surface roughness within this range. This result could
be explained by so-called microtribology. Physically speaking, the adhesion and friction
strength in an interface increases when the ‘real contact area’ between two materials
increases. Although the surface roughness of fiber is smooth, that of concrete is coarse
on the microscopic level. This situation results in a relatively small contact area; this
explains the insensitive situation of the interfacial response with respect to the surface
roughness of fiber.

Fig. 4.1 (d) describes the interfacial response for impregnated AR-glass and carbon fibers.
These simulations also show a good agreement with the experimental results introduced
in Krüger et al. [106]. As displayed in Fig. 4.1 (d) the case of AR-glass fiber shows
more ductile response than that of carbon while the adhesion and friction strengths for
both cases are almost on the same level. Although no detailed description for these
phenomena is given in Krüger et al. [106], this may be explained again from a view
point of microtribology. The surface roughness of an impregnated fiber is very smooth
(h ≈ 0.02μm) regardless of the kind of fiber material. This leads to the same level of the
adhesion and friction strength for both AR-glass and carbon fibers since their real contact
areas between fiber and concrete are almost the same. The difference of the interfacial
response shown in Fig. 4.1 (d) comes from that of material hardness. The softer material,
i.e. AR-glass, can follow the slip deformation better than carbon; this finally leads to the
ductile behavior.

Tensile plate test

In this investigation the influence of the following parameters are observed; (i) number of
fibers, (ii) fiber size, and (iii) fiber length. In addition, the effect of (iv) a combination of
different fiber materials is investigated using both AR-glass and carbon fibers.

In Fig. 4.2 (a) the structural situation and the material properties of a tensile plate
with unidirectional fibers used for the present numerical investigation are depicted. The
material properties of interface are referred to Appendix C.

Due to symmetry only one half of the structure is analysed. The structure is investigated
under plane stress condition as shown in Fig. 4.2 (b). Considering a material softening
behavior, a displacement controlled loading is applied at the stiff end-plate.

In the approximation process it is considered that the fiber volume of the two-dimensional
plate does not differ from that of the original one with one circular fiber with a radius
rs of 1.1 mm. Thus plate thickness tp has to match the square root of section area of
the fiber, see Fig. 4.2 (b) for the distribution into three fibers. The plate thickness tp of
all four tests are equal. The concrete is formulated by the gradient-enhanced damage.
The material response of the fiber is represented by a 1D non-linear characteristic with a
softening branch (without unloading) expressed by a multi-linear expression for simplic-
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Figure 4.2: Tensile plate (a) structural situation and material properties, (b) plane stress
approximation, using a two-dimensional plate for the case equally distributed three fibers

ity. εy indicates the strain at which the material stiffness deteriorates. The interface is
represented by the discrete bond model with the numerically integrated element as it was
done for the pull-out test. The element types follows the previous investigation.

Fig. 4.3 (a) describes the effect of number of fibers. The number of fiber is varied from
one to three and each fiber is located at the same distance. The total fiber volume is
held constant for all three cases. In case of two and three fibers each fiber size is equally
distributed.

In this test example damage occurs only in concrete whereas fibers are still in the linear
elastic range. Fig. 4.3 (a) indicates that as the number of fibers increases the load carrying
capacity for the same elongation shows a higher level after the structural response reaches
the point of damage initiation of concrete. It is obvious that the outer fibers play a role
in resisting crack propagation of concrete over the entire structure.

Fig. 4.3 (b) shows the effect of fiber size using three unidirectional fibers. Considering
the symmetric layout of fibers, the variation of fiber size is arranged for the following
three cases, (i) L-S-L; outer fibers have a large section area (‘S’ has only 10% of the total
fiber volume), (ii) S-L-S; outer fibers have a small section area (‘L’ has 90% of the total
volume) and (iii) M-M-M; all three fibers have the equal section area. The total fiber
volume is held constant for all three cases and each location of the three fibers is fixed.
Although the results show a similar tendency to the previous example in that the outer
fibers raise the load carrying capacity after the damage initiation of concrete, the fiber size
has minor influence on the response. The reason is that the stress in each unidirectional
fiber is more or less on the same level. The fiber size obviously becomes significant if the
structure is subjected to bending or shear deformation.

In the above two examples each fiber is assumed to be fixed at the stiff end-plate. However



4.1. Preliminary investigation for influential parameters 49

in reality, it is difficult to clamp this kind of fibers at structural boundaries completely.
Fig. 4.3 (c) shows the effect of fiber length, in which each fiber is not fixed at the stiff
end-plate. Therefore, the slip deformation between concrete and fiber plays a significant
role in the structural response. In this example each fiber thickness is equal while the
fiber volume is not constant.

It is observed that the structural responses of the two cases, ‘one long fiber’ and ‘one-
short one’, drop after the damage initiation of concrete and rise again by distributing the
stresses in concrete to fibers; this is a so-called ‘bridge effect’. This kind of behavior is
often seen in FRC structures when a relatively low fiber content is involved, especially
when only chopped short fibers are employed.

Comparing the cases of one long fiber with the short one, it can be seen that the long fiber
provides higher load carrying capacity than the short fiber. However once the capacity
reaches a peak load level the structural analysis encounters difficulty of its convergence
because of the high energy release through the interface between concrete and fiber. This
tendency has also been clearly observed in the case of two long fibers.

The final example shows the effect of a combination of different fiber materials, namely
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Figure 4.3: Preliminary investigation using tensile plate test
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high stiffness and brittleness for carbon versus less stiffness but higher deformability for
AR-glass, see Fig. 4.3 (d). In this example the total fiber volume is held constant and
each fiber size is equal. All fibers are again assumed to be fixed at the stiff end-plate. The
prescribed displacement of 2mm is considerably larger compared to the previous examples
and some fibers enter already the nonlinear range. It is apparent as shown in Fig. 4.3 (d)
that the load level increases as the number of carbon fiber increases. On the contrary, the
deformability of the tensile plate is improved as the number of AR-glass fiber increases.

4.2 Choice of design variables

In the preliminary investigation using a pull-out test the influence of ‘impregnation’,
‘surface roughness’ of fiber, and ‘different fiber materials’ using AR-glass and carbon fibers
was discussed. As mentioned in section 4.1 the present study assumes that impregnation
is necessary for textile reinforced concrete from mechanical and chemical point of view.
Once the impregnated fiber is adopted the influence of surface roughness of fiber tends to
be minor. Thus surface roughness is excluded from the key parameters.
The surface of impregnated fiber, of course, could be modified by, for example, ‘sanded
coating’, ‘twisting yarn’ or ‘cabled yarn’ in order to generate a macroscopic surface rough-
ness leading to ‘interlocking effect’ between concrete and fiber (Dilthey et al. [52], Hanisch
et al. [70]). However this kind of special application is not considered in the present study.
In the tensile plate test the influence of ‘number of fibers’, ‘fiber size’, ‘fiber length’,
and ‘combination of different fiber materials’ was investigated. Considering the results
of the numerical tests, these parameters can be chosen as design variables. The first
three parameters represent more or less a geometrical layout of fibers. In a broad sense,
these geometrical parameters have a direct correlation if the volume of fiber is subjected
to optimization problems as a constraint. For instance once the number of fibers is
changed, either the fiber size or length has to adjust in order to hold the constraint of
fiber volume. Therefore, some geometrical parameters may be coupled or abbreviated for
simplicity depending on the optimization problem. In addition, other possible geometrical
parameters, ‘fiber orientation’ and ‘location’, are obviously influential on the structural
response of FRC.
The combination of different fiber materials is definitely worth to be investigated for
improvement of structural response of FRC. This parameter may become more significant
when a severe damage situation is to be considered for the optimization problem.
To summarize, the following key parameters are identified as design variables for the
present optimization problem maximizing the ductility of FRC structures:

• fiber size

• fiber geometry (fiber length, location, and orientation)

• combination of different fiber materials

In chapter 6 the influence of fiber size, fiber length, and combination of different fiber
materials is investigated. In chapter 7 fiber geometry is chosen as the design variable,
in which the optimal geometrical layout of continuous long fibers is looked for under the
condition that each fiber size and number of fiber is invariant. In chapter 8 fiber geometry
together with fiber size is selected as the design variables and the optimization problem
is solved considering both kinds of design variables simultaneously.



Chapter 5

Sensitivity analysis for a materially
nonlinear problem

5.1 Background

A large amount of research effort has been devoted to the development of optimal design
processes for structural problems with linear structural response. This is mainly due to the
fact that structures have been designed and used in a linear elastic range in many cases.
However increasing design requirements for structures to survive severe or extreme load
conditions demands the development of optimal design processes considering nonlinear
structural response.
Ryu et al. [167] introduce a basic procedure for sensitivity analysis based on geometrical
as well as material nonlinearity. Tsay & Arora [190], [191] describe the general formula-
tion of sensitivity analysis for materially and geometrically nonlinear problems; related
analytical examples are presented in Tsay et al. [192]. Vidal et al. [197] and Vidal &
Haber [196] present a direct differentiation method which is fully consistent to the im-
plicit integration method for constitutive equations. Tortorelli [189] derives the sensitivity
analysis for a hyperelastic material, where the formulations are based on the variational
adjoint and direct differentiation methods. Kleiber & Kowalczyk [100] introduce the sen-
sitivity analysis in plane stress elasto-plasticity and elasto-viscoplasticity. Other extensive
references deal with the basics of sensitivity analysis for nonlinear structural response, for
example Kleiber [97], Kleiber et al. [99], Schwarz & Ramm [173], and Choi & Kim [43].
The optimization of discrete structures, like trusses or beams, considering material and
geometrical nonlinearities is discussed in Choi & Santos [44] and Ohsaki & Arora [130].
Material topology optimization using an elasto-plastic homogenization method is men-
tioned by Yuge & Kikuchi [209]; afterwards this algorithm is extended to the finite defor-
mation problem by Yuge et al. [210].
Maute et al. [120] and Lipka et al. [112] use the von Mises yield criterion considering
the consistent material tangent operator in order to maximize the ductility of a structure.
Dynamic load conditions are considered for topology optimization by Mayer et al. [122].
Maute [118] maximizes the critical load of a structure by topology optimization, where the
geometrically nonlinear behavior is approximated by restricting the stability to a linearized
eigenvalue problem. Bruns & Tortorelli [35] show topology optimization problems for a
geometrically nonlinear structure considering hyperelastic behavior. Jung & Gea [87]
derive a general formulation for the sensitivity analysis based on both materially and
geometrically nonlinear response for topology optimization. Buhl et al. [39] maximize
the stiffness of a structure by topology optimization considering large deformations with
small strains. Ohsaki & Ikeda [131] summarize optimization problems dealing with the
stability of discrete structures. In Kemmler et al. [92], [93] an optimization method to
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maximize the critical load for large displacement problem is discussed.

The number of references dealing with a damage formulation for topology optimization
is still limited compared to that of elasto-plasticity. For example Achtziger & Bendsøe
[1], [2] describe applications using a damage model for topology optimization problems
of discrete structures; Bendsøe & Dı́az [15] apply a damage formulation for continuum
structures.

For shape optimization including nonlinear structural response, Smaoui & Schmit [179]
minimize the structural weight of space trusses considering geometrical nonlinearity.
Barthold & Stein [7] present a continuum mechanics based formulation of the variational
sensitivity analysis for a hyperelastic material and afterwards Barthold & Firuziaan [6]
extend the concept to the application for a hyperelastic material with isotropic damage.
Kleiber & Hien [98] discuss the sensitivity analysis for shape optimization considering in-
elastic buckling and postbuckling response. Reitinger [153] and Reitinger & Ramm [154]
maximize the critical load factor of thin-walled shell structures. The optimal shape of
membrane structures is investigated by Bletzinger [23] and Bletzinger et al. [27].

Shape optimization problems including an elasto-plastic material model with small dis-
placements are introduced by Vidal & Haber [196], Schwarz et al. [172], Schwarz [171],
Schwarz & Ramm [173]. Barthold & Wiechmann [8] describe the variational sensitivity
analysis for shape optimization assuming small strain elasto-plasticity and Wiechmann &
Barthold [201] extend the formulation to large strain. Shape optimization using a damage
formulation with softening behavior is discussed in Bugeda et al. [38].

This section addresses the analytical method for a materially nonlinear problem assuming
the gradient enhanced damage model under linear kinematic condition.

The ‘path-dependency’ or sometimes called ‘history-dependency’ is a key point to dis-
tinguish the characteristics of sensitivity analysis for nonlinear structural response. If
the structural analysis is path-dependent, its sensitivity analysis is also path-dependent.
In the context of sensitivity analysis, ‘path-dependence’ means not only dependence of
current sensitivity values on the deformation history, i.e. the sensitivities derived from
the ‘current values of state variables’ during the incremental procedure, but also the de-
pendence on the history of sensitivity, i.e. previous sensitivities of stresses, displacements
and/or internal variables, see Kleiber et al. [99].

The sensitivity analysis using a hyperelastic material is path-independent while conven-
tional elasto-plasticity and damage models are path-dependent. For path-dependent prob-
lem, incremental, step-by-step versions of the direct differentiation method is the natural
choice since the direct differentiation approach generates the sensitivity information for
the complete response field at each loading step.

The adjoint method is not well-suited for path-dependent problem because each adjoint
solution yields the sensitivity of only one single functional, rather than the sensitivities
of the full response fields, see Tsay & Arora [191] and Vidal & Haber [196]. Occasionally
the adjoint method may become more efficient than the direct method depending on the
individual optimization problem.

The present section describes a variational direct approach. In the derivation of sensi-
tivities ‘material design parameters’ are considered; the geometrical change is considered
in Chapter 7. The difference between damage and elasto-plasticity models in sensitivity
analysis is also discussed in the sequel.
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5.2 Equilibrium formulation

In a continuum damage model the stress can be obtained from the total strain ε. Thus
the total equilibrium formulation expressed by the principle of virtual work is the natu-
ral choice in order to derive the sensitivity of state variables. Applying the variational
direct method with the matrix formulation of the total equilibrium formulation of PVW
Eq. (2.30), the equilibrium condition is recast in the parameter space ξ at time t + 1,∫

Ωξ

δεTσt+1 |J|dΩξ = λt+1

∫
Γξ

δuTt0 |J̃| dΓξ , (5.1)

where the body forces are not considered without loss of generality. λ denotes the load
factor with respect to a reference traction load t0.
Assuming geometrically linear structural response, the strains are

ε =
1

2

(
∇ξuJ−1 +

(∇ξ uJ−1
)T)

= ∇sym
ξ uJ−1 , δε = ∇sym

ξ δuJ−1 . (5.2)

In this problem the determinant of Jacobian matrix |J|, metric |J̃|, virtual displacements
δu, and virtual strains δε do not depend on the design variables, so that their derivatives
with respect to those parameters vanish. Thus the differentiation of the equilibrium
condition reads

∫
Ωξ

δεT∇sσt+1|J| dΩξ = ∇s λt+1

∫
Γξ

δuT t0 |J̃| dΓξ . (5.3)

In Eq. (5.3) the loads are assumed to be independent of the optimization variables. In
order to determine the stress derivative ∇sσt+1, Eq. (5.3) is expressed in terms of the
derivative of the nodal displacements ∇sd.

5.3 Derivation of sensitivity analysis

In this section the influence of the non-local equivalent strains ε̃v is neglected for simplicity.
This term is considered in optimization problems introduced in chapters 6 and 7, in which
shape design parameters are involved.
First the main variables stress σ, damage parameter D, history variable κ, and local
equivalent strain εv are described in their general relation to the design parameters ŝ

σ = σ (D, C (E (ŝ) , ν (ŝ)) , ε (ŝ)) , (5.4)

D = D (κ, κ0 (ŝ) , α (ŝ) , β (ŝ)) , (5.5)

κ = κ (εv, κu (εu)) , (5.6)

εv = εv (I1 (ε (ŝ)) , J2 (ε (ŝ)) , k (ŝ) , ν (ŝ)) , (5.7)
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where κu and εu denote the history variable and the strain tensor at the time tu when a
potential unloading starts, respectively. One can obtain the stress derivative ∇sσt+1 in
accordance to the chain rule as follows

∇sσt+1 =
∂σ

∂ε

∂ε

∂s
+
∂σ

∂D

∂D

∂κ

∂κ

∂εv

(
∂εv

∂I1

∂I1
∂ε

∂ε

∂s
+
∂εv

∂J2

∂J2

∂ε

∂ε

∂s
+
∂εv

∂k

∂k

∂s
+
∂εv

∂ν

∂ν

∂s

)

+
∂σ

∂D

(
∂D

∂κ0

∂κ0

∂s
+
∂D

∂α

∂α

∂s
+
∂D

∂β

∂β

∂s
+
∂D

∂κ

∂κ

∂κu

∂κu

∂s

)
+
∂σ

∂C

(
∂C

∂E

∂E

∂s
+
∂C

∂ν

∂ν

∂s

)

= CT∇s εt+1 + ∇ex
s σt+1

(5.8)
with

CT =
∂σ

∂ε︸︷︷︸
Ced

+
∂σ

∂D

∂D

∂κ

∂κ

∂εv

(
∂εv

∂I1

∂I1
∂ε

+
∂εv

∂J2

∂J2

∂ε

)
, (5.9)

∇ex
s σt+1 =

∂σ

∂D

(
∂D

∂κ0

∂κ0

∂s
+
∂D

∂α

∂α

∂s
+
∂D

∂β

∂β

∂s

)
+
∂σ

∂D

∂D

∂κ

∂κ

∂εv

(
∂εv

∂k

∂k

∂s
+
∂εv

∂ν

∂ν

∂s

)

+
∂σ

∂C

(
∂C

∂E

∂E

∂s
+
∂C

∂ν

∂ν

∂s

)
+
∂σ

∂D

∂D

∂κ

∂κ

∂κu

∂κu

∂s
, (5.10)

where CT denotes the tangent modulus at the time step t + 1.
In order to obtain CT and ∇ex

s σt+1 each material sensitivity is described as follows. At
first the term ∇Dσ= ∂σ

∂D
is given by considering Eq. (3.1),

∇Dσ = −Cε . (5.11)

The derivatives of the damage variable in Eqs. (5.9) and (5.10) are obtained from Eq. (3.4)

∇κ0D = −1

κ
(1 − α) − 1

κ
(1 + κ0β)α e−β(κ−κ0), (5.12)

∇αD =
κ0

κ

(
1 − e−β(κ−κ0)

)
, (5.13)

∇βD =
κ0

κ
(κ− κ0)α e

−β(κ−κ0), (5.14)

∇κD =
κ0

κ2
(1 − α) + α κ0

(
β

κ
+

1

κ2

)
e−β(κ−κ0) if κ ≥ κ0, else 0 . (5.15)

The derivatives of the equivalent strain εv are obtained from Eq. (3.7) as

∇kεv =
I1

2k2 (1 − 2ν)
− 1

2k2

√
(k − 1)2

(1 − 2ν)2 I21 −
12k

(1 + ν)2J2

+
1

4k
√

(k−1)2

(1−2ν)2
I21 − 12k

(1+ν)2
J2

[
2 (k − 1)

(1 − 2ν)2 I21 −
12

(1 + ν)2 J2

]
, (5.16)
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∇νεv =
k − 1

k (1 − 2ν)2 I1 +
1

k
√

(k−1)2

(1−2ν)2
I21 − 12k

(1+ν)2
J2

[
(k − 1)2

(1 − 2ν)3 I21 −
6k

(1 + ν)3J2

]
, (5.17)

The derivatives of the history variable κ are determined by the loading condition, i.e.

∂κ

∂εv
=

{
1 if loading

0 if un−/reloading

∂κ

∂κu
=

{
0 if loading

1 if un−/reloading
(5.18)

The actual εv is replaced by κ at the time t + 1 when loading occurs. Therefore ∇εvκ
becomes unity. However the threshold history variable κ at the time t + 1 does not change
when unloading starts; it holds the same value as the previous κ at the time t, i.e. κu.
This results in ∇εvκ = 0 and ∇κuκ = 1.
Finally, the derivative of κu with respect to the design variable ŝ in Eq. (5.10) is given by

∂κu

∂s
=

∂κ

∂s

∣∣∣∣
t=tu

=
∂κ

∂εv︸︷︷︸
=1

(
∂εv

∂I1

∂I1
∂ε

+
∂εv

∂J2

∂J2

∂ε

) ∣∣∣∣
t=tu

∂εu

∂s
. (5.19)

The strain derivative ∇sεu in Eq. (5.19) is expressed by the usual kinematic B-operator
matrix as

∇sεu = B∇sdu , (5.20)

where du indicates the total nodal displacement vector at time tu. Note that du and the
term in the parentheses of Eq. (5.19) need to be stored and updated whenever ‘loading’
occurs.
Inserting Eqs. (5.11) to (5.19) into Eqs. (5.9) and (5.10), and Eqs. (5.2), (5.8) into Eq. (5.3)
yields

∫
Ωξ

[∇sym
ξ δuJ−1

]T
CT

[∇sym
ξ ∇suJ−1

] |J| dΩξ

= ∇sλt+1

∫
Γξ

δuT t0 |J̃| dΓξ −
∫
Ωξ

[∇sym
ξ δuJ−1

]T ∇ex
s σ|J| dΩξ . (5.21)

The remaining unknown term in Eq. (5.21) is the sensitivity of the total nodal displace-
ments ∇sd. This equation can be described and solved by the finite element method:

∫
Ωξ

BTCTB |J| dΩξ∇s d = ∇s λt+1

∫
Γξ

NT t0 |J̃| dΓξ −
∫
Ωξ

BT∇ex
s σ|J| dΩξ . (5.22)

It can be recognized that Eq. (5.22) has the format of the typical stiffness expression
adding up all terms on the right hand side to a new pseudo load vector Ppse:

KT ∇s d = Ppse = ∇sλt+1P + P̃pse . (5.23)
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KT denotes the tangent stiffness matrix at the time step t + 1.

The next question is how to deal with the derivative of the load factor ∇sλ. Note that the
derivatives based on a load-controlled algorithm differ from those based on a displacement-
controlled algorithm controlling a certain nodal displacement ‘component’ dj = d̂j of the
structure which is more suitable for the optimization of ductility (Maute [118] and Maute
et al. [120]). For a detailed description it is referred to Schwarz et al. [172], Lipka et
al. [112], Kato et al. [90], and Kato & Ramm [91]. A load-controlled algorithm renders
∇sλ = 0 while for a displacement controlled algorithm only the sensitivity of the nodal
displacement for the controlled degree of freedom d̂j is equal to zero. The sensitivity of
the load factor based on a discretized formulation is derived subsequently,

∇s d̂j = ∇sλt+1
d̆j

λt+1
+
(
∇s d̂j

)
pse

= 0, (5.24)

where d̆j and
(
∇sd̂j

)
pse

are the j -th component of vectors d̆ and
(
∇sd̂
)

pse
is expressed

as

d̆ = K−1
T λt+1 P̂, (5.25)

(
∇sd̂
)

pse
= K−1

T P̃pse . (5.26)

Substituting d̆j and
(
∇sd̂j

)
pse

into Eq. (5.24) yields

∇sλt+1 = −

(
∇s d̂j

)
pse

d̆j

λt+1 . (5.27)

According to the above equations the derivative of the total nodal displacement vector
∇sd̂ is calculated as follows

∇s d̂ = d̆
∇sλt+1

λt+1
+
(
∇sd̂
)

pse
. (5.28)

Finally, the total sensitivity of the objective function can be obtained by inserting Eq. (5.28)
into Eq. (2.42) and accumulating each sensitivity over the load increment step number
nstep as

∇sf =

nstep∑
t=1

∇sft =

nstep∑
t=1

(
∇ex

s ft + ∇df
T
t ∇sd̂t

)
, (5.29)

where ft indicates the ductility increment in the t-th load increment.

5.4 Comparison between damage and plasticity mod-

els in sensitivity analysis

In the previous section the derivative of the ‘total’ displacement ∇sd̂ is calculated in terms
of the derivative of the equilibrium equation (5.1).
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In general Eq. (5.1) is applicable for any nonlinear static structural problem. However it
is not possible to derive ∇sd directly when general plasticity models are used in which the
constitutive relation is formulated based on ‘incremental’ strains or displacements, i.e.

σt+1 = σt + Δσ (Δε) and εt+1 = εt + Δε (Δd) , (5.30)

where Δ (•) indicates the increment of (•) in the load increment. In this case an indirect
approach is useful in order to obtain the total displacement derivative ∇sd̂ for Eq. (5.29).

Firstly, the incremental displacement derivative ∇s

(
Δd̂
)

is calculated in terms of the

derivative of the ‘incremental’ form of the equilibrium condition analogous to Eq. (5.3),
i.e.

∫
Ωξ

δεT∇s (Δσ) |J| dΩξ = ∇s (Δλ)

∫
Γξ

δuT t0 |J̃| dΓξ . (5.31)

Eq. (5.31) can be expressed in the same manner as Eq. (5.23)

KT∇s

(
Δd̂
)

= ΔPpse = ∇s (Δλ) P̂ + ΔP̃pse . (5.32)

Similarly the derivative of incremental displacement ∇s

(
Δd̂
)

is calculated by following

the solution procedures Eqs. (5.24) to Eq. (5.28). The details of these procedures are
referred to Lipka et al. [112].
The next step is to obtain the actual total displacement derivative ∇sd̂t+1 by means of

the calculated ∇s

(
Δd̂t+1

)
, i.e.

∇sd̂t+1 = ∇sd̂t + ∇s

(
Δd̂t+1

)
, (5.33)

and then ∇sd̂t+1 is inserted into Eq. (5.29). Other terms in Eq. (5.29) also have to be
generated by accumulating the corresponding incremental values. This process is repeated
after each load increment.
On the other hand in a damage model the stress σ is an explicit function of the total strain
ε even if un-/re-loading situations occur, i.e. σt+1 = σt+1 (εt+1). Thus an incremental
iterative procedure for the update of the stress σ, mandatory in plasticity, is not necessary.
This allows to use directly the derivative of the total strain ∇sε or displacement ∇sd at
converged position n + 1 (or at the actual time step t + 1) in the sensitivity analysis, i.e.
both derivatives do not have to be accumulated over load increments. This also avoids
that errors of the sensitivities are accumulated during load incrementation. Fig. 5.1 shows
the difference between the total and the incremental displacement approaches, where d
indicates an arbitrary component of the nodal displacement vector d and ∇sd stands for its
sensitivity with respect to a design variable ŝ. As can be seen in Fig. 5.1, the incremental
displacement approach accumulates the errors after each load increment while the total
displacement approach provides an exact derivative.
As mentioned above, this efficient ‘total’ approach is restricted to material models in
which the stress σ is a function of the total strain ε. The similar discussion for this direct
sensitivity approach using total strains or displacements is described in Bugeda et al. [38]
and Kleiber et al. [99].
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Figure 5.1: Comparison between total and incremental displacement approaches for nodal
displacement sensitivity

Of course, an incremental procedure is necessary for the equilibrium iterations during the
nonlinear structural analysis after the linearization process, see Eq. (2.40). It means that
in a plasticity model both the equilibrium iterations, e.g. by applying a Newton-Raphson
scheme, and the constitutive iterations, e.g. using a return-mapping algorithm, are driven
by the incremental iterative procedure while in the damage model the incremental proce-
dure is only necessary for the equilibrium iteration but is unnecessary for the constitutive
iterations because the stress is an explicit function of the ‘total’ strain.



Chapter 6

Multiphase material optimization

6.1 Background

In this chapter the concept of multiphase material optimization and its extension to ma-
terially nonlinear problems are proposed. The present methodology is strongly related
to topology optimization, in particular to the SIMP approach used for a one-phase ma-
terial, and to its generalization to multiphase topology optimization, for example used
for composite structures. The development of these methods is briefly described in the
sequel.

Since the fundamental research of Bendsøe & Kikuchi [17] numerous papers have appeared
dealing with topology optimization. It is well known that the ‘0-1’ integer topology op-
timization problem being a highly non-convex variational problem is ill-posed. Several
material models providing a regularization have been developed. Typical material mod-
els are rank-n laminate (Bendsøe [13]; Olhoff et al. [132]), hole-in-cell microstructures
(Bendsøe & Kikuchi [17]), and the SIMP method (Bendsøe et al. [18]; Zhou & Rozvany
[213]) as mentioned in section 2.3.1. The first two models provide a rigorous regularization
of the optimization problem via homogenization or smeared-out technique. Although the
SIMP method does not provide a stringent regularization it has been successfully applied
to numerous problems once the penalty factor is used within the certain restrictions. In
the meantime material and/or geometrical nonlinearities are included in the optimization
process, e.g. Yuge & Kikuchi [209], Bugeda et al. [38], Maute et al. [120], Kemmler et al.
[93], just to mention only a few references.

The optimization of composite structures may be divided into two kinds of applications;
in the first one the fiber orientation is the main target whereas the second group deals with
an optimal composite material distribution. The fiber orientation problem of laminated
composites has been investigated by Olhoff et al. [132] who introduce a smeared-out
technique for the derivation of the effective bending stiffness, by Hammer [69] and by
Foldager et al. [60] who use simplified anisotropic material properties for the constitutive
relation, and by Stolpe & Stegmann [182] who apply continuous design variables with a
prescribed fiber angle set for solving multiple material problems in a linear elastic context.

For problems of optimal composite material distribution applying topology optimization
the individual material properties of a composite are prameterized. Sigmund & Torquato
[177] introduce multiphase topology optimization where a penalty function is applied for
the parameterization similar to the SIMP method. This scheme is quite simple and nu-
merically robust. Other parameterization schemes are also introduced, e.g. Rodrigues et
al. [158], however most of them are more complex and less suited for applications than
the penalty approach, especially when three or more phases are involved. Sigmund &
Torquato [177] apply the multiphase topology optimization for the material distribution
of three-phase composite microstructures with extremal thermal expansion. Gibiansky &

59
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Sigmund [62] apply this method for three-phase two-dimensional isotropic composites with
extremal bulk modulus, and Sigmund [176] extends it to a two-phase three-dimensional
isotropic composite. Recently Stegmann & Lund [181] also apply this method for opti-
mization of fiber orientation in a composite laminated shell. However these investigations
are verified mainly for linear elastic materials.

Hu [83] describes a buckling optimization problem for laminated shells under in-plane
shear in which materially nonlinear behavior is considered. Swan & Arora [186] and Swan
& Kosaka [187] introduce a method based on the classical Voigt-Reuss mixing assumption
applicable to an inelastic material behavior for an epoxy-boron composite. Beyond these
references relatively little effort has been made so far to extend optimization problems for
composite structures to materially nonlinear behavior.

In this study a methodology of material optimization including material nonlinearities
in the sense of a damage formulation is discussed. The classification of the present ap-
proach within the different categories of material optimization is described in the following
section.

6.2 Concept of multiphase material optimization

In order to classify the present formulation within the multiphase optimization the differ-
ent concepts of material distribution problems are summarized, see Fig. 6.1. The SIMP
approach, Fig. 6.1 (a1) uses the intermediate densities as mathematical vehicle to relax
the ill-posed problem during optimization. The exponent η plays the role of a penalization
factor without a physical meaning eventually leading to a pure or at least an almost pure
layout for a single material structure.

The concept of topology optimization may also be applied to a single material for which
intermediate densities physically exist, for example polymer or metal foams. Analogously
to natural structures, e.g. spongy bones, the porosity, limited by upper and lower bounds,
can be used as design parameter which varies in different regions of the structure, Fig. 6.1
(a2); the effective modulus Ceff is often defined by a power-law formula, see for example
Gibson & Ashby [63], where the similarity to the SIMP approach can be recognized; for
an application see Lipka [109], Lipka & Ramm [110], [111], in which the method is used
to avoid local buckling in sensitive regions, to tune frequencies or to increase the overall
ductility of the entire structure.

For a two-phase material the principle of multiphase topology optimization is sketched in
Fig. 6.1 (b1), in analogy to the SIMP approach; in other words the void phase is replaced
by a second solid material. Again intermediate stages are allowed during optimization
applying a penalized relaxation. Figure 6.1 (b1) also shows a slight variation where parts
of the structure, for example the matrix, are not elements of optimization. Penalized
functions based on the volume fraction r1/r0 interpolate the material stiffness between
those of the two phases C1 and C2, see the added interpolation formula rendering the
effective stiffness Ceff of the composite material. As can be seen in Fig. 6.1, r0 indicates
the thickness (height) of a finite element and r1 is that of the phase-2 material, respectively.

The same concept can be utilized if a material consists of two (or more) phases on a small
scale, for example a material with a certain heterogeneous microstructure composed of
several phases or a mixture of two sintered powders, this time allowing intermediate stages
of a physically existing smeared material, Fig. 6.1 (b2). In this case the interpolation rep-
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Figure 6.1: Classification of material distribution problems in optimization, (a) single
phase material, (b) multiphase material

resents the material behavior of a real mixture, macroscopically describing the constitutive
behavior of a material point in an average sense. Here η̂ is a fitting variable rather than
a penalization parameter, which guarantees the physically admissible intermediate stages
and can be obtained by experiments or homogenization. The present approach applies
this concept, as described in Fig. 6.1 (b2), to the fiber layout of a FRC structure; the
two phases are the concrete matrix and the fiber material. An extension to a three-phase
model with two different kinds of fibers will be described later on. Details of the concept
including the definition of the design variables are given in section 6.3.

For simplicity a power-law interpolation is used for the constitutive behavior of the
smeared fiber/matrix material; more refined interpolations may be derived through ho-
mogenization. After optimization a clear fiber layout is obtained controlled by the volume
fractions.

The present study extends this multiphase material optimization to materially nonlinear
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problems applying a damage formulation with strain softening in order to consider a
more realistic physical behavior of FRC. To perform the structural analysis the nonlinear
failure behavior of matrix, fiber and interface is considered. As described in section 3.2
the isotropic gradient enhanced damage model (see Peerlings et al. [141], [140], Peerlings
[139]) is used for both concrete and fibers; numerically integrated interface elements with
a discrete bond model Krüger et al. [105] are applied for modeling the debonding between
fiber and matrix. As said before linear kinematics is assumed in this study for simplicity.

Since the applied damage formulation includes three extra material parameters in addition
to Young’s modulus for each material (see section 3.2) the interpolation of the mixture
according to Fig. 6.1 (b2) is also applied to these additional parameters.

6.3 Detailed concept of design variables

In this chapter ‘fiber size’, ‘different fiber material combination’, and ‘fiber length’ are
chosen as the design parameters which are specified for a fiber reinforced beam, half of
it is shown in Fig. 6.2 as a typical example. The structure contains a great portion of
the matrix (concrete) which is not part of optimization (light gray). The optimization
concentrates on the design layers which include either one fiber (red, glass or carbon) or
two fibers (blue and red for glass and carbon) and the rest of the matrix (dark gray).
Several elements or even an entire layer can be combined to one design region reducing
the number of design parameters and simplify the overall fiber layout. For the two-
phase material the design variables are the volume fractions s = r1/r0 as mentioned in the
previous section. For the three-phase material two different design variables are necessary,
namely the volume fraction of the fiber content s1 = r1/r0 and the amount of fiber 2 in
this fiber combination s2 = r2/r1.

As indicated in section 4.1 the fiber combination makes sense since it allows to increase
the ductility by glass fibers and the strength by carbon fibers which in turn are more
brittle. This will be clearly demonstrated in this study, see example shown in Fig. 6.11.
The two- or three phase materials need respective mixture formulas, see Fig. 6.1 (b2).

Note that the mixture approach presented in this chapter is formulated in a general
setting considering an arbitrary distribution of all constituents. If however one of the
constituents is clearly defined and excluded from the mixture the material model can of
course be simplified. For instance in chapter 8, the concrete matrix is excluded from the
mixture and the material properties of resulting one or two-phase fiber are superimposed
onto the concrete matrix.

6.4 Interpolation rules and sensitivities

6.4.1 Basic model

This section introduces a multiphase material optimization applying the described damage
formulation. First of all a two-phase composite is described and subsequently extended to
a three-phase material. A material point in the specific design space Ωs of the composite
body B may be in phase-1, in phase-2 or in a mixture of both phases, defined by a
continuous indicator function χ̄
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Figure 6.2: Present approach for fiber layout in a matrix

⎧⎪⎨
⎪⎩

χ̄ = 0 for phase − 1 (e.g. matrix)

0 < χ̄ < 1 for the mixture

χ̄ = 1 for phase − 2 (e.g. fiber)

χ̄ ∈ L∞(Ωs). (6.1)

The specific design space Ωs is the domain which is part of the optimization and the spaces
for matrix Ωc and interface Ωi are not parts of it. The continuous indicator function χ̄
is identified as the design variable s (0 ≤ s ≤ 1). It represents a ‘volume fraction’ of the
constituent materials and is a function of the geometrical parameters r0 and r1 of a design
element (see Fig. 6.2)

χ̄ = s =
r1

r0
. (6.2)

Applying this formulation the effective linear elastic material tensor C of a two-phase
composite can be expressed as
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Figure 6.3: Change of uniaxial stress–strain relation of damage model with respect to one
material parameter increased under the condition that all other parameters are kept con-
stant. (a) Young’s modulus E, (b) initial equivalent strain κ0, (c) (d) softening parameters
α and β

C =
(
1 − sη̂

)
C1 + sη̂C2 . (6.3)

The subscripts 1, 2 on C stand for the material property of phase-1 and phase-2 (C1 ≤ C2),
respectively. η̂ denotes a power of the function which interpolates the physically admissible
intermediate values between two material properties C1 and C2. The hat (•̂) is added to
η̂ in order to distinguish the variable from a pure mathematical interpolation applied as
relaxation in the SIMP approach. In this context the power-law interpolation function
Eq. (6.3) for a multiphase composite can also be denoted as mixture rule.
Spatially varying layouts of fibers can nowadays be easily handled in practice.

6.4.2 Two-phase material

The present section extends the linear elastic formulation as given in Eq. (6.3) to the
damage model. In this case four material parameters are introduced for each individual
phase, namely Young’s modulus E, initial equivalent strain κ0 and exponential softening
parameters α and β shown in Eq. (3.4). These parameters control directly the stress–
strain relation of the damage model.
It suggests itself to apply the power-law interpolation used for C in Eq. (6.3) also to the
four material parameters in the case of a damage formulation for a two-phase material.
In order to assist the following discussion C in Eq. (6.3) is replaced by ζ for a two phase
material

ζ =
(
1 − sη̂

)
ζ1 + sη̂ζ2 , (6.4)

where ζ represents the effective material parameters of the four parameters described
above. ζ1 and ζ2 stand for the material properties of phase-1 (e.g. concrete matrix) and
phase-2 (e.g. fiber), respectively, and are fixed values.
A closer look shows that Eq. (6.4) is not always sufficient to express the interpolation for
all damage parameters since they have their own characteristics. In order to understand
the features of the individual material parameters its relation to the present objective
f, the structural ductility, is considered. f is the area below the stress–strain curve and
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increases if either Young’s modulus E or initial equivalent strain κ0 increases under the
condition that all other material parameters are kept constant, see Fig. 6.3 (a), (b). On
the other hand the ductility decreases if either one of the softening parameters α or β
increases, see Fig. 6.3 (c), (d).
In other words the following distinction has to be made for the derivative of f with respect
to the four material parameters ζ ;

∇ζ f

{ ≥ 0 for ζ = E, κ0

< 0 for ζ = α, β
(6.5)

Keeping this behavior in mind one can define related interpolation rules. It is obvious
that Eq. (6.4) is a reasonable interpolation for the stiffness, namely the effective Young’s
modulus if E1 ≤ E2, see for example Bendsøe & Sigmund [19]. It is apparent that the
stiffer phase-2 has a dominant influence on the mixture expressed by a steeper gradient
at s = 1 than that of phase-1 at s = 0, Fig. 6.4 (a). Since κ0 has essentially the same
tendency it makes sense to use the same interpolation Eq. (6.4) also for this parameters,
provided κ01 ≤ κ02 . The situation is reverse for both softening parameters α and β.
Assuming again ζ1 ≤ ζ2 phase-1 is the “leading” constituent requiring a larger gradient
of the interpolation function at s = 0; therefore the power law has to be concave and is
expressed by

ζ = (1 − s)η̂ ζ1 +
[
1 − (1 − s)η̂

]
ζ2. (6.6)

It may happen that for either of the four parameter ζ1 > ζ2. In this case the interpolation
functions (6.4) and (6.6) have to be interchanged leading to Fig. 6.4 (c) and Fig. 6.4 (d),
respectively.
Summarizing the interpolation rules yields

ζ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − sη̂

)
ζ1 + sη̂ζ2 for ζ :

⎧⎨
⎩

E, κ0 (ζ1 ≤ ζ2) Fig. 6.4(a)
or
α, β (ζ1 > ζ2) Fig. 6.4(d)

(1 − s)η̂ζ1 +
[
1 − (1 − s)η̂

]
ζ2 for ζ :

⎧⎨
⎩

E, κ0 (ζ1 > ζ2) Fig. 6.4(c)
or
α, β (ζ1 ≤ ζ2) Fig. 6.4(b)

(6.7)

The mathematical formulations of Eq. (6.7) can be simply verified from the geometrical
properties of each interpolation depicted in Fig. 6.4. Note that it is not necessarily required
that the same value of the fitting parameter η̂ is used for all four parameters.
Besides aforementioned four parameters, two material properties still remain which in-
fluence the stress–strain relation. The first one is factor k of the damage model and the
second one is Poisson’s ratio ν in Eq. (3.7). These parameters are interpolated in the same
way as Young’s modulus E or the initial equivalent strain κ0 since the ductility increases
as these parameters increase.

6.4.3 Three-phase material

In this section the methodology of the aforementioned two-phase composite is extended
to a three-phase material, i.e. the fiber reinforced composite consists of three different
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Figure 6.4: Interpolation rules and their derivatives with respect to the selected design
variable (a), (b) ζ1 ≤ ζ2 and (c), (d) ζ1 > ζ2

materials (no void). At first the notation of design variables for fiber ‘size’ and fiber
‘material combination’ are discussed looking again at the example given in Fig. 6.2, where
phase-1,-2 and -3 are defined as matrix, fiber 1 and fiber 2, respectively. The design
variable s1 denotes a parameter to control the volume fraction of both fibers 1 and 2
in the design element and s2 represents the volume fraction of fiber 2 to the total fiber
volume (height) in the design element. According to the notation of design variables
the formulation of the effective material parameters for a three-phase composite can be
written as

ζ =
(
1 − sη̂

1

)
ζ1 + sη̂

1

[ (
1 − sη̂

2

)
ζ2 + sη̂

2ζ3

]
︸ ︷︷ ︸

ζ23

(6.8)

where ζ23 represents the interpolation between ζ2 and ζ3. s1 adjusts between ζ1 and ζ23
while s2 does between ζ2 and ζ3. Note that two interpolation rules visualized in Fig. 6.4
are dealt with in one mathematical formulation. The choice of the first and second
interpolation depends on (i) the characteristics of the individual material parameters
and (ii) the relations of ζ1 and ζ23, and of ζ2 and ζ3 formulating the first and second
interpolation rule, respectively. It is referred to diagrams given in Fig. 6.5 in order to
understand the meaning of Eq. (6.8) where exemplarily the condition for ζ = E, κ0 in
combination with ζ1 ≤ ζ2 ≤ ζ3 is assumed.

According to the above explanation the general mathematical formulation of a three-phase
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Figure 6.5: Combination of interpolation rules for Young’s modulus E or initial equivalent
strain κ0 for a three-phase composite

composite is summarized as follows

ζ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − sη̂

1

)
ζ1 + sη̂

1

[(
1 − sη̂

2

)
ζ2 + sη̂

2ζ3

]
for ζ :

⎧⎨
⎩

E, κ0 (ζ1 ≤ ζ23 & ζ2 ≤ ζ3)
or
α, β (ζ1 > ζ23 & ζ2 > ζ3)(

1 − sη̂
1

)
ζ1 + sη̂

1

[
s̃η̂
2ζ2 +

(
1 − s̃η̂

2

)
ζ3

]
for ζ :

⎧⎨
⎩

E, κ0 (ζ1 ≤ ζ23 & ζ2 > ζ3)
or
α, β (ζ1 > ζ23 & ζ2 ≤ ζ3)

s̃η̂
1ζ1 +

(
1 − s̃η̂

1

) [(
1 − sη̂

2

)
ζ2 + sη̂

2ζ3

]
for ζ :

⎧⎨
⎩

E, κ0 (ζ1 > ζ23 & ζ2 ≤ ζ3)
or
α, β (ζ1 ≤ ζ23 & ζ2 > ζ3)

s̃η̂
1ζ1 +

(
1 − s̃η̂

1

) [
s̃η̂
2ζ2 +

(
1 − s̃η̂

2

)
ζ3

]
for ζ :

⎧⎨
⎩

E, κ0 (ζ1 > ζ23 & ζ2 > ζ3)
or
α, β (ζ1 ≤ ζ23 & ζ2 ≤ ζ3)

(6.9)

where s̃i = 1 − si is introduced in order to make the formulation compact. Again it has
to be mentioned that it is not necessarily required that the same value of the fitting
parameter η̂ has to be used for the first and second interpolations.

6.5 Optimization problem

In this study the objective is to maximize the structural ductility for a prescribed fiber
volume. As the ductility is defined by the internal energy summed up over the entire struc-
ture for a prescribed nodal displacement d̂j introduced in section 5.3, the mathematical
formulation of the optimization problem of FRC can be written as follows

minimize f (ŝ) = −
∫
Ω

∫
ε̂

σ dε dΩ (6.10)

subject to h (ŝ) =

∫
Ωs

s dΩs − V̂ = 0 (6.11)
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ŝL ≤ ŝi ≤ ŝU , i = 1, ..., ns (6.12)

where V̂ denotes the prescribed fiber volume, ŝL and ŝU the lower and upper bounds of
the design variables, and ns the number of design variables. Eq. (6.10) is integrated over
the entire domain Ω (= Ωs ∪ Ωc ∪ Ωi). The normalized constraint function is applied in
the calculation. ε̂ stands for the strain tensor after convergence at each time (load) step
in the structural analysis.
The total derivative of the design functions with respect to the design variables can be
decomposed into an explicit and an implicit part. The design functions depend on the
structural response which in turn is implicitly related to the optimization variables, for
example the objective function is expressed as f = f (ŝ, d). This leads to

∇s (•) = ∇ex
s (•) + ∇d (•) ∇sd , (6.13)

where ∇ex
s (•) describes the explicit derivative with respect to the design variables and d

is the nodal displacement vector after the usual FE discretization, confer Eq. (2.42). An
optimality criteria method (see Patnaik et al. [136]) is applied to solve the optimization
problems because of the numerically high efficiency and robustness of this scheme, see
section 2.2.2.

6.6 Sensitivity analysis

In this section the sensitivity analysis for the two-phase material is detailed. The extension
to the sensitivity analysis for the three-phase material can be performed in the same way.
The derivative of the effective material parameter ζ for a two-phase composite can be
formulated from Eq. (6.7) as

∇sζ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

η̂ sη̂−1 (ζ2 − ζ1) for ζ :

⎧⎨
⎩

E, κ0 (ζ1 ≤ ζ2)
or
α, β (ζ1 > ζ2)

η̂ (1 − s)η̂−1 (ζ2 − ζ1) for ζ :

⎧⎨
⎩

E, κ0 (ζ1 > ζ2)
or
α, β (ζ1 ≤ ζ2)

(6.14)

Each derivative for E, κ0, α and β is inserted into Eq. (5.10) and the calculation of the
total sensitivity follows the solution procedures as described in section 5.3.

6.7 Numerical study on accuracy of sensitivity anal-

ysis

In this section a numerical study on the accuracy of the sensitivity analysis based on
the Variational Direct Method (VDM) is performed comparing it to a Finite Difference
Method (FDM).
In addition, the explicit term (EXL) is evaluated separately and compared to the two
other results, i.e. VDM and FDM. The explicit term of the sensitivity is formulated as
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Figure 6.6: Accuracy of sensitivities at the middle design element layer, (a) two-phase
(initial design variable s = 0.5), (b) three-phase (initial design variables s1 = 1 , s2 = 0.5)

follows

∇ex
s f (ŝ) = −

∫
Ω

∫
ε̂

∇ex
s (σ) dε dΩ . (6.15)

A tension plate of 100×200×1.9mm with seven uni-directional reinforcement layers of
0.3mm thickness is investigated. Due to symmetry only one half of the system is analyzed
and plane-stress conditions are assumed. Concrete matrix, fibers (AR-glass and carbon)
and interface are formulated according to the aforementioned material models; material
properties are taken from the example described in section 6.8. Two- and three-phase
composites are investigated, assuming constant fiber thickness along the layer as design
variables.

This investigation focuses on the sensitivity of ductility with respect to the thickness of
the middle fiber (AR-glass) for the two-phase material and thickness of phase-3 (carbon)
for the three-phase material, respectively. The errors are defined as the relative deviation
to the FDM. They are plotted versus the reached load step number of a displacement-
controlled condition during loading for the two cases in Fig. 6.6. In order to allow for an
interpretation of the results normalized load-displacement curves are schematically added;
they show a relatively early damage initiation of the matrix at a low load level. When
the peak load is reached the design element layer starts to damage; shortly thereafter the
errors of sensitivities begin to increase slightly. However it can be recognized that the
VDM based sensitivities as well as their subset EXL show a very good agreement with the
FDM solution for both, the two- and three-phase composites. It can also be concluded
that the damage of the matrix (Ωc) does not lead to substantial errors.
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6.8 Numerical examples

For the following numerical investigations a bending beam with a fiber reinforcement is
chosen as displayed in Fig. 6.7. The FRC structure is composed of a concrete matrix and
four unidirectional fibers at the fixed positions. These fibers consist of a mixture of fibers
and a concrete matrix. The properties of concrete matrix in the fixed domain are not part
of the optimization. In this study phase-1, phase-2, and phase-3 are set to be concrete,
AR-glass and carbon, respectively. Their material properties are given in Fig. 6.7. For
material properties of the interface it is referred to Appendix C.

The mesh used for the analysis is given in Fig. 6.8. Due to symmetry only one half of the
system is analyzed and the analysis is assumed to be under plane stress conditions. The
beam thickness is assumed to be only 2mm, since no out-of-plane actions are considered.
A reasonable mesh size is adopted by confirming the good convergence to the physically
realistic structural response. Eventually 425 finite elements are used. The analysis is
carried out with a displacement controlled method; the control point c is at the center
at the bottom of the beam. For comparison the structure is optimized based on either a
linear elastic or the damage model. The prescribed nodal displacement û (–y-direction)
at the control point for these two cases is 0.05mm or 5mm, respectively.

This structural model needs special attention for the interface element. The neighboring
corresponding interface elements must disappear if the design element turns out to be filled
only by the concrete matrix during the optimization process. However, to be consistent
with the present FE-model in which the mesh is fixed, the interface elements remain until
the end of the optimization. In order to keep a realistic structural behavior the similar
material properties as those of the neighboring concrete are inserted into the interface
once the design element is occupied by the concrete matrix only.
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Figure 6.7: Problem description of the numerical examples
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Figure 6.8: FE mesh and design variables, (a) FE-mesh, (b) elements used for analysis
and (c) notation of design variables

6.8.1 Optimization with fiber length as design parameter

Firstly, the present section demonstrates the optimization problem of a two-phase com-
posite (concrete and AR-glass) of which the design variable is ‘fiber length’. The number
of the design variables is equal to that of the design elements (4 * 25 = 100). Fiber volume
for the entire structure is set to 6.5% and is kept constant throughout the optimization
process. This leads to the starting value for all optimization variables s = 0.7 as initial
condition.

Fig. 6.9 (a) shows the original fiber layout and (b), (c) the optimized fiber constellation in
a linear elastic and a materially nonlinear case, respectively. The figures on the right side
of Fig. 6.9 (a) and (c) indicate the damage distributions at the prescribed displacement.
After optimization the fiber material is distributed mainly in the upper and lower design
elements if a linear elastic model is used. This case confirms the expectation that the
optimum fiber layout is structurally reasonable. In the materially nonlinear model the
fiber material is shifted to the lower design elements according to the damage in this
region and an increase of 89% of ductility could be obtained.

6.8.2 Optimization considering fiber size and material combina-

tion

In this section two optimization problems are described; one is for a two-phase composite
in which the ‘fiber size’ is the design variable and the other one for a three-phase composite
in which the ‘fiber size’ and ‘fiber material combination’ are the design variables, see
Fig. 6.8 (c).

For the two-phase composite the design element consists of concrete (phase-1) and AR-
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Figure 6.9: Two-phase composites, design variables are fiber lengths, (a) original struc-
ture, (b) optimized under linear elastic conditions, (c) optimized under materially non-
linear conditions

glass (phase-2) over the element as well as in the previous example. The fiber volume
is set to 4.5% for the entire structure and is kept constant throughout the optimization
process. The starting optimization variables are s = 0.5 taken as initial condition. The
same thickness r1 is used for each of the four layers; thus having four design variables.

For the three-phase composite, carbon (phase-3) is considered as a candidate as well in
addition to the aforementioned two materials, i.e. concrete and AR-glass. In this case
two optimization variables s1 and s2 are introduced (Fig. 6.8). To summarize, the design
element is occupied by concrete only when s1 = 0, AR-glass fills the design element when
s1 = 1 and s2 = 0, and only carbon is in the element when s1 = s2 = 1. The number of
design variables is 2×4=8. Also again for the three-phase composite the total fiber volume
is set to 4.5% of the entire structure and is kept constant throughout the optimization
process as well.

However the kind of fiber material is a free variable which is determined through the
optimization process. Thus it is possible that only AR-glass, only carbon or a mixture of
both remains in the optimized structure. Consequently it starts with the design variable
s1 = 0.5 as in the two-phase composite case. The initial value of s2 can be arbitrarily
defined; s2 = 0.5 is chosen as starting parameter so that the volume fraction of carbon
is the half of the fiber volume in the entire element. In other words each initial design
element layer consists of concrete (50%), AR-glass (25%) and carbon (25%).

The first example shown in Fig. 6.10 indicates the comparison of the two-phase and three-
phase composites under linear elastic conditions. The four fibers of the initial mixture
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Figure 6.10: Comparison of optimization results in linear elastic regime (a) two-phase,
(b) three-phase composite

are shifted to the upper and lower design layer after optimization without violating the
constraints for the fiber volume. Thus the two inner rows of design elements contain only
concrete. Assuming linear elastic material behavior confirms the expectation that the
ductility does not increase significantly and that the optimum fiber layout is structurally
reasonable as in the previous example. In the three-phase composite, only carbon fibers
remain in the optimized structure despite of the fact that AR-glass existed in the original
structure. The carbon fiber is structurally superior to AR-glass (higher Young’s modulus)
in the linear elastic regime if the ductility is maximized for a prescribed displacement
û = 0.05mm. As a result, the increase of 17% of ductility is obtained. Aside from the
discussion whether the increase of 17% is sufficient, one can expect that carbon fibers
lead to more ductility if the number of fibers is increased. On the other hand maximizing
ductility for a linear elastic material is not very meaningful.

Fig. 6.11 shows the results of the optimization procedure for the second example based
on a materially nonlinear model. The upper two figures (a) and (a’) indicate the orig-
inal and optimized fiber layouts and damage distributions for the two-phase composite,
respectively, and the third one (b) shows the result of the three-phase model.

The result of the original structure of the three-phase composite is similar to that of the
two-phase model. The first question raised is related to the fiber layout of the optimized
structure. The fiber material originally distributed equally into the four layers of design
elements concentrated as expected in the two lower layers due to damage in this region.
Note that these two layers changed the evolution of damage propagation appearing in the
original structure, i.e. opposite to the vertical propagation of the damage in the original
model, the damage spreads laterally along the reinforcement over the structure.

The influence of the different fiber materials will be discussed in the following. Carbon
fibers have in general high strength and stiffness but show brittle behavior in tension as
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Figure 6.11: Comparison of optimization results using damage formulation, (a), (a’) two-
phase, (b) three-phase composite

shown schematically in Fig. 6.7 (right). On the other hand AR-glass fibers have less stiff-
ness but exhibit more ductile response than carbon. Therefore it is possible to maximize
the ductility without loosing strength by considering the advantage or disadvantage of
each material, respectively. In Fig. 6.11 (b) the carbon fiber of the lowest layer leads to
a stiff structure and the AR-glass fiber in the next layer contributes the ductile response
even after the carbon fiber is damaged. The optimized three-phase composite consid-
erably increases the structural ductility. Incidentally, let us assume a structure where
two carbon fibers are embedded at the lower two layers. It is obvious that this structure
cannot be the optimum since carbon fibers do not exhibit a ductile response; see dotted
line depicted in graph of Fig. 6.11 (b). Consequently this kind of fiber layout has never
appeared in the present numerical investigations.

6.9 Discussion: Estimation of fitting parameter

Applying a power-law interpolation rule the determination of the fitting variable η̂ which
describes the physically admissible intermediate stages is an important aspect for the
present optimization. Realistic values can be obtained only by experiments or admissible
values may be also determined by homogenization.
In order to shed some light on the influence of the fitting parameter on the stress–strain
curve this aspect is discussed in the sequel. Unlike the SIMP approach, the proposed
interpolation rule has four material parameters, E, κ0, α and β. Drawing the stress–
strain curve based on the above four effective material parameters, one can observe that
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Figure 6.12: (a) Uniaxial stress–strain curves of damage model for fitting parameter η̂ = 1
and ∞ at design variable s = 0.5 assuming two-phase mixture material, (b) interpolation
rules for Young’s modulus E and initial equivalent strain κ0

the stress–strain relation varies considerably depending on the fitting parameters, see
Fig. 6.12 (a).
The two curves drawn with a broken line in Fig. 6.12 (a) represent the stress–strain
curves of two individual materials, i. e phase-1 and phase-2, where, for example, phase-1
is assumed to be AR-glass and phase-2 is carbon, respectively. The other two curves in
Fig. 6.12 (a) show the stress–strain curves of a two-phase ‘mixture’ consisting of phase-1
and phase-2 with the extreme fitting parameters η̂ = 1 and η̂ = ∞. The volume fraction
of each material is assumed to be 50% (s = 0.5). The corresponding interpolation rules
are depicted in Fig. 6.12 (b), where only Young’s modulus E and the initial equivalent
strain κ0 are shown for simplicity.
It is recognized that the stress–strain relation of mixture material may be underestimated
if a relatively large η̂ is chosen. On the other hand it may be overestimated as the fitting
parameter η̂ approaches ‘one’. It is obvious that these extreme cases do not lead to
realistic representations of the mixture. In such cases unstable optimization solutions are
obtained.
For a more realistic and stable approach the following assumption is made which suggests
a moderate range of the fitting parameter η̂

min (W1, W2) < Wmix < max (W1, W2) (6.16)

where W denotes the internal energy for a prescribed strain stress–strain curve. The
subscripts 1, 2, and ‘mix’ on W stand for phase-1, -2, and mixture, respectively. This as-
sumption indicates that the internal energy of mixture material is always between those of
the individual phase-1 and phase-2. Eq. (6.16) is physically reasonable for ‘homogenized’
materials.
Whereas the stress–strain relations of the individual constituents phase-1 and phase-2 are
known data the selected strain εpre still contains a bias.
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6.10 Assessment of multiphase material optimization

The task of multiphase material optimization was to determine an optimal multiple ma-
terial distribution for fiber reinforcement over prescribed ‘design element layers’. As a
result, a considerable increase of ductility was obtained for the two-phase composite con-
sisting of concrete and AR-glass fibers. However this result could even be substantially
improved once a three-phase composite is introduced consisting of AR-glass and carbon
fibers leading to about 50% increase of ductility compared to the two-phase material.
It also showed an ideal ductile structural response due to the gradual failure of the two
fibers. The ductility may be further improved if an even more sophisticated cocktail of
fibers is used.
The definition of the sensitivities considering strain softening turned out to be a key point
of the optimization procedure since they in turn depend on the different characteristics
of the interpolation function for material parameters (E, κ0 or α, β). This methodology
was successfully extended to the three-phase composite.
For the multiphase material optimization using a damage formulation, the variational
analytical direct approach was applied, where the sensitivities of the state variables are
derived in terms of total displacement/strain formulation. This is a main difference to
optimization problems applying plasticity models in which an incremental formulation is
essential (e.g. Lipka et al. [112], Maute et al. [120]).

In short, the following conclusions can be drawn:

• Multiphase material optimization is a potential strategy to change the material
failure behavior from a rather brittle behavior to a more ductile one providing a
robust design.

• The pure multiphase material optimization is based on fixed potential fiber geome-
tries. This limitation should be given up, see next chapter, to further improve the
designs.

• The determination of appropriate interpolation formulas to describe intermediate
stages of a multiphase mixture is a key issue for a realistic optimal design. Since the
present study is mainly method oriented, simplified power law interpolation rules
have been applied adjusting the fitting variable η̂ in a reasonable way. More accurate
mixture formulas can be obtained by experiments or homogenization. Furthermore
it has to be said that the mechanical behavior of even a single material textile fiber
(roving) depends on many additional factors, e.g. chemical reactions, temperature,
the degree of penetration of the fine matrix or impregnation.

• For simplicity the sensitivities of the constitutive equation were derived based on the
local equivalent strain εv in section 5.3. Thus the influence of the sensitivity of the
non-local equivalent strain ε̃v is not included. To be consistent with the structural
analysis the sensitivities of the constitutive equation based on ε̃v is appropriate.

• The present sensitivity analysis allows to use directly the derivative of the total
strain ∇sε or displacement ∇sd at the actual time step t + 1, i.e. both derivatives
do not have to be accumulated over load increments. This also avoids that errors
of the sensitivities are accumulated during load incrementation, unlike the case of
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plasticity models. This efficient total displacement approach is applicable only for
material models in which the stress σ is a function of the ‘total’ strain ε, see chapter
5.

• In the numerical examples the convergence of optimization was very stable unless
too small or large η̂ is chosen. In each numerical example η̂ = 4.0 was used. The
number of optimization iteration was around 120 to 180 because relatively small
step size parameters ᾱ(=0.1) and q̄(=0.05) were chosen in the OC method in order
to reach a certain clear stage of optimum solutions.
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Chapter 7

Material shape optimization

7.1 Overview

Multiphase material optimization introduced in the previous chapter is based on the con-
cept of ‘volume fraction’ of fiber material(s) used as design variables. This approach is
considered as a material distribution problem derived from conventional topology opti-
mization.

In the present chapter an optimization methodology is proposed to improve the struc-
tural ductility of FRC with respect to the ‘fiber geometry’ applying shape optimization.
As mentioned in section 4.2, fiber length, location, and orientation could be the design
variables in this study.

Finding an optimal fiber orientation of composites is a classical task in structural opti-
mization and has been investigated in many contributions. Most of them focus on the
optimal fiber orientation using laminated FRP structures. In those cases the fiber angle
in individual plies is chosen as design variable, see for example Stegmann & Lund [181]
and Stolpe & Stegmann [182]. In those approaches the design variables are defined lo-
cally within certain plies or even in a patch of finite elements; this restriction limits to
achieve a final optimal fiber layout. This is similar to the multiphase material optimization
where the fiber materials are defined only in prescribed design elements. In addition, in
Stegmann & Lund [181] and Stolpe & Stegmann [182] the fibers are discontinuous between
adjacent elements, leading to a discrete fiber distribution.

The purpose of the present study is to improve the structural ductility of FRC with
respect to the fiber geometry which is independent of the fixed Finite Element mesh.
This methodology is denoted as material shape optimization .

The mechanical model of FRC follows the embedded reinforcement formulation described
in section 3.5, in which the ‘kinematic’ bond-slip relation by Balakrishnan & Murray [5]
for a two-dimensional model is considered. The materials for both concrete and fibers
are modeled again by the gradient enhanced damage formulation. Also the constitutive
interface relation between concrete and fiber the discrete bond model is applied as in the
previous chapter.

7.2 Concept of material shape optimization

The geometry of a continuous long fiber is defined in the global coordinate system. As
mentioned already in section 3.1 hooks of textile fibers are not used. Due to this char-
acteristic the layout of textile fibers in FRC can be rather simple, often parallel fibers
or a mesh of straight fibers are used, see Fig. 3.1. Curved fibers are advantageous if an
optimal structural response is looked for.

79
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Figure 7.1: (a) Quadratic Bézier-spline and (b) concept of global layout of fiber geometry

In this study the fiber geometry is defined globally by Bézier-splines. A quadratic Bézier-
spline and its mathematical formulation are introduced in Fig. 7.1, where r stands for
a position vector of the spline; ϑ (0 ≤ ϑ ≤ 1) is the local coordinate system of the
spline. pj indicates the j -th control point. Other parameterization allowing more general
geometrical definitions such as a level set function could also be used.
The fiber is embedded in the structure and the control points of the splines are moved in
order to obtain the optimal fiber layout. The entire domain of structure is defined in a
parametric space s (0 ≤ s ≤ 1), see Fig. 7.1. Thus the normalized coordinates of control
points are taken as the design variables defining the global fiber geometry in the physical
space. According to this the j -th position vector of control point pj can be expressed as
follows

rj

(
sx
j , sy

j

)
= O (x̂, ŷ) +

(
sx
j L

x, sy
j L

y
)
, (7.1)

where O stands for the coordinate origin of the structure; x̂, ŷ are the corresponding global
coordinates of O. L denotes the contour lengths of the structure and the superscripts x, y
on L as well as s indicate the direction. Inserting Eq. (7.1) into the general mathematical
formulation of Bézier-splines leads to the geometric definition of a fiber including the
design variables ŝ as follows

r (ϑ, sx, sy) =

nb∑
j=0

Φj (ϑ) rj

(
sx
j , sy

j

)
with Φj =

nb!

(nb − j)! j!
ϑj (1 − ϑ)nb−j , (7.2)

where nb is the order of the Bézier-spline. Note that the coefficients Φ are independent of
the design variables ŝ. Once the fiber geometry is defined by Eq. (7.2) the intersections
between fiber and the fixed finite element mesh can be calculated. It is necessary to
determine the global coordinates for these intersections in order to establish the stiffness
matrix and afterwards the internal forces of embedded fiber elements. This procedure is
described in the sequel.
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7.2.1 Determination of intersections

The basic procedure determining the intersections between mesh and fiber is explained in
Box 1, see also Fig. 7.2. This procedure is continued until all intersections up to the end
of the fiber are determined. Note that the local coordinate system ϑ and the additional
parameter � have been introduced only for the determination of intersections and are no
longer necessary thereafter.
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Figure 7.2: Element patch describing intersections and related Newton-Raphson algorithm
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Figure 7.3: Determination of natural coordinates of intersections

7.2.2 Inverse mapping for local coordinate of fiber

In the previous section the procedure to determine the global coordinates of the intersec-
tions (x, y)p was introduced. It is also necessary to determine the associated parametric
(natural) coordinates (ξ, η)p of the corresponding finite element in order to perform the
integration for the internal virtual work of the fiber.
This so-called nonlinear inverse mapping is described in detail in Elwi & Hrudey [56] and
Barzegar & Maddipudi [9]. For the general isoparametric mapping the global coordinate
(x, y) of an arbitrary point p in an element is expressed by the shape function N and the
global coordinates of the element nodes (x̂k, ŷk),[

x

y

]
p

=

[
N (ξ, η) 0

0 N (ξ, η)

]
p

[
x̂k

ŷk

]
, (7.3)

where the expression (•̂) emphasizes a known value. k is the number of nodes of an
element. In case of the inverse mapping Eq. (7.3) is transformed to the following equation
such that the residual vector function R̄ vanishes

R̄ (ξ, η) =

[
x̂

ŷ

]
p

−
[

N (ξ, η) 0

0 N (ξ, η)

]
p

[
x̂k

ŷk

]
=

[
0

0

]
. (7.4)

Finally, this nonlinear equation is solved by a Newton-Raphson scheme as shown in the
box of Fig. 7.3 obtaining the associated natural coordinates (ξ, η)p of point p. Once
these coordinates of the intersections are determined the integration of the embedded
reinforcement can be performed. For further processing of the fiber mechanics the curved
fiber is for simplicity approximated by a straight line within a finite element leading to a
polygonal layout as already indicated in Figs. 3.6 (a) and 7.3.

7.3 Optimization problem

The mathematical formulation of the optimization problem of FRC can be written as
follows
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minimize f (ŝ) = −

⎡
⎢⎣∫

Ωc

∫
ε̂c

σcdεc dΩc +

∫
Ωf

∫
ε̂f
L

σf
Ldεf

L dΩf +

∫
Ωi

∫
ûi
L

σi
Ldui

L dΩi

⎤
⎥⎦ (7.5)

subject to h (ŝ) =

nf
ele⋃

e=1

∫
Ωf

ξ

|Jf |︸︷︷︸
l r0

dΩf
ξ − V̂ = 0 (7.6)

ŝL ≤ ŝi ≤ ŝU i = 1, ..., ns (7.7)

where V̂ denotes the prescribed fiber volume, ŝL and ŝU the lower and upper bounds of
the design variables, and ns the number of design variables as in the previous optimization
problem. r0 represents the thickness of a fiber, which is assumed to be constant along the
entire fiber. l is the length of a single fiber within an embedded reinforcement element
and depends on the design variables ŝ.

7.3.1 Equilibrium conditions and total derivative of design func-

tion

In the present study all state variables u
(
d, e, d̄

)
are involved in the sensitivity analysis

since it was observed that the derivatives of e and d̄ with respect to fiber geometries
have a distinct influence on the solution. These are derived from the three equilibrium
conditions (3.16), (3.17), and (3.20) at position n + 1, where the position n + 1 indicates
the situation that the incremental structural analysis is converged.
The design functions depend on the structural response which in turn is implicitly related
to the optimization variables, for example the objective f = f

(
ŝ, u
(
d, e, d̄

))
. This leads

to

∇s ( • ) = ∇ex
s ( • ) + ∇u ( • )∇su

= ∇ex
s ( • ) + ∇d ( • )∇sd + ∇e ( • )∇se + ∇d̄ ( • )∇sd̄ . (7.8)

The optimality criteria method is applied again to solve the optimization problem. For the
sensitivity analysis a variational semi-analytical direct method is adopted and described
in the sequel.

7.4 Sensitivity analysis

7.4.1 Overview

The main effort of sensitivity analysis is the calculation of implicit part ∇su. For a direct
sensitivity analysis this part is obtained by exploiting the stiffness expression containing
the tangent stiffness matrix and the so-called pseudo load vector, see Eq. (5.23).
The accuracy of the sensitivities strongly depends on that of the pseudo load vector.
This pseudo load vector is obtained through the derivatives of the equilibrium conditions,
Eqs. (3.16), (3.17), and (3.20) with respect to the design variables and by assembling
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the individual pseudo load vectors for each equilibrium condition. The derivation of the
pseudo load vector for the damage formulation used in the present study is detailed in
sections 7.4.4 to 7.4.6. For this the gradients of constitutive equations and also the explicit
part of the derivative of objective function are described first in the next two sections.

7.4.2 Gradients of constitutive equations

Gradients of the constitutive equations have been already derived in section 5.3. Those
gradients are calculated with respect to material design parameters assuming that a fixed
finite element mesh is used. This section describes the gradients of the variables in the
constitutive equations with respect to shape design parameters. All expressions shown in
the present chapter for the embedded reinforcement formulation follow sections 3.4 and
3.5.

In this study the local equivalent strain measure of concrete εc
v is defined by de Vree’s def-

inition Eq. (3.7); that of the embedded fiber εf
v, L follows by Mazars’s definition Eq. (3.6).

In the derivation of sensitivity, the influence of non-local equivalent strains is considered
in this part in order to be consistent with the structural systems of FRC introduced in
Eq. (3.32).

The derivatives with respect to a design variable ŝ are decomposed into explicit and
implicit parts:

• concrete and fiber strains εc
L, εf

L,

∇sε
c (d) = ∇ex

s εc + ∇im
s εc = ∇s (Bc)︸ ︷︷ ︸

= 0

d + Bc∇sd , (7.9)

∇sε
f
L = ∇sε

c
L + ∇sε

i
L : εc

L = εc
L

(
Bf (ŝ) , Tε

1 (ŝ) , d
)

and εi
L = εi

L

(
B̄ (ŝ) , d̄

)
, (7.10)

with

∇sε
c
L = ∇ex

s ε
c
L + ∇im

s ε
c
L = ∇s (Tε

1)B
fd + Tε

1∇s

(
Bf
)
d︸ ︷︷ ︸

explicit

+ Tε
1B

f∇sd︸ ︷︷ ︸
implicit

, (7.11)

∇sε
i
L = ∇ex

s ε
i
L + ∇im

s ε
i
L = ∇s

(
B̄
)
d̄ + B̄∇sd̄ . (7.12)

• local slip ui
L

∇su
i
L

(
N̄ (ŝ) , d̄

)
= ∇ex

s ui
L + ∇im

s ui
L = ∇s

(
N̄
)
d̄ + N̄∇sd̄ . (7.13)

• local and non-local equivalent strains εv, ε̃v and gradient of non-local equivalent
strain ∇ε̃v for

- concrete
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εc
v = εc

v (I1 (εc) , J2 (εc)) , (7.14)

∇sε
c
v = ∇εε

c
v

(∇ex
s εc + ∇im

s εc
)

= ∇εε
c
v

(∇s (Bc)︸ ︷︷ ︸
= 0

d + Bc∇sd
)
, (7.15)

∇sε̃
c
v = ∇ex

s ε̃
c
v + ∇im

s ε̃
c
v = ∇s

(
Ñc
)

︸ ︷︷ ︸
= 0

e + Ñc∇se , (7.16)

∇s (∇ε̃c
v) = ∇ex

s (∇ε̃c
v) + ∇im

s (∇ε̃c
v) = ∇s

(
B̃c
)

︸ ︷︷ ︸
= 0

e + B̃c∇se , (7.17)

- fibers

∇sε
f
v, L

(
εf
L

)
= ∇εε

f
v, L

(∇ex
s ε

f
L + ∇im

s ε
f
L

)
with Eqs.(7.10) , (7.11), (7.12) (7.18)

∇sε̃
f
v, L = ∇ex

s ε̃
f
v, L + ∇im

s ε̃
f
v, L = ∇s

(
Ñf
)

e + Ñf∇se , (7.19)

∇s

(∇ε̃f
v, L

)
= ∇ex

s

(∇ε̃f
v, L

)
+ ∇im

s

(∇ε̃f
v, L

)
= ∇s

(
Td

1

)
B̃fe + Td

1∇s

(
B̃f
)

e︸ ︷︷ ︸
explicit

+ Td
1B̃

f∇se︸ ︷︷ ︸
implicit

. (7.20)

Note that the explicit terms for concrete in Eqs. (7.9), (7.15) to (7.17) are zero because
Nc, Bc, Ñc, and B̃c do not depend on the design variables ŝ; in other words all explicit
terms of derivatives for concrete vanish.
Utilizing the above equations the stress derivatives of concrete matrix ∇sσ

c, fiber ∇sσ
f
L,

and interface ∇sσ
i
L at position n + 1 are derived. These sensitivities are obtained through

the chain rule.
First the main variables of the damage models for both concrete and fibers and of the
interface model are listed in their relationship to the design variables ŝ

σ = σ (D, ε (ŝ)) , D = D (κ) , κ = κ (ε̃v (e (ŝ)) , κu (eu (ŝ))) (7.21)

σi
L = σi

L

(
ui

L (ŝ) , ui
Lu

(ŝ)
)
. (7.22)

Here κu, eu, and ui
Lu

denote the history variable, the nodal non-local strain vector, and
the slip length at the time tu when unloading starts, respectively. Eq. (7.21) is a simplified
representation which contains both concrete and fibers.
Thus the stress derivatives with respect to a design variable ŝ are given by

∇sσ
c =

∂σc

∂εc

∂εc

∂s
+
∂σc

∂ε̃c
v

∂ε̃c
v

∂s
+
∂σc

∂κc
u

∂κc
u

∂s

= Cc
ed

(∇ex
s εc︸ ︷︷ ︸

= 0

+∇im
s εc
)

+ Ēc
(∇ex

s ε̃
c
v︸ ︷︷ ︸

= 0

+∇im
s ε̃

c
v

)
+ Ĕc∇sκ

c
u

= Cc
ed∇im

s εc + Ēc∇im
s ε̃

c
v + Ĕc∇sκ

c
u (7.23)
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∇sσ
f
L =

∂σf
L

∂εf
L

∂εf
L

∂s
+

∂σf
L

∂ε̃f
v, L

∂ε̃f
v, L

∂s
+
∂σf

L

∂κf
u

∂κf
u

∂s

= Cf
ed, L

(∇ex
s ε

f
L + ∇im

s ε
f
L

)
+ Ēf

(∇ex
s ε̃

f
v, L + ∇im

s ε̃
f
v, L

)
+ Ĕf∇sκ

f
u , (7.24)

∇sσ
i
L =

∂σi
L

∂ui
L

∂ui
L

∂s
+

∂σi
L

∂ui
Lu

∂ui
Lu

∂s
= kL

(∇ex
s ui

L + ∇im
s ui

L

)
+ kLu∇su

i
Lu
, (7.25)

with the abbreviations

Ēc ≡ ∂σc

∂ε̃c
v

and Ēf ≡ ∂σf
L

∂ε̃f
v, L

. (7.26)

Ēc/f are detailed in Eqs. (A.9)/(A.18) of Appendices A.2/A.3. C
c/f
ed are the elasto-damage

secant material tensor, see Eq. (A.12). kL in Eq. (7.25) denotes the tangent modulus of
the interface which is explicitly obtained from Eq. (3.9) and Fig. 3.4 (c) introducing the
given material properties. kLu is the tangent modulus of the interface at the time tu.
Other abbreviations are terms relevant to ‘un-/reloading’,

Ĕc ≡ ∂σc

∂κc
u

=
∂σc

∂Dc

∂Dc

∂κc

∂κc

∂κc
u

and Ĕf ≡ ∂σf
L

∂κf
u

=
∂σf

L

∂Df

∂Df

∂κf

∂κf

∂κf
u

(7.27)

with

∂κc/f

∂κ
c/f
u

=

{
0 if loading

1 if un−/reloading .
(7.28)

Ēc/f are relevant to ‘loading’ and are non-zero; Ĕc/f vanish under loading. On the con-
trary Ēc/f become zero and Ĕc/f are non-zero for un-/reloading. The remaining terms in
Eq. (7.27) are ∇κD

c/f , which are calculated by following Eq. (5.15).

Finally, the derivatives ∇sκ
c/f
u in Eqs. (7.23)/(7.24) and ∇su

i
Lu

in Eq. (7.25) are obtained
in terms of Eqs. (7.16)/(7.19), and Eq. (7.13), respectively

∇sκ
c
u = Ñc∇seu, ∇sκ

f
u = ∇s

(
Ñf
)

eu + Ñf∇seu , (7.29)

∇su
i
Lu

= ∇s

(
N̄
)
d̄u + N̄∇sd̄u , (7.30)

where d̄u is the nodal slip length at the time tu. Note that eu and d̄u need to be updated
whenever ‘loading’ occurs. Eq. (7.29) is comparable to Eq. (5.19) where the history
variable κ is based on the ‘local’ equivalent strain.

The design variables ŝ in this study are defined on the global level and not related di-
rectly to variables on the element level. Therefore, a semi-analytical approach is most
appropriate calculating the above introduced derivatives by a finite difference scheme as
discussed in section 2.5.2.

7.4.3 Sensitivity for explicit term of objective function

The explicit part of sensitivity of the objective function given in Eq. (7.5) is expressed as
follows,

∇ex
s f = ∇ex

s

(
fc + f f + f i

)
(7.31)
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with

∇ex
s fc = −

∫
Ωc

∫
ε̂c

∇ex
s (σc) dεc dΩc , (7.32)

∇ex
s f f = −

∫
Ωf

∫
ε̂f
L

(∇ex
s

(
σf

L

)
dεf

L + σf
L∇ex

s dεf
L

)
dΩf −

∫
Ωf

ξ

∫
ε̂f
L

σf
Ldεf

L∇s|Jf | dΩf
ξ , (7.33)

∇ex
s f i = −

∫
Ωi

∫
ûi
L

(∇ex
s

(
σi

L

)
dui

L + σi
L∇ex

s dui
L

)
dΩi −

∫
Ωi

ξ

∫
ûi
L

σi
Ldui

L∇s|Ji| dΩi
ξ . (7.34)

The second terms in Eqs. (7.33) and (7.34) are integrated in the parametric space ξ.

Most often ∇ex
s fc is zero because the functions for concrete, e.g. shape functions and B-

operators, are independent of the design variables as mentioned above. Thus the explicit
parts of all derivatives for the concrete matrix vanish. ∇ex

s fc becomes non-zero only when
unloading starts at a concrete element in which damage has already been initiated, see
Eq. (7.23).

The determinants of Jacobian matrices |Jf | and |Ji| for fiber and interface elements map
the parametric element domains onto their real space. The stress derivatives ∇ex

s σ
f
L and

∇ex
s σ

i
L are the explicit parts of Eqs. (7.24) and (7.25), respectively.

In the following sections the implicit part of sensitivity of the objective function is dis-
cussed.

7.4.4 Sensitivity for first equilibrium equation

The derivative of the equilibrium condition Eq. (3.16) with respect to a design variable ŝ
is obtained considering Eq. (3.27) as follows

∫
Ωc

∇s (Bc)T︸ ︷︷ ︸
= 0

σc dΩc +

∫
Ωc

BcT∇s (σc) dΩc +

∫
Ωc

ξ

BcTσc ∇s|Jc|︸ ︷︷ ︸
= 0

dΩc
ξ

+

∫
Ωf

[∇s

(
Bf
)T

(Tε
1)

T + BfT∇s (Tε
1)

T]σf
L dΩf +

∫
Ωf

BfT (Tε
1)

T ∇s

(
σf

L

)
dΩf

+

∫
Ωf

ξ

BfT (Tε
1)

T σf
L∇s|Jf | dΩf

ξ − ∇sλt+1

∫
Γξ

NcTt0|J̃| dΓξ = 0 , (7.35)

where the virtual displacement field δu in (3.16) is assumed to be arbitrary so that the
derivative ∇sδd vanishes. |Jc| is the determinant of Jacobian matrix of the concrete
element. The metric |J̃| maps a line differential on the boundary.
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Substituting Eqs. (7.23) and (7.24) into Eq. (7.35) results in

∫
Ωc

BcTCc
edB

c dΩc

︸ ︷︷ ︸
Kc

dd

∇sd +

∫
Ωf

BfTCf
edB

f dΩf

︸ ︷︷ ︸
Kf

dd

∇sd +

∫
Ωf

BfT (Tε
1)

T
Cf

ed, LB̄ dΩf

︸ ︷︷ ︸
Kf

dd̄

∇sd̄

+

∫
Ωc

BcTĒcÑc dΩc

︸ ︷︷ ︸
Kc

de

∇se +

∫
Ωf

BfT (Tε
1)

T ĒfÑf dΩf

︸ ︷︷ ︸
Kf

de

∇se

= ∇sλt+1P −
∫
Ωf

∇s

(
Bf
)T

(Tε
1)

T σf
L dΩf

︸ ︷︷ ︸
P̃d

1

−
∫
Ωf

BfT (Tε
1)

T
Cf

ed, L∇ex
s ε

f
L dΩf

︸ ︷︷ ︸
P̃d

2

−
∫
Ωf

BfT (Tε
1)

T Ēf∇ex
s ε̃

f
v, L dΩf

︸ ︷︷ ︸
P̃d

3

−
∫
Ωf

BfT∇s (Tε
1)

T σf
L dΩf

︸ ︷︷ ︸
P̃d

4

−
∫
Ωf

ξ

BfT (Tε
1)

T σf
L∇s|Jf | dΩf

ξ

︸ ︷︷ ︸
P̃d

5

−
∫
Ωf

BfT (Tε
1)

T Ĕf∇sκ
f
u dΩf

︸ ︷︷ ︸
P̃d

6

−
∫
Ωc

BcTĔc∇sκ
c
u dΩc

︸ ︷︷ ︸
P̃d

7

.

(7.36)

In Eq. (7.36) all implicit and explicit terms are assembled to the left and right hand side,
respectively. The right hand side of Eq. (7.36) leads to the pseudo load vector P̃d. Note
that the stiffness matrices on the left hand side of Eq. (7.36) correspond to those in the
tangent stiffness matrix KT introduced already in Eq. (3.32).

7.4.5 Sensitivity for the second equilibrium equation

Analogously the derivative of equilibrium condition Eq. (3.17) with respect to a design
variable ŝ is obtained considering Eq. (3.28). Inserting Eqs. (7.15) to (7.20) into the
obtained derivative of the equilibrium condition Eq. (3.17) and arranging it as in the
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previous section yields∫
Ωc

[
c
(
B̃c
)T

B̃c +
(
Ñc
)T

Ñc

]
dΩc

︸ ︷︷ ︸
Kc

ee

∇se −
∫
Ωc

(
Ñc
)T

F̄cBc dΩc

︸ ︷︷ ︸
Kc

ed

∇sd

+

∫
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c
(
B̃f
)T

B̃f +
(
Ñf
)T

Ñf

]
dΩf

︸ ︷︷ ︸
Kf

ee

∇se −
∫
Ωf

(
Ñf
)T

F̄fTε
1B

f dΩf
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Kf

ed

∇sd
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∫
Ωf

c

[
∇s

(
B̃f
)T

B̃f +
(
B̃f
)T

∇s

(
B̃f
)]

e dΩf

︸ ︷︷ ︸
P̃e

1

−
∫
Ωf

[
∇s

(
Ñf
)T (

ε̃f
v, L − εf

v, L

)
+
(
Ñf
)T (∇ex

s ε̃
f
v, L − F̄f∇ex

s ε
f
v, L

)]
dΩf

︸ ︷︷ ︸
P̃e

2

−
∫
Ωf

ξ

[
c
(
B̃f
)T (

Td
1

)T ∇ε̃f
v, L +

(
Ñf
)T (

ε̃f
v, L − εf

v, L

)]∇s|Jf |dΩf
ξ

︸ ︷︷ ︸
P̃e

3

,
(7.37)

with the abbreviations

F̄c ≡ ∂εc
v

∂εc
and F̄f ≡ ∂εf

v, L

∂εf
L

. (7.38)

These two terms are detailed in Eqs. (A.10) and (A.19) in Appendices A.2 and A.3.
The virtual non-local equivalent strain δε̃v in (3.17) is assumed to be arbitrary, thus the
derivative ∇sδe vanishes.

7.4.6 Sensitivity for the third equilibrium equation

Similarly the derivative of equilibrium condition Eq. (3.20) is obtained considering Eq. (3.29)∫
Ωf

∇s

(
B̄
)T
σf

L dΩf +

∫
Ωf

B̄T∇sσ
f
L dΩf +

∫
Ωf

ξ

B̄Tσf
L ∇s|Jf | dΩf

ξ

+

∫
Ωi

∇s

(
N̄
)T
σi

L dΩi +

∫
Ωi

N̄T∇sσ
i
L dΩi +

∫
Ωi

ξ

N̄Tσi
L ∇s|Ji| dΩi

ξ = 0 .

(7.39)

Again the derivative ∇sδd̄ vanishes because δui
L in (3.20) is an arbitrary test function.
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The pseudo load vector is derived by inserting Eqs. (7.24) and (7.25) into Eq. (7.39).
However the bond-slip relation Eq. (3.9) does not include any term related to the non-local
equivalent strain opposite to Eq. (7.24). Excluding the non-local term from Eq. (7.24),
i.e.

∇sσ
f
L = Cf

ed, L

(∇ex
s ε

f
L + ∇im

s ε
f
L

)
, (7.40)

and substituting Eqs. (7.25) and (7.40) into Eq. (7.39) results in the following expression⎡
⎣∫

Ωf

B̄TCf
ed, LB̄ dΩf +

∫
Ωi

N̄TkLN̄ dΩi

⎤
⎦

︸ ︷︷ ︸
Ki

d̄d̄

∇sd̄ +

∫
Ωf

B̄TCf
ed, LT

ε
1B

f dΩf

︸ ︷︷ ︸
Kf

d̄d

∇sd

= −
∫
Ωf

∇s

(
B̄
)T
σf

L dΩf

︸ ︷︷ ︸
P̃d̄

1

−
∫
Ωf

B̄TCf
ed, L∇ex

s ε
f
L dΩf

︸ ︷︷ ︸
P̃d̄

2

−
∫
Ωf

ξ

B̄Tσf
L ∇s|Jf |dΩf

ξ

︸ ︷︷ ︸
P̃d̄

3

−
∫
Ωi

∇s

(
N̄
)T
σi

L dΩi

︸ ︷︷ ︸
P̃d̄

4

−
∫
Ωi

N̄TkL∇ex
s ui

L dΩi

︸ ︷︷ ︸
P̃d̄

5

−
∫
Ωi

ξ

N̄Tσi
L ∇s|Ji|dΩi

ξ

︸ ︷︷ ︸
P̃d̄

6

−
∫
Ωi

N̄TkLu∇su
i
Lu

dΩi

︸ ︷︷ ︸
P̃d̄

7

.

(7.41)

7.4.7 Total sensitivity

Assembling Eqs. (7.36), (7.37) and (7.41) leads to the following compact matrix expression

⎡
⎢⎢⎣

Kc+f
dd Kc+f

de Kf
dd̄

Kc+f
ed Kc+f

ee 0

Kf
d̄d

0 Ki
d̄d̄

⎤
⎥⎥⎦
⎡
⎢⎢⎣

∇sd

∇se

∇sd̄

⎤
⎥⎥⎦ = ∇sλt+1

⎡
⎢⎢⎣

P

0

0

⎤
⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎢⎣

7∑
l=1

P̃d
l

3∑
l=1

P̃e
l

7∑
l=1

P̃d̄
l

⎤
⎥⎥⎥⎥⎥⎥⎦ , (7.42)

which has the format of the typical stiffness equation adding up all terms on the right
hand side to a new pseudo load vector Ppse:

KT ∇s û = Ppse = ∇sλt+1P̂ + P̃pse . (7.43)

KT denotes the tangent stiffness matrix at the time step t + 1 as mentioned before.

As the linear equation (7.43) has a similar format to Eq. (5.23), the total sensitivity also
can be calculated by following the solution procedures Eqs. (5.24) to (5.28). In this case
∇sd̂ in Eqs. (5.24) to (5.28) needs to be replaced by ∇sû.
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7.5 Numerical examples

7.5.1 Optimization of deep beam

In the first numerical simulation a FRC beam reinforced with four carbon fibers is inves-
tigated as displayed in Fig. 7.4 where also the material properties are given. Much more
brittle concrete matrix is adopted in the present section compared to that in section 6.8.
For the properties of the interface it is referred to Appendix C. Plane-stress conditions are
assumed. Due to symmetry only one half of the system is analyzed, the FE mesh is given
in Fig. 7.4 (c). The beam thickness is assumed to be only 1mm, since no out-of-plane
actions are considered. 200 finite elements are used for concrete and 68 elements for the
interface, respectively.

The number and location of slip nodes may change during optimization depending on the
actual fiber geometries. Thus mesh adaptation for slip nodes is carried out after each
total structural analysis. The fiber geometry is approximated by a symmetric biquadratic
Bézier-spline, see Fig. 7.4 (b). As shown in Fig. 7.4 (a) the origin O of the parametric
element is defined at the edge of the beam. Due to symmetry the number of design
variables is reduced, i.e. the location of the control points p3 and p4 is coupled to p1 and
p0, respectively. Further simplification of the fiber geometry can reduce the number of
design variables. Firstly, the y-coordinate of p1 is set equal to that of p2. Secondly, p1 is
placed in the middle between p0 and p2. Thus the number of design variables for a single
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fiber is three, i.e. s1, s2, and s3, see Fig. 7.4 (b). The initial set of the design variables is
(i) s1 = 0.075 (i.e. the x-coordinate of p0 is 0.075×400mm) for all fibers and (ii) s2 and
s3 are assumed to be 0.15, 0.38, 0.62, and 0.85 for each fiber.

The total number of design variables is 12 (3×4 fibers). Taking into account that thick
concrete covers for textile fibers are obsolete, this example obeys the lower bound ŝL = 0.01
and the upper one ŝU = 0.99 for s2 and s3 of all fibers. For the design variable s1, the lower
and upper bounds are set to ŝL = 0.01 and ŝU = 0.4, respectively. The analysis is carried
out with a displacement-controlled method; the control point c is at the lower center of
the beam. The prescribed nodal displacement û (−y-direction) at the control point is
either 0.005mm or 0.4mm. For comparison the structure is optimized based on either a
linear elastic or the damage model. The fiber volume is kept constant (1.4%) during the
optimization leading to a fiber thickness r0=0.4mm. Thus the lengths of all fibers are
balanced for this constraint. A central finite difference scheme with finite perturbation
Δs = 1.0 × 10−7 is adopted for the semi-analytical sensitivity.

Firstly the optimization of ductility of the structure for a linear elastic response is demon-
strated, which also means maximizing the overall stiffness of the structure. Fig. 7.5 (a)
shows the optimized fiber layout. The figure on the right side of Fig. 7.5 (a) introduces
the stress distribution of fibers. After optimization two fibers are shifted to the upper
part in compression and the two others to the lower edge carrying the tension force. The
two upper fibers wind up with almost the same location. As a result an increase of 14%
of ductility could be obtained.

Fig. 7.5 (b) shows the optimized fiber layout in the materially nonlinear situation applying
the damage model. Also the damage distribution of concrete is displayed; fibers are not
yet damaged at this stage. After optimization one fiber is shifted to the upper part and the
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Figure 7.5: Results of optimization for (a) linear elastic and (b) materially nonlinear
response
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Figure 7.6: Hanging deep beam

three others to the lower one. These three fibers prevent the concrete from a premature
damage propagation. Compared to the elastic case the fibers are more curved which is
structurally reasonable. As a result an increase of 44% of ductility could be obtained.

One could expect that also the fourth fiber moves to the lower part. This suggests
that the achieved solution may not yet represent the global minimum, which could be a
consequence of the underlying non-convex optimization problem.

7.5.2 Optimization of hanging deep beam

As second numerical example a hanging deep beam is chosen as displayed in Fig. 7.6. The
material properties of concrete, carbon fibers and interface as well as loading condition
and mesh follow the previous example. Due to symmetry only one half of the system is
analyzed under plane-stress conditions. Again a symmetric biquadratic Bézier-spline is
adopted to define each fiber geometry. 180 finite elements are used for concrete and 50
elements for the interface.

The initial set of design variables for all three fibers in the parametric space is: (i)
s1 = 0.025 and (ii) s2 and s3 equal 0.25, 0.5 or 0.75. The fiber volume is kept constant
(1.1%) during the optimization.

Fig. 7.7 (a), (b) show the optimized fiber layouts based on a linear elastic and a materially
nonlinear response, respectively. The prescribed displacement û at the control point c
under the load is either 0.005 mm or 0.06 mm. For the linear elastic case the upper
straight fiber reduces the compressive deformation and the middle curved fiber reflects
the cable effect between the fixed supports. For the damage case, the upper and middle
fibers are utilized to resist the damage propagation of concrete in the vicinity of the
supports. As a result an increase of 13% of ductility was obtained. The relatively low
increase is due to the fact that the three equally distributed straight fibers are already
able to catch the main load carrying effect.

7.5.3 Optimization of splitting plate

The third example is a splitting plate shown in Fig. 7.8. Again the same material proper-
ties, loading condition, mesh and initial assumption of fiber geometry are used as in the
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Figure 7.7: Results of optimization for (a) linear elastic and (b) materially nonlinear
response

previous two examples. 124 finite elements are used for concrete and 24 elements for the
interface. For the present example the parametric element is restricted to the area below
the cutout section, see Fig. 7.8; this means that fibers cannot be located in the non-design
space.

The initial set of the design variables is: (i) s1 = 0.025 and (ii) s2 and s3 are 0.25, 0.50 or
0.75. The fiber volume of 0.74% is kept constant during the optimization.

Fig. 7.9 (a), (b) show the optimized fiber layouts based on a linear elastic and a damage
response, respectively. The prescribed displacement at control point c is either 0.002 mm
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Figure 7.8: Problem description of the third example and parametric element
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Figure 7.9: Results of optimization for (a) linear elastic and (b) materially nonlinear
response

or 0.2 mm. For the linear elastic case, the upper straight fiber controls the tensile defor-
mation around the reentrant corners. The middle and lower fibers reduce the compressive
deformation. As a result an increase of 5% of ductility was obtained.
In case of damage the middle fiber is also shifted to the upper part to resist the damage
propagation of concrete together with the upper fiber. These two fibers are damaged at
the prescribed displacement. The location of the lower fiber stays in the lower part of
the plate although one could expect that it also moves to the cutout area (see comment
on local minimum for first example). Anyhow an increase of 99% of ductility could be
obtained.
In the numerical examples of this chapter the convergence of optimization was very stable
In each bn numerical example η̂ = 4.0 was used. The number of optimization iteration
was around 120 to 180 because relatively small step size parameters ᾱ(=0.1) and q̄(=0.05)
were chosen in the OC method in order to reach a certain clear stage of optimum solutions.

7.6 Assessment of material shape optimization

Material shape optimization was applied to the fiber geometry for textile reinforced com-
posites. The main purpose of this study was to increase the structural ductility of FRC
with respect to the geometrical layout of continuous fibers.
The mechanical model of FRC followed the embedded reinforcement formulation, in which
the bond-slip relation by Balakrishnan & Murray [5] was considered. The fiber geometry
was defined globally by biquadratic Bézier-splines. The curved fiber was approximated
by a straight line in each embedded reinforcement element for simplicity; this leads to a
polygonal layout. This study also applied the gradient enhanced damage model for both
constituents together with a nonlinear interface model as in the previous study.
It is verified in the numerical examples that the ductility was substantially increased and
the reasonable optimal fiber geometries were obtained based on both the materially linear
and nonlinear response.
For the sensitivity analysis a variational semi-analytical direct method was applied. In
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that formulation the sensitivities of three unknown variables, i.e. the usual nodal displace-
ments d, the non-local nodal equivalent strains e, and the nodal slips d̄, were considered
and cast into a compact formulation. In semi-analytical methods errors of sensitivities
tend to increase when distinct ‘rigid body rotations’ appear, see for example Olhoff &
Rasmussen [134], Olhoff et al. [133], Cheng & Olhoff [42], Mlejnek [127], Boer & Keulen
[28], [29], Keulen & Boer [94], and Bletzinger et al. [24]. The source of these errors is
given in Appendix B. This tendency was also observed in the present study when the
structural response reaches the postpeak range, where several elements are severely dam-
aged and other elements may already be in the unloading phase, similar to a plastic hinge
deformation. The unloaded elements eventually will encounter rigid body rotations which
in turn may lead to inaccurate sensitivities. However in the present study the structural
damage was not driven into complete failure.

In short, the following conclusions can be drawn:

• In the present concept the geometry of long continuous fibers can be defined inde-
pendently of the fixed FE-mesh. This is one of the great advantages of this method
based on the application of an embedded reinforcement formulation because most
of the numerical studies dealing with material optimization for fiber reinforced com-
posites encounter mesh dependency and discontinuous fiber representation.

• The optimized fiber layout can be manufactured without major difficulties in prac-
tice.

• The fiber geometry is defined in the parametric element space, see Fig. 7.1 (b).
However the method has certain limitations when the contour of a structure is
‘irregular’ as introduced in section 7.5.3 or when internal boundaries of a structure
are present such as ‘holes’ in the design domain.

• It happened that some fibers remained in the final optimal structures which are not
fully exploited. Most likely the optimization procedure has found a local minimum
leaving room for further improvements. It is expected that this problem can be
avoided to a certain degree when the formulation is combined with other optimiza-
tion schemes.

• The sensitivities of the non-local equivalent strain and interfacial response were in-
cluded. These sensitivities were not considered in the sensitivity analysis of chapter
6.

• The common problem of semi-analytical methods, namely inaccurate sensitivities
due to rigid body rotations, was observed in the present study when the structural
response reaches the postpeak range. In particular when a stiff and brittle fiber
material such as carbon is used, the inaccurate sensitivities become distinct because
the postpeak path is steep due to a high energy release and dominant rigid body
rotations. A remedy of this problem has not yet been developed, which restricts the
range of loading in the numerical simulation.



Chapter 8

Multiphase layout optimization

8.1 Overview

The task of multiphase material optimization was to determine an optimal multiple ma-
terial distribution for fiber reinforcement over the prescribed design element layers (Ωs).
However the fiber materials are distributed only on the design element layers defined in
the fixed FE-mesh and only straight fibers are allowed. In order to cure this mesh depen-
dency, material shape optimization applying an embedded reinforcement formulation was
developed in the previous chapter and a global layout of fiber geometry was presented
which is independent on the fixed FE-mesh. However this scheme did not always exploit
all fibers.

These limitations can be avoided to a certain extent by combining above two optimization
schemes, thus material distribution and geometry of fibers are optimized simultaneously.
In this combined method it is expected that the ‘fiber material’ moves between fibers
during optimization, namely from structurally unexploited fibers to other fibers which
are located at structurally more significant regions. This means that those fibers become
thicker while the unexploited fibers vanish. This combined strategy is denoted multiphase
layout optimization.

In contrast to the developments of the individual optimization methods in this past,
relatively little effort has been made in combining design methods for the material distri-
bution and the fiber geometry. Pedersen [137], [138] minimizes the elastic strain energy
of composites with respect to two kinds of design variables, the material orientation and
the element thickness. Duvaut et al. [54] investigate optimal fiber orientations including
the volume fraction of fiber material based on topology optimization for fiber reinforced
composites. Hansel & Becker [71] propose a heuristic optimization scheme for minimum
weight design of composite laminates, in which the element thickness of the individual
layer and the fiber angle defined at each element are chosen as design variables. Setoodeh
et al. [174] extend the SIMP approach of topology design to simultaneous fiber orienta-
tion and topology design of composite laminates. These schemes are more or less based
on conventional material topology optimization.

For other methodologies Parnas et al. [135] investigate the minimum weight design of
composite laminates subjected to the Tsai-Hill failure criterion as a stress constraint. In
this work, a Bézier surface is applied to represent the layer thickness and cubic Bézier
curves are used for the fiber orientation. Unlike above schemes the method of Parnas et
al. [135] is based on shape optimization, where the coordinates of the control points of
the Bézier formulation are used as design variables.

Hörnlein et al. [82] introduce a pragmatic approach to minimize the compliance of a
FRP structure with respect to fiber geometry and its material distribution. This method
applies firstly a so-called Free Material Optimization scheme (FMO), see Ringertz [157],

97
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Bendsøe et al. [16], and Zowe et al. [217], in order to display the stress/strain-trajectories.
Then in the post-processing phase optimal continuous long fiber geometries are drawn
by regularizing the piecewise trajectories taking manufactural restrictions into account.
However as a severe drawback in this design process fibers are not continuous in the
analysis model. Furthermore this method needs considerably fine discretization to deal
with thin fibers.

Opposite to the methods mentioned above the present work can represent continuous long
fiber geometries including ‘interfacial behavior’ between matrix and fiber and materially
nonlinear response of both constituents.

In this study two kinds of design variables are introduced, which are independent on each
other. This allows to solve the two individual optimization problems simultaneously and
eventually reduces also the computational costs. The optimization problem is solved by
the method of moving asymptotes (MMA) which provides relatively reliable optimum
solutions even for complex optimization problems.

8.2 Concept of multiphase layout optimization

Multiphase layout optimization is formulated by combining multiphase material optimiza-
tion and material shape optimization.

Fig. 8.1 describes the notation of the design variables for two- and three-phase fibers based
on the embedded reinforcement formulation. For the two-phase fiber, phase-1 indicates
‘no material’ and phase-2 is ‘fiber material’. For the three-phase fiber, phase-1, -2, and
-3 stand for no material, fiber 1, and fiber 2, respectively.

In multiphase material optimization the prescribed constant fiber thickness r0 is defined
as the thickness of a design element in the fixed FE-mesh while in this study r0 is the
prescribed maximum thickness of an embedded fiber with a geometry independent of
the fixed FE-mesh. In the two-phase fiber r1 is the thickness of the ‘fiber’ while in the
three-phase fiber r1 describes the total fiber thickness of fiber 1 and fiber 2 and r2 is the
thickness of fiber 2. The fiber thicknesses r1, r2 can vary during optimization but are
constant along the entire fiber length in space.

The design variables ŝ consist of the two kinds of variables ŝr and ŝg. For convenience ŝr is
denoted as ‘material design variables’ and ŝg as ‘shape design variables’, respectively. As
can be seen in Fig. 8.1, the concept of volume fraction is applied for the material design
variable, i.e. sr = r1/r0 for the two-phase fiber, sr1 = r1/r0 and sr2 = r2/r1 for the three-
phase fiber. sr and sr1 control the effective material parameters between ‘no-material’ and
‘fiber(s)’ and sr2 describes the effective material parameters of ‘mixture’ between fiber 1
and fiber 2 (0 ≤ sr, sr1 , sr2 ≤ 1). The fiber fills with ‘no-material’ if sr = 0 or sr1 = 0.
This situation means that the fiber has no mechanical property and does not influence the
structural response although the geometry of the fiber still remains. This ‘no-material’
fiber does not provide any ‘defect’ of volume of the concrete matrix because fibers are
simply superimposed on the concrete matrix in the embedded reinforcement formulation.

The shape design variables ŝg are identical to those of material shape optimization, which
stand for the normalized coordinates of control points of the global fiber geometry. l is the
length of a single fiber within an embedded reinforcement element and depends indirectly
on the shape design variables ŝg .

In the sequel the effective material parameters are discussed considering the characteristics
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Figure 8.1: Concept of present approach and notation of design variables

of material design variables.

8.3 Multiphase material for embedded fiber

Two-phase fiber

The chosen two-phase fiber may contain layers with ‘no material’. This is different from
the two-phase material of multiphase material optimization in which both phases are
assumed to be solid materials.

Considering this difference, it would be natural to interpret the present two-phase fiber as
a ‘single material fiber’ rather than the ‘two-phase mixture’. Thus it is not necessary to
interpolate the material parameters between two phases (no material and fiber material);
this results in that the material parameters are invariant but only fiber thickness varies
depending on the material design variable sr. If one applies the two-phase interpolation
rules Eq. (6.7) for the effective material parameters by inserting ‘zero’ to all material
properties of phase-1, i.e. ζ1 = 0, with a linear interpolation factor η̂ = 1 the effective
material parameter ζ for the two-phase fiber is reduced from Eq. (6.7) to the following
expression

ζ = srζ2 , (8.1)

where ζ2 represents all four material properties of phase-2 as introduced in section 6.4.2,
i.e. E2, κ02, α2, and β2. Both procedures provide fundamentally the same structural prop-
erties. For instance, the element stiffness matrix of an embedded fiber can be reformulated
considering Eq. (A.14) in Appendix A.3 as follows
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Kf
e =

∫
Ωf

ξ

BfT Cf
eff︸︷︷︸

= srC
f
2

Bf |Jf |︸︷︷︸
= r0 l

dΩf
ξ (8.2)

=

∫
Ωf

ξ

BfTCf
2B

f |Jf |︸︷︷︸
= r1 l

dΩf
ξ , (8.3)

where some subscripts have been eliminated from Eq. (A.14) for simplicity. Cf
eff is the

matrix of the effective material stiffness for the two-phase fiber and Cf
2 is that of the

individual fiber (phase-2). Eq. (8.2) indicates the expression using the two-phase inter-
polation rule Eq. (8.1) while Eq. (8.3) expresses the simplified formulation, in which |Jf |
absorbs the design variable sr instead of Cf

eff .
Consequently, this two-phase fiber is simply transformed to the single material of phase-
2 with real fiber thickness r1 which varies during optimization depending on the design
variable sr. The determinant of Jacobian |Jf | represents the real fiber volume of an
embedded fiber and depends not only on the shape design variable sg but also the material
parameter sr.
This transformation considerably reduces the derivation process of sensitivities for the
‘material design’ part because all terms in Eq. (8.3) except |Jf | do not depend on the
material design variable sr.

Three-phase fiber

The concept of the three-phase fiber follows that of the two-phase fiber. Inserting ζ1 = 0
and η̂ = 1 into the interpolation rule between phase-1 (no material) and the mixture
(ζ23) of phase-2 and -3 in Eq. (6.9) and rearranging the formulation yields the following
reduced expression

ζ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sr1

{(
1 − sη̂

r2

)
ζ2 + sη̂

r2ζ3︸ ︷︷ ︸
ζ23

}
for ζ :

⎧⎨
⎩

E, κ0 (ζ2 ≤ ζ3)
or
α, β (ζ2 > ζ3)

sr1

{
(1 − sr2)

η̂ζ2 +
[
1 − (1 − sr2)

η̂
]
ζ3︸ ︷︷ ︸

ζ23

}
for ζ :

⎧⎨
⎩

E, κ0 (ζ2 > ζ3)
or
α, β (ζ2 ≤ ζ3)

(8.4)

where ζ23 indicates the effective material parameter of phase-2 and phase-3 as well. The
fitting parameter η̂( �= 1) in Eq. (8.4) is introduced for the interpolation between phase-2
and phase-3; it is not necessarily required that the same value of η̂ is used for all four
parameters as mentioned in section 6.4. Note that ζ23 in Eq. (8.4) is analogous to Eq. (6.7).
Similarly, the system of element stiffness matrix of the three-phase fiber is expressed as

Kf
e =

∫
Ωf

ξ

BfT Cf
eff︸︷︷︸

= sr1C
f
23

Bf |Jf |︸︷︷︸
= r0 l

dΩf
ξ (8.5)
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=

∫
Ωf

ξ

BfTCf
23B

f |Jf |︸︷︷︸
= r1 l

dΩf
ξ , (8.6)

where Cf
eff stands for the effective material stiffness of the three-phase fiber and Cf

23 is
that of two-phase fiber consisting of phase-2 and phase-3. Cf

23 is controlled by the second
material design variable sr2 . In this case sr1 is absorbed into the determinant of Jacobian
matrix |Jf |. Thus |Jf | in the three-phase fiber depends not only on the shape design
variable sg but also on the material variable sr as for the two-phase fiber.

Note that the original three-phase fiber is reduced into a two-phase fiber which consists
of fiber 1 and fiber 2 by the above transformation.

8.4 Interpolation rule for interface

The interpolation rule for the interface follows the previous section. According to Eq. (8.1)
the effective interfacial parameter ϕ for the two-phase fiber can be written as

ϕ = srϕ2 , (8.7)

where ϕ covers all interfacial material parameters relevant to fiber materials introduced
in section 3.2.2, i.e. σm,0, σf,0, k1, k2, ksec, ui

2, ui
3, h, Rs and ν. ϕ2 represents these

material properties of phase-2 (fiber). Note that other data mentioned in section 3.2.2,
i.e. the compression strength of concrete fc, the coefficients αr and αf , are constants and
independent of the volume fraction of fiber materials.

This interpolation rule indicates that if the material design variable sr is zero, i.e. ‘no
material’, the mechanical response of interface vanishes simultaneously.

Analogously, the effective interfacial parameter ϕ for the three-phase fiber is assumed as
follows

ϕ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sr1

{(
1 − sη̂

r2

)
ϕ2 + sη̂

r2
ϕ3︸ ︷︷ ︸

ϕ23

}
for

⎧⎨
⎩

all except ν (ϕ2 ≤ ϕ3)
or
ν (ϕ2 > ϕ3)

sr1

{
(1 − sr2)

η̂ϕ2 +
[
1 − (1 − sr2)

η̂
]
ϕ3︸ ︷︷ ︸

ϕ23

}
for

⎧⎨
⎩

all except ν (ϕ2 > ϕ3)
or
ν (ϕ2 ≤ ϕ3)

(8.8)

where ϕ2 and ϕ3 indicate the interfacial material properties of phase-2 (fiber 1) and phase-
3 (fiber 2), respectively. All effective interfacial parameters ϕ except for Poisson’s ratio
ν have a similar characteristic as E and κ0 in Eq. (8.4) while ν follows the behavior
of α and β. Unfortunately very little is known about this ‘mixture’ of interfaces. Thus
physically reliable fitting parameters η̂ for each effective parameter need to be investigated
by experiments or homogenization.

Analogously, the determinant of Jacobian matrix for interface |Ji| depends not only on
the shape design variable sg but also the material design variable sr.
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8.5 Optimization problem

The mathematical formulation of the optimization problem of FRC can be written as
follows

minimize f (ŝ) = −

⎡
⎢⎣∫

Ωc

∫
ε̂c

σcdεc dΩc +

∫
Ωf

∫
ε̂f
L

σf
Ldεf

L dΩf +

∫
Ωi

∫
ûi
L

σi
Ldui

L dΩi

⎤
⎥⎦ (8.9)

subject to g (ŝ) =

nf
ele⋃

e=1

∫
Ωf

ξ

|Jf |︸︷︷︸
r1 l

dΩf
ξ − V̂ ≤ 0 (8.10)

ŝL ≤ ŝri ≤ ŝU i = 1, ..., nsr (8.11)

ŝL ≤ ŝgi
≤ ŝU i = 1, ..., nsg (8.12)

ŝ = ŝr ∪ ŝg (8.13)

nsr denotes the number of the design variables for ŝr and nsg for ŝg, respectively. The
formulation of the objective function Eq. (8.9) is identical to that of Eq. (7.5) used for
material shape optimization. The constraint Eq. (8.10) is slightly different from Eq. (7.6)
because only the fiber content in the embedded layer is measured.
In this case the derivatives of the constraint tend to become highly nonlinear with respect
to the design variables because different classes of design variables are involved. For
this, as said before the method of moving asymptotes (MMA) based on Svanberg [185] is
applied to solve the present optimization problem instead of the OC method used in the
previous two chapters. In the algorithms of the MMA, design functions like Eq. (8.10)
are formulated as inequalities.

8.6 Sensitivity analysis

8.6.1 Overview

The procedure to derive the total sensitivity is basically the same as the one introduced
in material shape optimization (section 7.4) except that sensitivities with respect to the
material design variable ŝr have to be added. The three equilibrium conditions (3.16),
(3.17), and (3.20) are used again in order to calculate the implicit part of the displacement
derivative ∇su. Consequently, the pseudo load vectors relative to the material design
variables are generated and added to the right hand side of the total sensitivity Eq. (7.42).

8.6.2 Gradients of constitutive equations

This section introduces the gradients of constitutive equation with respect to the material
design variable ŝr considering the derivation of sensitivity introduced in section 5.3. The
derivation differs from that in section 5.3 in that the embedded reinforcement formulation
is adopted and that the non-local equivalent strain ε̃v is considered.
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Firstly, the derivatives of the strains, displacements, local and non-local equivalent strains
with respect to the material design variable ŝr are discussed following section 7.4.2. These
derivatives are similar to Eqs. (7.9) to (7.20) except that all explicit parts in Eqs. (7.9)
to (7.20) vanish because the ‘geometrical’ functions Nc/f , Bc/f , Ñc/f , B̃c/f , N̄, B̄, Td

1, and
Tε

1 do not depend on the material design variables.
The main variables of the damage models for concrete, fibers and interface depend on the
material design variable ŝr as follows:

σ = σ (D, C (E (ŝr) , ν (ŝr)) , ε (ŝr)) , (8.14)

D = D (κ, κ0 (ŝr) , α (ŝr) , β (ŝr)) , (8.15)

κ = κ (ε̃v (e (ŝr)) , κu (eu (ŝr))) , (8.16)

σi
L = σi

L

(
ui

L (ŝr) , ui
Lu

(ŝr) , ϕ (ŝr)
)
. (8.17)

Eqs. (8.14) to (8.16) cover both concrete and fibers.
Utilizing the above equations the stress derivatives of concrete matrix ∇sσ

c, fiber ∇sσ
f
L,

and interface ∇sσ
i
L with respect to a material design variable ŝr at position n + 1 are

introduced as in the previous chapter:

∇sσ
c =

∂σc

∂εc

∂εc

∂s
+
∂σc

∂ε̃c
v

∂ε̃c
v

∂s
+
∂σc

∂κc
u

∂κc
u

∂s

= Cc
ed∇im

s εc + Ēc∇im
s ε̃

c
v + Ĕc∇sκ

c
u︸ ︷︷ ︸

explicit

, (8.18)

∇sσ
f
L =

∂σf
L

∂εf
L

∂εf
L

∂s
+

∂σf
L

∂ε̃f
v, L

∂ε̃f
v, L

∂s
+
∂σf

L

∂κf
u

∂κf
u

∂s
+
∂σf

L

∂D

∂D

∂s
+

∂σf
L

∂Cf
el, L

∂Cf
el, L

∂s

= Cf
ed, L∇im

s ε
f
L + Ēf∇im

s ε̃
f
v, L + Ĕf∇sκ

f
u + Gf︸ ︷︷ ︸

explicit

, (8.19)

∇sσ
i
L =

∂σi
L

∂ui
L

∂ui
L

∂s
+

∂σi
L

∂ui
Lu

∂ui
Lu

∂s
+
∂σi

L

∂ϕ

∂ϕ

∂s

= kL∇im
s ui

L + kLu∇su
i
Lu

+ Gi︸ ︷︷ ︸
explicit

, (8.20)

with the abbreviations

Gf ≡ ∂σf
L

∂Df

(
∂Df

∂κf
0

∂κf
0

∂s
+
∂Df

∂αf

∂αf

∂s
+
∂Df

∂βf

∂βf

∂s

)

+
∂σf

L

∂Cf
el, L

(
∂Cf

el, L

∂Ef

∂Ef

∂s
+
∂Cf

el, L

∂νf

∂νf

∂s

)
, (8.21)

Gi ≡ ∂σi
L

∂ϕ

∂ϕ

∂s
, (8.22)
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where s describes the material design variable ŝr. Gf denotes the explicit part of stress
derivative for fibers and has a similar format as Eq. (5.10). Comparing Eq. (8.21) with
Eq. (5.10) one can see that two terms relevant to the local equivalent strain ∇sk and ∇sν
in Eq. (5.10) are not present in Eq. (8.21) because the non-local equivalent strain ε̃v is
considered instead in this part. Gi is the explicit part of stress derivative for the interface.
Note that Gf and Gi indicate the stress derivatives relevant to a mixture of phase-2 and
-3. Thus these terms vanish if the ‘two-phase fiber’ (no-material and one fiber) is used.
If the three-phase fiber is adopted, the elasto-damage secant material tensor Cf

ed, L needs

to be replaced by the ‘effective’ elasto-damage secant material tensor
(
Cf

ed, L

)
23

which is
obtained by an interpolation between those of phase-2 and -3.

8.6.3 Calculation of sensitivity analysis

The procedure to derive the total sensitivity follows that of material shape optimization
introduced in section 7.4.
Firstly, the explicit term for the sensitivities of the objective function are obtained by
inserting the explicit terms of Eqs. (8.18) to (8.20) into Eqs. (7.32) to (7.34), respectively.
Secondly, the calculation of the implicit part ∇su is added. In order to avoid the dupli-
cation the derivation starts directly from the formulations (7.35), (7.37), and (7.39). As
mentioned the ‘geometrical’ functions do not depend on a ‘material’ design variable ŝr.
Thus the terms which contain the derivative of the geometrical functions in Eq. (7.35)
vanish: ∫

Ωc

BcT∇s (σc) dΩc +

∫
Ωf

BfT (Tε
1)

T ∇s

(
σf

L

)
dΩf

+

∫
Ωf

ξ

BfT (Tε
1)

T σf
L∇s|Jf | dΩf

ξ

︸ ︷︷ ︸
P̃d

5

−∇sλt+1

∫
Γξ

NcTt0|J̃| dΓξ

︸ ︷︷ ︸
P

= 0 . (8.23)

Substituting Eqs. (8.18) and (8.19) into Eq. (8.23) results in

Kc
dd∇sd + Kf

dd∇sd + Kf
dd̄∇sd̄ + Kc

de∇se + Kf
de∇se

= ∇sλt+1P − P̃d
5 − P̃d

6 − P̃d
7 −
∫
Ωf

BfT (Tε
1)

T Gf dΩf

︸ ︷︷ ︸
P̃d

8

, (8.24)

where all stiffness matrices, the load vector P, and the pseudo load vectors P̃d
5 to P̃d

7 in
Eq. (8.24) are common to those of material shape optimization. For these formulas it is
referred to Eq. (7.36). P̃d

8 denotes an additional pseudo load vector and vanishes if the
two-phase fiber is applied.
Analogously the derivative of the second equilibrium equation (7.37) can be reduced by
deleting the terms which include the derivative of the geometrical functions, i.e.
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Kc
ee∇se − Kc

ed∇sd + Kf
ee∇se + Kf

ed∇sd = −P̃e
3 . (8.25)

As can be seen in Eq. (8.25), there is no new pseudo load vector with respect to the
material design variable. All stiffness matrices and P̃e

3 in Eq. (8.25) are common to
Eq. (7.37).

Similarly, the derivative of the third equilibrium equation (7.39) is reduced to∫
Ωf

B̄T∇sσ
f
L dΩf +

∫
Ωf

ξ

B̄Tσf
L ∇s|Jf | dΩf

ξ

︸ ︷︷ ︸
P̃d̄

3

+

∫
Ωi

N̄T∇sσ
i
L dΩi +

∫
Ωi

ξ

N̄Tσi
L ∇s|Ji| dΩi

ξ

︸ ︷︷ ︸
P̃d̄

6

= 0 . (8.26)

The bond-slip relation Eq. (3.9) does not include any term related to the non-local equiva-
lent strain as discussed in Eq. (7.40), thus the non-local term is excluded from Eq. (8.19):
i.e.

∇sσ
f
L = Cf

ed, L∇im
s ε

f
L + Gf . (8.27)

Substituting Eqs. (8.20) and (8.27) into Eq. (8.26) results in the following expression

Ki
d̄d̄∇sd̄ + Kf

d̄d∇sd = − P̃d̄
3 − P̃d̄

6 − P̃d̄
7 −
∫
Ωf

B̄TGf dΩf

︸ ︷︷ ︸
P̃d̄

8

−
∫
Ωi

N̄TGi dΩi

︸ ︷︷ ︸
P̃d̄

9

, (8.28)

where all stiffness matrices and the pseudo load vectors P̃d̄
3, P̃d̄

6, and P̃d̄
7 in Eq. (8.28) are

common to Eq. (7.41). P̃d̄
8 and P̃d̄

9 denote extra pseudo load vectors and vanish again if
the two-phase fiber is applied.

8.6.4 Total sensitivity

Assembling Eqs. (7.36), (7.37), and (7.41) for material shape optimization and Eqs. (8.24),
(8.25), and (8.28) for multiphase material optimization leads to the following compact
matrix expression

⎡
⎢⎢⎣

Kc+f
dd Kc+f

de Kf
dd̄

Kc+f
ed Kc+f

ee 0

Kf
d̄d

0 Ki
d̄d̄

⎤
⎥⎥⎦
⎡
⎢⎢⎣

∇sd

∇se

∇sd̄

⎤
⎥⎥⎦



106 Chapter 8. Multiphase layout optimization

= ∇sλt+1

⎡
⎢⎢⎢⎢⎢⎢⎣

P

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎢⎣

4∑
l=1

P̃d
l

2∑
l=1

P̃e
l

5∑
l=1, l �=3

P̃d̄
l

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Pg

−

⎡
⎢⎢⎢⎢⎢⎢⎣

7∑
l=5

P̃d
l

P̃e
3

P̃d̄
3 + P̃d̄

6 + P̃d̄
7

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Pg+r

−

⎡
⎢⎢⎢⎢⎢⎢⎣

P̃d
8

0

9∑
l=8

P̃d̄
l

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Pr

,(8.29)

where Pg, Pr, and Pg+r denote the pseudo load vectors with respect to a shape design
variable ŝg, a material design variable ŝr, and both ŝg and ŝr, respectively. Pg is zero when
the derivatives with respect to the material design variable ŝr are calculated while Pr

vanishes when the derivatives with respect to the shape design variable ŝg are determined
or when the two-phase fiber is applied. The commonly used pseudo load vector Pg+r is
relevant to the derivatives of the determinants of Jacobian ∇s|Jf | and ∇s|Ji| which depend
on both, ŝg and ŝr.
Eq. (8.29) has the format of the typical stiffness equation adding up all terms on the right
hand side to a new pseudo load vector Ppse:

KT ∇s û = Ppse = ∇sλt+1P̂ + P̃pse . (8.30)

The tangent stiffness matrix is KT is the same regardless of the selected design variables.
Thus the present sensitivity analysis which includes two kinds of design variables is solved
by switching only to the respective pseudo load vector depending on the selected design
variables.
Finally, the total sensitivity can be obtained by following the solution procedures Eqs. (5.24)
to (5.28) as in the previous optimization problems.

8.7 Numerical examples

The main purpose of this section is to observe whether multiphase layout optimization
could cure the problem of material shape optimization, namely how the ‘unexploited
fibers’ shown in section 7.5 are utilized at the final optimization stage, and whether the
proposed extension could provide additional ductility.
Firstly the results of material shape optimization and multiphase layout optimization
are compared in terms of three FRC structures analysed in section 7.5. Secondly an L-
shaped plate of FRC is optimized in which not only horizontal but also vertical fibers are
employed. The details for the numerical applications are described in section 8.7.2.

8.7.1 Material shape optimization v.s. multiphase layout opti-
mization

Hanging deep beam

The hanging deep beam displayed in Fig. 7.6 is chosen again to compare the present
scheme with material shape optimization. Fig. 8.2 shows the optimization results based
on a materially nonlinear response. Fig. 8.2 (a) is the figure which is extracted from
Fig. 7.7 and Fig. 8.2 (b) shows the result obtained by two-phase layout optimization. In
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Figure 8.2: Comparison of optimization results for hanging deep beam, (a) material shape
optimization, (b) 2-phase layout optimization

material shape optimization (Fig. 8.2 (a)) each fiber thickness is invariant (0.5mm) during
optimization, while in two-phase layout optimization the fiber thickness is variable. The
initial fiber thickness is set to r1 = 0.5mm in order to provide the same structural situa-
tion as that of material shape optimization. The maximum fiber thickness is prescribed
r0 = 1.0mm. Thus the fiber thickness is variable within 0mm < r1 < 1.0mm and the
initial set of the material design variable is sr = 0.5 (0 < sr < 1). The fiber volume is held
constant during optimization.

As mentioned in section 7.5.2, the ductility could be increased to a certain degree by
applying even shape optimization only, however the lower fiber in Fig. 8.2 (a) was not
exploited in an optimal way.

On the other hand the result of two-phase layout optimization shows that the fiber ma-
terial can be shifted between fibers. Structurally significant fiber gets thicker while the
others get thinner and eventually almost diminish (no-material). As a result the ductility
was slightly improved by multiphase layout optimization.

Deep beam

As the second numerical example the deep beam from Fig. 7.4 is chosen. In this section
AR-glass fiber is adopted instead of carbon fiber. For the material properties of AR-glass
it is referred to Fig. 6.7. Fig. 8.3 shows the optimization results based on a materially
nonlinear response. Fig. 8.3 (a) is the result obtained by pure material shape optimization
with a constant fiber thickness 0.4mm and Fig. 8.3 (b) by two-phase layout optimization
with varying thicknesses. In this case the initial fiber thickness is set to r1 = 0.4mm and
the maximum fiber thickness is prescribed by r0 = 0.8mm. Thus the initial set of the
material design variables is sr = 0.5 and the fiber thickness varies within 0mm < r1 <
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Figure 8.3: Comparison of optimization results for deep beam, (a) material shape opti-
mization, (b) 2-phase layout optimization
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Figure 8.4: Comparison of optimization results for splitting plate, (a) material shape
optimization, (b) 2-phase layout optimization

0.8mm. The total fiber volume is held constant during optimization.

In Fig. 8.3 (a), as expected from section 7.5.1 a structurally unexploited fiber appeared at
the upper part of the beam. In case of two-phase layout optimization the fiber material
in the upper fiber moved to the lower fibers and the lower three fibers became thicker
(r1 ≈ 0.5, 0.7, 0.8mm) to resist the damage propagation, see Fig. 8.3 (b). Although the
geometry of the upper fiber is still present, this fiber does not contribute to the mechanical
response. As a result, the ductility did further increase.
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Splitting plate

As the final comparison, the splitting plate with AR-glass fibers is chosen again shown
already in Fig. 7.8. Fig. 8.4 shows the optimization results applying the damage formu-
lation. Fig. 8.4 (a) is the result obtained by material shape optimization and Fig. 8.4 (b)
by two-phase layout optimization. In two-phase layout optimization each fiber thickness
is initially set 0.5mm and is allowed to vary within the range 0mm < r1 < 1.0mm during
optimization. In Fig. 8.4 (b) all fibers moved to the upper edge. As a result the ductility
was further improved.
It was verified by the above three comparisons that the proposed multiphase layout op-
timization can improve the problem of ‘unexploited’ fibers and provides further ductility
than that of pure material shape optimization.

8.7.2 L-shape plate

As the final numerical example an L-shaped plate with two-phase fibers is chosen as
displayed in Fig. 8.5, where also the material properties are given. For the properties of
the interface it is referred to Appendix C. Plane stress conditions are assumed. 192 finite
elements are used for concrete and 124 elements for the interface.
In this example the geometry of the reinforcement is approximated by either horizontal
or vertical straight fibers, see Fig. 8.5 (b). Each fiber has four design variables, i.e. three
shape design variables sg and one material design variable sr. The total number of design
variables is 48 (4×12 fibers).
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Figure 8.6: Results of optimization for linear elastic response, (a) optimized fiber layout,
(b) stress distribution of fibers

The initial set of the shape design variables and their bounds are

(i) horizontal long fiber;
sg1 = 0.06, sg3 = 0.94 for all three fibers and sg2 = 0.6/0.75/0.9

0.01 ≤ sg1 ≤ 0.25, 0.51/0.53/0.55 ≤ sg2 ≤ 0.95/0.97/0.99, 0.75 ≤ sg3 ≤ 0.99

(ii) horizontal short fiber;
sg1 = 0.06, sg3 = 0.44 for all three fibers and sg2 = 0.06/0.25/0.44

0.01 ≤ sg1 ≤ 0.1, 0.01/0.03/0.05 ≤ sg2 ≤ 0.95/0.97/0.99, 0.4 ≤ sg3 ≤ 0.49

(iii) vertical long fiber;
sg1 = 0.001, sg3 = 0.94 for all three fibers and sg2 = 0.1/0.25/0.4

0.001 ≤ sg1 ≤ 0.0011, 0.01/0.03/0.05 ≤ sg2 ≤ 0.45/0.47/0.49, 0.75 ≤ sg3 ≤ 0.99

(iv) vertical short fiber;
sg1 = 0.56, sg3 = 0.94 for all three fibers and sg2 = 0.56/0.75/0.9

0.51 ≤ sg1 ≤ 0.6, 0.01/0.03/0.05 ≤ sg2 ≤ 0.95/0.97/0.99, 0.9 ≤ sg3 ≤ 0.99.

A thin concrete cover along to the structural boundary is again allowed. Furthermore,
slightly different lower and upper bounds are imposed to the three fibers in each group
(i–iv) in order to avoid a situation that some fibers concentrate at the same location in
the vicinity of the structural boundary. Thus each sg2 has three kinds of bounds.
Each fiber is continuously defined within two adjacent subspaces in the parametric ele-
ment, see Fig. 8.5 (a), i.e. either ‘ 1©- 2©’ or ‘ 2©- 3©’, but not allowed to be in the remaining
subspace 3© or 1©, respectively. For example the lower horizontal short fiber, which is
defined in the subspace 1©, can move within the two subspaces ‘ 1©- 2©’ but cannot move
into the subspace 3©.
The initial fiber thickness is r1 = 0.5mm and the maximum thickness is prescribed by r0

=1.0mm. Thus the initial set of the material design variables is sr=0.5 for all fibers. The
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Figure 8.7: Results of two-phase layout optimization for materially nonlinear response:
(prescribed displacement û = 1.5mm), (a) damage distribution of original structure, (b)
fiber layout of optimized structure, (c) damage distribution of optimized structure

lower and upper bounds for the material design variables ŝr are defined as ŝL=0.001 and
ŝU=0.99, respectively. The range of fiber thickness is 0mm < r1 < 1mm. Note that the
assumption of ŝL =0 or ŝU =1 is not allowed in a semi-analytical sensitivity approach
since addition or subtraction of the perturbation Δŝ may violate the admissible range
of design variables 0 ≤ s ≤ 1. In this example a central finite difference scheme with
Δŝ = 1.0× 10−7 is adopted and both bounds ŝL and ŝU obey the size of the perturbation.

The analyses are carried out with a displacement-controlled method; the control point c
is at the upper right corner of the plate, see Fig. 8.5 (a). For comparison the structure is
optimized based on either the linear elastic or the damage model. The prescribed nodal
displacement û (y-direction) at the control point is 0.05mm for the linear elastic case
and either 1.5mm or 3mm for the damage case. The displacement is uniformly applied
along the line between points c and d. The fiber volume is kept constant (1%) during the
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Figure 8.8: Results of two-phase layout optimization for materially nonlinear response:
(prescribed displacement û = 3mm), (a) damage distribution of original structure, (b)
fiber layout of optimized structure, (c) damage distribution of optimized structure

optimization.

Fig. 8.6 (a) shows the optimized fiber layout and Fig. 8.6 (b) is the stress distribution
of one-dimensional fibers based on a linear elastic response. All long fibers are shifted to
the structural boundary to increase the bending stiffness. Most of the fiber material in
short fibers moved to the domain of the long fibers; thus the thickness r1 of all long fibers
reached the maximum size r0 = 1mm. This result is reasonable from structural point of
view. As a result, 4% of ductility was increased.

Fig. 8.7 introduces the results of optimization based on a nonlinear structural response
for the prescribed displacement û = 1.5mm. Fig. 8.7 (a) is the damage distribution of
the original structure and Figs. 8.7 (b), (c) represent the optimized fiber layout and its
damage distribution, respectively.

In the original structure the damage of concrete initiates at the reentrant corner and
spreads mainly in the vicinity of the edge, see Fig. 8.7 (a). As can be seen in Fig. 8.7
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(b), two horizontal long fibers moved to the lower part in order to reduce the damage in
the vicinity of the reentrant corner; three vertical long fibers are shifted to the right side.
Looking deeper at Fig. 8.7 (c), one can see that the damage of concrete in the optimized
structure propagates entirely from the reentrant corner to the fixed boundary of the L-
shape plate and the damage level is less than that of the original structure although it is
not easy to distinguish it from the resolution of those figures. As a result 53% of ductility
was increased.
Analogously, Fig. 8.8 shows the results of optimization for the prescribed displacement û =
3mm. Comparing Fig. 8.8 (a) with Fig. 8.7 (a), one can observe that the original structure
fails with a distinct localization since the damage evolves only around the reentrant corner
without distributing the stresses sufficiently to the other parts of the plate.
The fiber layout of the optimized structure Fig. 8.8 (b) shows a similar layout to that
of Fig. 8.7 (b). However the response is different in that some fibers got damaged even
in the final optimization stage; furthermore the left vertical long fiber is shifted to the
inner part of the structure reducing the damage propagation of concrete. As a result the
ductility could be increased by 102%.
To summarize, it was verified that the proposed multiphase layout optimization has a
great possibility to improve the ductility of FRC with a reasonable fiber layout.

8.8 Assessment of multiphase layout optimization

The multiphase layout optimization was developed to allow for additional design freedom
and to cure one of the problems of material shape optimization that effect of some fibers
was not fully exploited.

For the combined multiphase material and material shape optimization the following
conclusions can be drawn:

• The ‘unexploited fibers’ recognized in material shape optimization vanished success-
fully and the ductilities were further increased.

• The known problem of semi-analytical methods, inaccuracy of sensitivity due to
rigid body rotations, was also encountered here when the structural response reaches
the postpeak range. This was in particular recognized for the ‘three-phase’ layout
optimization because the inclusion of carbon in mixed fibers leads to a premature
brittle failure much earlier than AR-glass.

• For the sensitivities of the constitutive equations both, the non-local equivalent
strain and interfacial response, have been considered.

• The location of fibers for the L-shape plate was restricted by the complex contour
of the structure. This may be improved by introducing other geometrical functions
allowing a more flexible layout of fibers.
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Chapter 9

Conclusions

9.1 Summary

The goal of this thesis is the development of optimization schemes improving the struc-
tural ductility or toughness of fiber reinforced composites increasing the energy absorption
capacity. In particular, this study concentrates on a new composite material, denoted as
Fiber Reinforced Concrete (FRC). FRC has the advantage that allows for the manufac-
turing of light-weight thin-walled composite structures; however its structural response
may exhibit brittle failure behavior. This failure mechanism may result from the mate-
rial brittleness of both concrete and fibers but is also influenced by complex interfacial
behavior between the two constituents.
For this objective it is of course not sufficient to base the optimization process on a linear
material model, so that it is mandatory to consider material nonlinearities. Therefore an
isotropic gradient enhanced damage model is applied for both the concrete and the fibers
and a discrete bond model for the interface between matrix and fiber.
As discussed in section 3.1 the structural response of FRC depends on many parameters.
Thus the influential key parameters to the structural response of FRC were identified
before starting a detailed optimization procedure. Through the preliminary investigation,
(i) fiber size, (ii) fiber geometry (fiber length, location and orientation), and (iii) com-
bination of different fiber materials were chosen as the design variables for the present
material optimization problem.

Considering the design requirements for the present objective, this study proposes three
kinds of material optimization schemes, namely ‘multiphase material optimization ’, ‘ma-
terial shape optimization’ and ‘multiphase layout optimization’.

In multiphase material optimization optimal multiple material distributions are deter-
mined. The proposed interpolation rules are derived by considering the physical aspects
of the individual material parameters. The approach is derived as a very general scheme
for a distribution of several material phases. All design variables used in this method
are defined by volume fraction of fiber(s) in a design domain. They are independent of
the actual position once the design domains move in the design space as material shape
optimization.
In material shape optimization an optimal layout of long continuous fibers is presented.
The design variables are the coordinates of control points defining fiber geometries in the
parametric element space.
The combined method, multiphase layout optimization, can be denoted as a generaliza-
tion of material optimization methods in that both ‘material’ and ‘geometrical’ design
problems are solved simultaneously. It may also solve some restrictions of the individual
optimization schemes. Although the inclusion of different kinds of design variables often
causes non-monotonic, sometimes highly nonlinear design functions with respect to the
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design variables, this problem could be solved by choosing a proper optimization method;
in this study the MMA provides reliable optimization solutions.
The performance of above three optimization schemes was demonstrated by numerical
examples; it was shown that the structural ductility of FRC could be substantially in-
creased. The developed methods are not restricted to FRC but may as well be applied to
other fiber reinforced composites, for example Fiber Reinforced Glass (FRG) or FRP.
The proposed methods offer optimal fiber layouts and optimal kinds of fiber materials with
a moderate amount of reinforcement; this contributes to more reliable designs with a good
cost performance. The increase of ductility is in particular important for situations where
sufficient energy absorption plays a substantial role, as under earthquake excitation.

9.2 Outlook

Three kinds of material optimization schemes including the corresponding sensitivity anal-
yses and several numerical simulations have been presented. Although various topics in
the context of material optimization have been touched, a variety of issues have been left
unexplored. The following topics for improvements of the proposed optimization schemes
are merit further attention:

• A considerable amount of research effort has been devoted to the improvement of
the ‘inaccurate sensitivity’ problem of semi-analytical methods. However a complete
elimination of errors has not been accomplished by a ‘variational’ approach.

• The fiber geometry was defined by Bézier-splines or straight lines in this study. In
consideration, with more general geometrical definitions, adaption of other flexible
formulation such as a “level set function”, may be valuable for fibers. The restriction
of fiber layouts resulting from an ‘irregular’ contour of a structure or ‘holes’ in the
design domain may be abandoned if more flexible geometrical representations are
applied.

• In this study optimal layouts of fibers were looked for under the condition that
the overall structural topology is unchanged. For a further new class of material
optimization it is attractive to combine multiphase layout optimization for layout
of continuous fibers and topology optimization for the overall structure because the
structural response of composites, needless to say, has hierarchical dependency on
the topological design at the macroscopic level and on the material design at the
small scale level.

• The numerical examples of the present study always assume ‘in-plate’ loading con-
ditions in order to verify the performance of the proposed methods at the present
stage. The proposed methods should be extended to an ‘out-of-plate’ bending situ-
ation considering the practical use of thin FRC plates.



Appendix A

Supplement of embedded
reinforcement formulation

A.1 Transformation matrices

The transformation matrices introduced in the text are listed here. First the usual rotation
matrix Td is given

Td =

[
cos (xG, xL) cos (yG, xL)

cos (xG, yL) cos (yG, yL)

]
=

[
l1 m1

l2 m2

]
, (A.1)

where lk and mk (k = 1, 2) are introduced as abbreviations.
The strain transformation matrix Tε transforms the ‘vector’ εG with the components of
the global strain tensor to the local one εL so that

εL =

⎡
⎢⎣ ε11

ε22

2ε12

⎤
⎥⎦ = TεεG . (A.2)

Incidentally, the stress transformation matrix Tσ which transforms the global stress ‘vec-
tor’ σG to the local one σL follows as

σL =

⎡
⎢⎣ σ11

σ22

σ12

⎤
⎥⎦ = TσσG , (A.3)

where

Tε =

⎡
⎢⎣

l1
2 m1

2 l1m1

l2
2 m2

2 l2m2

2l1l2 2m1m2 l1m2 + l2m1

⎤
⎥⎦ and Tσ =

⎡
⎢⎣

l1
2 m1

2 2l1m1

l2
2 m2

2 2l2m2

l1l2 m1m2 l1m2 + l2m1

⎤
⎥⎦

(A.4)
The stress transformation matrix Tσ can be replaced by the relationship (Tσ)−1 = (Tε)T.

A.2 Linearization of gradient enhanced damage model

for concrete

The derivatives of Eqs. (3.27) and (3.28) with respect to nodal displacements d and nodal
non-local strains e lead to the following four stiffness matrices for the gradient enhanced
damage model for concrete
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Kc
dd =

∂f c
int, u

∂d
=

nc
ele⋃

e=1

∫
Ωc

BcTCc
edB

c dΩc, (A.5)

Kc
de =

∂f c
int,u

∂e
=

nc
ele⋃

e=1

∫
Ωc

BcTĒcÑc dΩc, (A.6)

Kc
ed =

∂f c
int,e

∂d
= −

nc
ele⋃

e=1

∫
Ωc

(
Ñc
)T

F̄cBc dΩc, (A.7)

Kc
ee =

∂f c
int,e

∂e
=

nc
ele⋃

e=1

∫
Ωc

[
c
(
B̃c
)T

B̃c +
(
Ñc
)T

Ñc

]
dΩc, (A.8)

with

Ēc ≡ ∂σc

∂ε̃c
v

=
∂σc

∂Dc

∂Dc

∂κc

∂κc

∂ε̃c
v

, (A.9)

F̄c ≡ ∂εc
v

∂εc
=

∂εc
v

∂I1

∂I1
∂εc

+
∂εc

v

∂J2

∂J2

∂εc
, (A.10)

and

∂I1
∂εc

=
∂εc

ii

∂εc
kl

= δikδil = δkl ,
∂J2

∂εc
=

1

6

∂εc
aaε

c
bb

∂εc
kl

− 1

2

∂εc
abε

c
ab

∂εc
kl

=
1

3
εc
aaδkl − εc

kl , (A.11)

where δ is the Kronecker symbol. Cc
ed is the matrix of the ‘secant’ material tensor for

isotropic elasto-damage

Cc
ed =

∂σc

∂εc
= (1 − Dc) Cc

el with σc = (1 − Dc) Cc
elε

c , (A.12)

where Cc
el denotes the matrix of the elastic material tensor, and D is the damage parame-

ter. The second term on the right hand side of Eq. (A.9) is zero unless damage is initiated
in an element, see Eq. (5.15). The third term is equal to either unity for loading or zero for
un-/reloading, see Eq. (5.18). Thus Ēc is a term which controls damage and the loading
condition simultaneously. The same situation also holds for the damage formulation of
fibers.
In the above linearization procedure the following two relations are derived from Eqs. (A.9),
(3.22) and from Eq. (A.10)

∂σc

∂e
=

∂σc

∂ε̃c
v

∂ε̃c
v

∂e
= ĒcÑc ,

∂εc
v (ε)

∂d
=

∂εc
v

∂εc

∂εc

∂d
= F̄cBc . (A.13)

A.3 Linearization of gradient enhanced damage model

for fiber

The derivatives of Eqs. (3.27) and (3.28) with respect to nodal displacements d and nodal
non-local strains e lead to four stiffness matrices for the gradient enhanced damage model
for fiber
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Kf
dd =

∂f f
int,u

∂d
=

nf
ele⋃

e=1

∫
Ωf

BfT (Tε
1)

T
Cf

ed, LT
ε
1B

f dΩf

=

nf
ele⋃

e=1

∫
Ωf

BfTCf
ed, GBf dΩf , (A.14)

Kf
de =

∂f f
int,u

∂e
=

nf
ele⋃

e=1

∫
Ωf

BfT (Tε
1)

T ĒfÑf dΩf , (A.15)

Kf
ed =

∂f f
int,e

∂d
= −

nf
ele⋃

e=1

∫
Ωf

(
Ñf
)T

F̄fTε
1B

f dΩf , (A.16)

Kf
ee =

∂f f
int,e

∂e
=

nf
ele⋃

e=1

∫
Ωf

[
c
(
B̃f
)T (

Td
1

)T
Td

1B̃
f +
(
Ñf
)T

Ñf

]
dΩf

=

nf
ele⋃

e=1

∫
Ωf

[
c
(
B̃f
)T

B̃f +
(
Ñf
)T

Ñf

]
dΩf , (A.17)

with

Ēf ≡ ∂σf
L

∂ε̃f
v, L

=
∂σf

L

∂Df

∂Df

∂κf

∂κf

∂ε̃f
v, L

, (A.18)

F̄f ≡ ∂εf
v, L

∂εf
L

. (A.19)

In the linearization procedure the following two relations are derived from Eq. (3.26) and
from Eqs. (A.18), (3.22),

∂σf
L

∂d
=

∂σf
L

∂ε̃f
L

∂ε̃f
L

∂d
= Cf

ed, LT
ε
1B

f ,
∂σf

L

∂e
=

∂σf
L

∂ε̃f
v, L

∂ε̃f
v, L

∂e
= ĒfÑf . (A.20)

The two remaining relations are derived from Eqs. (A.19), (3.26) and from Eq. (3.31),
respectively,

∂εf
v, L

(
εf
L

)
∂d

=
∂εf

v, L

∂εf
L

∂εf
L

∂d
= F̄fTε

1B
f ,

∂τ f
L

∂e
=

∂
(
c∇ε̃f

v, L

)
∂e

= cTd
1B̃

f . (A.21)

A.4 Linearization of interface element

The derivatives of Eq. (3.29) with respect to nodal displacements d and nodal slip pa-
rameters d̄ lead to the stiffness matrices for the interface
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Kf
dd̄ =

∂f f
int,u

∂d̄
=

nf
ele⋃

e=1

∫
Ωf

BfT (Tε
1)

T
Cf

ed, LB̄ dΩf , (A.22)

Kf
d̄d =

∂f i
int,i

∂d
=

nf
ele⋃

e=1

∫
Ωf

B̄TCf
ed, LT

ε
1B

f dΩf , (A.23)

Ki
d̄d̄ =

∂f i
int,i

∂d̄
=

ni
ele⋃

e=1

⎡
⎣∫

Ωf

B̄TCf
ed, LB̄ dΩf +

∫
Ωi

N̄TkLN̄ dΩi

⎤
⎦ , (A.24)

where the following two relations are derived from Eq. (3.26) and from Eq. (3.23), respec-
tively,

∂σf
L

∂d̄
=

∂σf
L

∂εf
L

∂εf
L

∂d̄
= Cf

ed, LB̄ ,
∂σi

L

∂d̄
=

∂σi
L

∂ui
L

∂ui
L

∂d̄
= kLN̄ . (A.25)

Stiffness matrix Kf
dd has already been introduced in Eq. (A.14).



Appendix B

Inaccurate sensitivity in
semi-analytical method

In this Appendix, the source of inaccurate sensitivity in semi-analytical methods is de-
scribed. The formulation introduced follows the works of Bletzinger et al. [24] and
Mlejnek [127]. In Mlejnek [127], it is assumed that a free, unsupported structure is apt to
undergo rigid body translations and rotations. Under the rigid body deformation, ‘zero
eigenvectors’ φ do not introduce any internal force and energy, namely

Kφ = 0 , (B.1)

where K denotes a linear elastic stiffness matrix.
Taking the derivative of Eq. (B.1) with respect to a design variable ŝ

∂K

∂s
φ + K

∂φ

∂s
= 0 , (B.2)

and pre-multiplying by φT yields

φT∂K

∂s
φ + φTK

∂φ

∂s
= 0 . (B.3)

Substituting Eq. (B.1) into Eq. (B.3) and splitting it into two terms for rigid body trans-
lation vectors φt and rigid body rotation vectors φr, the following conditions result

φt
T∂K

∂s
φt = 0 : φr

T∂K

∂s
φr = 0 . (B.4)

The approximation of the exact derivative of the stiffness matrix by first-order forward
finite difference scheme can be written as

∂K

∂s
≈ K (̂s + Δŝ) − K (ŝ)

Δŝ
=

ΔK

Δŝ
. (B.5)

Unlike the analytical approach shown in Eq. (B.4), the condition for rigid body rotation
by the semi-analytical approach does not hold the assumption of ‘zero force’, i.e.

φt
T ΔK

Δŝ
φt = 0 : φr

T ΔK

Δŝ
φr �= 0 . (B.6)

This nonzero term of rigid body rotation is the source for the inaccurate sensitivity of
semi-analytical methods.
The nonzero term can be shown by referring to a linear Euler-Bernoulli beam. Fig. B.1
shows a beam element with length Le which has four degrees of freedom. E indicates the
Young’s modulus and I is the second moment of inertia of the beam element, respectively.
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Figure B.1: Degree of freedom of a beam element and perturbation by ΔLe

The quantity EI denotes the bending stiffness of the element. The element length Le

is chosen as the design variable in this example. Assuming a small rotation around the
center of the element, the rigid body rotation vector φr can be expressed as follows

φT
r =

[
Leθ
2

θ −Leθ
2

θ
]
, (B.7)

where θ is the rotation of the element. The well-known stiffness matrix for a linear Euler-
Bernoulli beam and its exact derivative with respect to the design variable are given,
i.e.

K = EI

⎡
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3
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⎤
⎥⎥⎥⎥⎥⎦ .

(B.8)
On the contrary the derivative of the stiffness matrix by finite difference approach can be
expressed as follows

ΔK

ΔLe

= EI

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−12(3Le
2+3LeΔLe+(ΔLe)2)
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3
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2

12(3Le
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(Le+ΔLe)3Le
3

6(2Le+ΔLe)

(Le+ΔLe)2Le
2

6(2Le+ΔLe)

(Le+ΔLe)2Le
2 − 4
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− 6(2Le+ΔLe)

(Le+ΔLe)2Le
2 − 2
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12(3Le
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3 − 6(2Le+ΔLe)

(Le+ΔLe)2Le
2 −12(3Le
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(Le+ΔLe)2Le
2
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2 − 4
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⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(B.9)
Applying the rigid body test by pre- and post-multiplying the exact derivative and the
approximated one by the vector φr yields

φr
T ∂K

∂Le
φr = 0 : φr

T ΔK

ΔLe
φr =

12EIΔLeθ
2

(Le + ΔLe)
3 �= 0 . (B.10)

For the above rigid body test the analytical method does not lead to errors in sensitivity
by the rigid body rotations while the semi-analytical method is not free of errors. As can
be seen, the errors increase quadratically with respect to the rotation θ.
Incidentally, Bletzinger et al. [24] introduce further tests for rigid body rotation in terms
of a linear Timoshenko beam with a reduced one-point integration scheme including not
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only the forward but also central finite difference approaches. They conclude that the
derivatives of stiffness matrix by semi-analytical approach do not fulfill the rigid body
test for both Euler-Bernoulli and Timoshenko kinematics. For this, Bletzinger et al. [24]
propose a method to eliminate the errors completely by using a so-called ‘correction factor’
for the derivative of the approximated stiffness matrix. However this method is based on
a discrete sensitivity approach. The extension to a variational formulation has not been
accomplished.
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Appendix C

Material properties of interface
model

In this study a discrete bond model is adopted for interface between concrete matrix and
fiber. The material properties of the interface used in the numerical examples are listed
in Table C.1. For the details it is referred to Krüger et al. [105], [106], [107] and Xu et
al. [204].

interfacial parameters unit AR-glass carbon

initial stiffness k1 MPa/mm 500 500

tangent stiffness at slip ui
1 k2 MPa/mm 27 48

secant tangent stiffness ksec MPa/mm 90 159

initial adhesion strength σm, 0 MPa 10.1 10.1

initial sliding friction strength σf, 0 MPa 5.0 5.0

slip length ui
2 − ui

1 mm 0.03 0.03

slip length ui
3 mm 2.0 0.75

surface roughness h μm 0.02 0.02

radius of curvature Rs – 2.5 2.5

Poisson’s ratio of fiber ν – 0.2 0.2

coefficient αr – 1.0 1.0

coefficient αf – 2.0 2.0

compressive strength of concrete fc MPa 90.0 90.0

slip length ui
1 = (σm + σm) /ksec

Table C.1: Material properties of interface between concrete and fiber
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[25] Bletzinger K.-U., Firl M., Linhard J., Wüchner R. (2008): ‘Optimal shapes of mechanically
motivated surfaces’, Comp. Meth. Appl. Mech. Eng., DOI:10.1016/j.cma.2008.09.009.

[26] Bletzinger K.-U., Kimmich S., Ramm E. (1991): ‘Efficient modeling in shape optimal design’,
Comput. Syst. Eng., 2, No. 5/6, pp. 483–495.
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[68] Haftka R.T., Gürdal Z., Kamat M.P. (1990): Elements of structural optimization, Kluwer
academic publishers, Dordrecht/Boston/London.

[69] Hammer V.B. (1999): ‘Optimal laminate design subject to single membrane loads’, Struct.
Optim., 17, pp. 65–73.

[70] Hanisch V., Kolkmann A., Roye A., Gries T. (2006): ‘Influence of machine settings on
mechanical performance of yarn and textile structures’, In: Proceedings of ICTRC 2006 1st In-
ternational RILEM Symposium on Textile Reinforced Concrete, (eds. Hegger J. et al.), Aachen,
Germany.

[71] Hansel W., Becker W. (1999): ‘Layerwise adaptive topology optimization of laminate struc-
tures’, Eng. Comput., 16, pp. 841–851.

[72] Haug E.J., Choi K.K., Komkov V. (1986): Design sensitivity analysis of structural systems,
Academic Press, Orlando, USA.
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[211] Zhandarov S., Mäder E. (2003): ‘Characterization of fiber/matrix interface properties: Ap-
plicability of different tests, approaches and parameters’, In: Proceedings of 2nd Colloquium on
Textile Reinforced Structures (CTRS2), (eds. Curbach M. et al.), Dresden, Germany, pp. 101–119.

[212] Zhang S., Belegundu A.D. (1992): ‘A systematic approach for generating velocity fields in
shape optimization’, Struct. Optim., 5, pp. 84–94.

[213] Zhou M., Rozvany G.I.N. (1991): ‘The COC algorithm, part II: Topological, geometrical and
generalized shape optimization’, Comp. Meth. Appl. Mech. Eng., 89, pp. 309–336.

[214] Zienkiewicz O.C., Campbell J.S. (1973): ‘Shape optimization and sequential linear program-
ming’, In: Optimum structural design, (eds. Gallagher R.H. & Zienkiewicz O.C.), John Wiley &
Sons, New York, pp. 109–126.

[215] Zienkiewicz O.C., Taylor R.L. (2005): The finite element method: Its basis and fundamentals
(sixth edition), Elsevier Butterworth-Heinemann.

[216] Zienkiewicz O.C., Taylor R.L. (2005): The finite element method for Solid and Structural
Mechanics (sixth edition), Elsevier Butterworth-Heinemann.
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zwischen globalem und lokalem Versagen.

8 (1988) A. Matzenmiller:
Ein rationales Lösungskonzept für geometrisch und physikalisch nichtlineare
Strukturberechnungen.

9 (1989) D. Tao:
Die Technik der reduzierten Basis bei nichtlinearen finiten Element-
Berechnungen.

10 (1989) K. M. Weimar:
Ein nichtlineares Balkenelement mit Anwendung als Längssteifen axialbela-
steter Kreiszylinder.

11 (1990) K.-U. Bletzinger:
Formoptimierung von Flächentragwerken.
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Zusammenführung von Degenerationskonzept und Schalentheorie bei endli-
chen Rotationen.

15 (1992) T. J. Hofmann:
Beitrag zur verfeinerten Balkentheorie.

16 (1994) D. Roehl:
Zur Berechnung von großen elastoplastischen Deformationen bei Flächentrag-
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Nichtlineare Versagensanalyse von Faserverbundstrukturen.

40 (2003) V. Gravemeier:
The Variational Multiscale Method for Laminar and Turbulent Incompressi-
ble Flow.

41 (2004) R. Kemmler:
Stabilität und große Verschiebungen in der Topologie- und Formoptimierung.

42 (2004) G. A. D’Addetta:



Discrete Models for Cohesive Frictional Materials.

43 (2004) M. Gee:
Effiziente Lösungsstrategien in der nichtlinearen Schalenmechanik.

44 (2004) T. Erhart:
Strategien zur numerischen Modellierung transienter Impaktvorgänge bei
nichtlinearem Materialverhalten.

45 (2005) M. Leukart:
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