Bieber, S., Auricchio, F., Reali, A., & Bischoff, M. (2023). Artificial instabilities of finite elements for nonlinear elasticity: Analysis and remedies.
International Journal for Numerical Methods in Engineering.
https://doi.org/10.1002/nme.7224
Abstract
Within the framework of plane strain nonlinear elasticity, we present a discussion on the stability properties of various Enhanced Assumed Strain (EAS) finite element formulations with respect to physical and artificial (hourglassing) instabilities. By means of a linearized buckling analysis we analyze the influence of element formulations on the geometric stiffness and provide new mechanical insights into the hourglassing phenomenon. Based on these findings, a simple strategy to avoid hourglassing for compression problems is proposed. It is based on a modification of the discrete Green-Lagrange strain, simple to implement and generally applicable. The stabilization concept is tested for various popular element formulations (namely EAS elements and the assumed stress element by Pian and Sumihara). A further aspect of the present contribution is a discussion on proper benchmarking of finite elements in the context of hourglassing. We propose a simple bifurcation problem for which analytical solutions are readily available in the literature. It is tailored for an in-depth stability analysis of finite elements and allows a reliable assessment of its stability properties.BibTeX
Trautwein, A., Prokosch, T., Senatore, G., Blandini, L., & Bischoff, M. (2023). Analytical and numerical case studies on tailoring stiffness for the design of structures with displacement control.
Frontiers in Built Environment,
9.
https://doi.org/10.3389/fbuil.2023.1135117
Abstract
This paper discusses the role that structural stiffness plays in the context of designing adaptive structures. The focus is on load-bearing structures with adaptive displacement control. A design methodology is implemented to minimize the control effort by making the structure as stiff as possible against external loads and as flexible as possible against the effect of actuation. This rationale is tested using simple analytical and numerical case studies.BibTeX
Bieber, S., Oesterle, B., Bischoff, M., & Ramm, E. (2022). Strategy for Preventing Membrane Locking Through Reparametrization. In F. Aldakheel, B. Hudobivnik, M. Soleimani, H. Wessels, C. Weißenfels, & M. Marino (Eds.),
Current Trends and Open Problems in Computational Mechanics. Springer, Cham.
https://doi.org/10.1007/978-3-030-87312-7_7
Abstract
The contribution takes up the concept of preventing locking a priori in the theory of thin-walled structures instead of curing it during discretization. After briefly summarizing the successful concept for avoiding transverse shear locking through reparametrization of primary variables for beams, plates and shells we concentrate on the same approach for preventing also membrane locking. Here, we describe first steps referring to the plane curved Bernoulli beam as a conceptual proof for the new method. Inspired by the so-called Mixed Displacement variational method we discuss three variants of replacing primary displacement parameters by alternative variables.BibTeX
Durak, G. M., Thierer, R., Sachse, R., Bischoff, M., Speck, T., & Poppinga, S. (2022). Smooth or with a Snap! Biomechanics of Trap Reopening in the Venus Flytrap (Dionaea muscipula).
Advanced Science, 2201362.
https://doi.org/10.1002/advs.202201362
Abstract
Fast snapping in the carnivorous Venus flytrap (Dionaea muscipula) involves trap lobe bending and abrupt curvature inversion (snap-buckling), but how do these traps reopen? Here, the trap reopening mechanics in two different D. muscipula clones, producing normal-sized (N traps, max. ≈3 cm in length) and large traps (L traps, max. ≈4.5 cm in length) are investigated. Time-lapse experiments reveal that both N and L traps can reopen by smooth and continuous outward lobe bending, but only L traps can undergo smooth bending followed by a much faster snap-through of the lobes. Additionally, L traps can reopen asynchronously, with one of the lobes moving before the other. This study challenges the current consensus on trap reopening, which describes it as a slow, smooth process driven by hydraulics and cell growth and/or expansion. Based on the results gained via three-dimensional digital image correlation (3D-DIC), morphological and mechanical investigations, the differences in trap reopening are proposed to stem from a combination of size and slenderness of individual traps. This study elucidates trap reopening processes in the (in)famous Dionaea snap traps – unique shape-shifting structures of great interest for plant biomechanics, functional morphology, and applications in biomimetics, i.e., soft robotics.BibTeX
Eger, C. J., Horstmann, M., Poppinga, S., Sachse, R., Thierer, R., Nestle, N., Bruchmann, B., Speck, T., Bischoff, M., & Rühe, J. (2022). The Structural and Mechanical Basis for Passive-Hydraulic Pine Cone Actuation.
Advanced Science,
2200458, Article 2200458.
https://doi.org/10.1002/advs.202200458
Abstract
The opening and closing of pine cones is based on the hygroscopic behavior of the individual seed scales around the cone axis, which bend passively in response to changes in environmental humidity. Although prior studies suggest a bilayer architecture consisting of lower actuating (swellable) sclereid and upper restrictive (non- or lesser swellable) sclerenchymatous fiber tissue layers to be the structural basis of this behavior, the exact mechanism of how humidity changes are translated into global movement are still unclear. Here, the mechanical and hydraulic properties of each structural component of the scale are investigated to get a holistic picture of their functional interplay. Measurements of the wetting behavior, water uptake, and mechanical measurements are used to analyze the influence of hydration on the different tissues of the cone scales. Furthermore, their dimensional changes during actuation are measured by comparative micro-computed tomography (µ-CT) investigations of dry and wet scales, which are corroborated and extended by 3D-digital image correlation-based displacement and strain analyses, biomechanical testing of actuation force, and finite element simulations. Altogether, a model allowing a detailed mechanistic understanding of pine cone actuation is developed, which is a prime concept generator for the development of biomimetic hygromorphic systems.BibTeX
Gade, J., Ramm, E., Kurrer, K.-E., & Bischoff, M. (2022). Marc Biguenets Beitrag zur Berechnung der Seilnetztragwerke für die Olympischen Spiele 1972.
Stahlbau,
91(9), 612–621.
https://doi.org/10.1002/stab.202200048
Abstract
Bei der Berechnung der Seilnetztragwerke für die Überdachungen der Sportstätten für die Olympischen Spiele 1972 in München spielte ein bislang unveröffentlichtes und auch in Fachkreisen bislang weithin unbekanntes Manuskript des französischen Bauingenieurs Marc Biguenet, damals Mitarbeiter von Jörg Schlaich im Ingenieurbüro Leonhardt und Andrä, eine wesentliche Rolle. Es wird in zwei Veröffentlichungen von Klaus Linkwitz und Hans-Jörg Schek aus 1971 zur Berechnung und Formfindung von Seilnetztragwerken erwähnt und liefert wichtige Vorarbeiten. Das Manuskript war in Archiven und Bibliotheken allerdings nicht aufzufinden und wurde dem ersten Autor nach intensiven Recherchen schließlich von Marc Biguenet persönlich zur Verfügung gestellt. Im Rahmen dieses Berichts wird der Inhalt des Manuskripts mit dem Ziel der Quellen- und Wissenssicherung erstmals veröffentlicht, vergleichend kommentiert und in den technikhistorischen Kontext eingebettet. Die logisch-historischen Wurzeln der Berechnung von Seilnetztragwerken stehen im Zusammenhang mit der Entwicklungsgeschichte nichtlinearer baustatischer Theorien, dem Bau weitgespannter Hängebrücken sowie der Herausbildung computergestützter Berechnungsmethoden.BibTeX
Geiger, F. (2022).
Strukturmechanische Charakterisierung von Stabtragwerken für den Entwurf adaptiver Tragwerke. Doktorarbeit, Bericht Nr. 74. Institut für Baustatik und Baudynamik der Universität Stuttgart.
https://doi.org/10.18419/opus-12299
Abstract
Diese Arbeit beschäftigt sich mit der strukturmechanischen Charakterisierung von Stabtragwerken mit dem Ziel, daraus Erkenntnisse und Empfehlungen für den Entwurf adaptiver Tragwerke zu gewinnen und abzuleiten. Hierfür werden wesentliche lastfall-abhängige und lastfallunabhängige Tragwerkseigenschaften betrachtet und deren Zusammenhang mit der Performanz und dem Potential adaptiver Tragwerke analysiert. Der im Rahmen dieser Arbeit betrachtete Entwurf von adaptiven Tragwerken beschreibt dabei sowohl den gesamten Entwurfsprozess, einschließlich beispielsweise des Aufbaus und der Dimensionierung von Tragwerken, als auch den Entwurf eines Aktuierungs-konzepts für bereits bestehende Tragwerke, die nachträglich verbessert bzw. ertüchtigt werden sollen. Neben einem ausführlichen Überblick über die in der Literatur beschriebenen Verfahren und Erkenntnisse werden verschiedene Varianten für die Modellierung der Aktuierung betrachtet, die Auswirkungen der Aktuierung auf den Tragwerkszustand detailliert analysiert und Verfahren zur automatisierten Platzierung von Aktoren im Tragwerk diskutiert. Anschließend werden in einer systematischen Studie die Auswirkungen der Aktuierung auf den Tragwerkszustand und die damit erreichbaren Ziele quantifiziert. Dazu werden die Einflüsse verschiedener Parameter, wie z. B. die Anzahl an Aktoren, der Grad der statischen Unbestimmtheit und das globale Tragverhalten, untersucht. Die dabei gewonnen Erkenntnisse werden abschließend zusammengefasst und können für den Entwurf adaptiver Tragwerke herangezogen werden.BibTeX
Gil Pérez, M., Zechmeister, C., Kannenberg, F., Mindermann, P., Balangé, L., Guo, Y., Hügle, S., Gienger, A., Forster, D., Bischoff, M., Tarín, C., Middendorf, P., Schwieger, V., Gresser, G. T., Menges, A., & Knippers, J. (2022). Computational co-design framework for coreless wound fibre–polymer composite structures.
Journal of Computational Design and Engineering,
9(2), 310--329.
https://doi.org/10.1093/jcde/qwab081
Abstract
In coreless filament winding, resin-impregnated fibre filaments are wound around anchor points without an additional mould. The final geometry of the produced part results from the interaction of fibres in space and is initially undetermined. Therefore, the success of large-scale coreless wound fibre composite structures for architectural applications relies on the reciprocal collaboration of simulation, fabrication, quality evaluation, and data integration domains. The correlation of data from those domains enables the optimization of the design towards ideal performance and material efficiency. This paper elaborates on a computational co-design framework to enable new modes of collaboration for coreless wound fibre–polymer composite structures. It introduces the use of a shared object model acting as a central data repository that facilitates interdisciplinary data exchange and the investigation of correlations between domains. The application of the developed computational co-design framework is demonstrated in a case study in which the data are successfully mapped, linked, and analysed across the different fields of expertise. The results showcase the framework’s potential to gain a deeper understanding of large-scale coreless wound filament structures and their fabrication and geometrical implications for design optimization.BibTeX
Grünvogel, N. (2022). Selektive Massenskalierung für explizite dynamische Analysen dünnwandiger Strukturen mit Kontinuumselementen. Masterarbeit. Betreuer: Bastian Oesterle. Institut für Baustatik und Baudynamik, Universität Stuttgart.
Abstract
Explizite Zeitintegrationsverfahren besitzen nur bedingte Stabilität. Diese hängt von der kritischen Zeitschrittweite ab, welche über die höchste Eigenkreisfrequenz des Systems bestimmt wird und nachweislich mit der kleinsten Elementabmessung in Verbindung steht. Speziell für dünnwandige Elemente wird ein neuer Ansatz zur selektiven Massenskalierung vorgestellt, der auf der Discrete-Shear-Gap-Methode nach Bletzinger u. a. (2000) basiert. Die eingeführte Massenskalierungsmethode beeinflusst in erster Linie die Dickenrichtung der Elemente, welche in dünnwandigen Strukturen eine deutlich geringere Abmessung als die in-ebenen-Dimensionen besitzt und reduziert damit lediglich die höchsten Frequenzen des Systems. Dadurch bleiben die niedrigen und strukturrelevanten Moden, die den hauptsächlichen Energieanteil besitzen, nahezu unbeeinflusst. Eine neue künstliche Massenmatrix mit anisotropem Aufbau und den gewünschten Eigenschaften kann erzeugt werden. Für nichtlineare Analysen, in denen sich die Steifigkeitsmatrix durch große Rotationen beständig ändert, wurde eine isotrope Version entwickelt. Diese beeinflusst auch einige niedrigere Eigenmoden des Systems, jedoch lassen sich damit die höchsten Eigenkreisfrequenzen des Systems weiter skalieren, was in expliziten Verfahren einen größeren Zeitschritt erlaubt. Für beide Versionen wurde eine Variante ermittelt, die das Frequenzspektrum noch besser abbildet, jedoch die maximal mögliche Reduktion der höchsten Frequenz partiell begrenzt. Die Methode und ihr Verhalten in Bezug auf Genauigkeit und Effektivität wird in numerischen Untersuchungen charakterisiert und anschließend diskutiert. Im Vergleich zu einigen bereits in der Literatur bekannten Methoden zur selektiven Massenskalierung liefert der hier vorgestellte Ansatz vergleichbare und unter großen Schlankheitswerten zum Teil bessere Ergebnisse. Zudem ist er auch für nahezu inkompressible Materialien in biegedominanten Problemen gut geeignet.BibTeX
Krake, T., von Scheven, M., Gade, J., Abdelaal, M., Weiskopf, D., & Bischoff, M. (2022). Efficient Update of Redundancy Matrices for Truss and Frame Structures.
Journal of Theoretical, Computational and Applied Mechanics.
https://doi.org/10.46298/jtcam.9615
Abstract
Redundancy matrices provide insights into the load carrying behavior of statically indeterminate structures. This information can be employed for the design and analysis of structures with regard to certain objectives, for example reliability, robustness, or adaptability. In this context, the structure is often iteratively examined with the help of slight adjustments. However, this procedure generally requires a high computational effort for the recalculation of the redundancy matrix due to the necessity of costly matrix operations. This paper addresses this problem by providing generic algebraic formulations for efficiently updating the redundancy matrix (and related matrices). The formulations include various modifications like adding, removing, and exchanging elements and are applicable to truss and frame structures. With several examples, we demonstrate the interaction between the formulas and their mechanical interpretation. Finally, a performance test for a scaleable structure is presented.BibTeX
Krauß, L.-M. (2022). Intrinsisch selektive Massenskalierung mit hierarchischen Plattenformulierungen. Masterarbeit. Betreuer: Rebecca Thierer und Bastian Oesterle. Institut für Baustatik und Baudynamik, Universität Stuttgart.
Abstract
Die Effizienz expliziter Zeitintegrationsverfahren hängt von der höchsten Eigenkreisfrequenz des diskretisierten Systems ab. Bei schubweichen Platten wird der kritische Zeitschritt durch die hochfrequenten, für die dynamische Systemantwort meist unbedeutenden, Querschubfrequenzen begrenzt. Durch die direkte Parametrisierung von Schubfreiheitsgraden können bei hierarchischen Plattenformulierungen die Querschubfrequenzen mit einer intrinsisch selektiven Massenskalierung gezielt skaliert werden, während die biegedominierten Frequenzen unbeeinflusst bleiben. In der vorliegenden Arbeit wird das Konzept der intrinsisch selektiven Massenskalierung von Balken- auf Plattenformulierungen erweitert und in MATLAB für verschiedene Diskretisierungsmethoden implementiert. Dabei werden B-Splines, Subdivision Surfaces und Maximum-Entropy Approximants verwendet. In Parameterstudien wird die Qualität und Effizienz der implementierten Verfahren anhand von Frequenzspektren und linearen, expliziten Simulationen aufgezeigt.BibTeX
Müller, A., & Bischoff, M. (2022). A Consistent Finite Element Formulation of the Geometrically Non-linear Reissner-Mindlin Shell Model.
Archives of Computational Methods in Engineering.
https://doi.org/10.1007/s11831-021-09702-7
Abstract
We present an objective, singularity-free, path independent, numerically robust and efficient geometrically non-linear Reissner-Mindlin shell finite element formulation. The formulation is especially suitable for higher order ansatz spaces. The formulation utilizes geometric finite elements presented by Sander 74 and Grohs 34 for the interpolation on non-linear manifolds. The proposed method is objective and free from artificial singularities and spurious path dependence. Due to the fact that the director field lives on the unit sphere, a special linearization procedure is required to obtain the stiffness matrix. Here, we use the simple constructions of as reported by Absil et al. 2, 3, which yields an easy way to obtain the correct tangent operator of the potential energy. Additionally, we compare three different interpolation schemes for the shell director that can be found in the literature, where one of them is applied for the first time for the Reissner-Mindlin shell model. Furthermore, we compare the exponential map to the radial return normalization as procedure to update the nodal directors and conclude the superiority of the latter, in terms of fewer load steps. We also investigate the construction of a consistent tangent base update scheme. Path independence, efficiency and objectivity of the formulation are verified via a set of numerical examples.BibTeX
Oesterle, B., Geiger, F., Forster, D., Fröhlich, M., & Bischoff, M. (2022). A study on the approximation power of NURBS and the significance of exact geometry in isogeometric pre-buckling analyses of shells.
Computer Methods in Applied Mechanics and Engineering,
397(115144), Article 115144.
https://doi.org/10.1016/j.cma.2022.115144
Abstract
We present a comprehensive study on the approximation power of NURBS and the significance of exact geometry in stability analyses of shells. Pre-buckling analyses are carried out to estimate the critical load levels and the initial buckling patterns. Various finite element solutions obtained with the commercial code ANSYS are compared with solutions from the isogeometric version of the finite element method, using our in-house code NumPro. In some problem setups, the isogeometric shell elements provide superior accuracy compared to standard (as opposed to isogeometric) shell finite elements, requiring only a fractional amount of degrees of freedom for the same level of accuracy. The present study systematically investigates the sources of this superior accuracy of the isogeometric approach. In particular, hypotheses are tested concerning the influence of exact geometry and smoothness of splines.BibTeX
Wessel, A., Willmann, T., Butz, A., & Bischoff, M. (2022). Blechumformprozesse genauer simulieren. stahl + eisen, 2022(1–2), 44--47.
Abstract
Finite-Elemente-Modellierungsansätze nach dem aktuellen Stand der Technik stoßen bei der Simulation von bestimmten Blechumformprozessen an ihre Grenzen. Ein Lösungsansatz zur Verbesserung der Simulationsgenauigkeit dieser Blechumformprozesse wird zurzeit in einem IGF-Forschungsprojekt am Fraunhofer IWM und am Institut für Baustatik und Baudynamik der Universität Stuttgart gemeinsam entwickelt. Dieser basiert auf der Kombination von erweiterten Schalenformulierungen und 3D-Materialmodellen und soll zukünftig die Simulationsgenauigkeit dieser Blechumformprozesse verbessern.BibTeX
Willmann, T., Bieber, S., & Bischoff, M. (2022). Investigation and elimination of nonlinear Poisson stiffening in 3d and solid shell finite elements.
International Journal for Numerical Methods in Engineering.
https://doi.org/10.1002/nme.7119
Abstract
We show that most geometrically nonlinear three-dimensional shell elements and solid shell elements suffer from a previously unknown artificial stiffening effect that only appears in geometrically nonlinear problems, in particular in the presence of large bending deformations. It can be interpreted as a nonlinear variant of the well-known Poisson thickness locking effect. We explain why and under which circumstances this phenomenon appears and propose concepts to avoid it.BibTeX
Gade, J., Tkachuk, A., von Scheven, M., & Bischoff, M. (2021). A continuum-mechanical theory of redundancy in elastostatic structures.
International Journal of Solids and Structures,
226–227.
https://doi.org/10.1016/j.ijsolstr.2021.01.022
Abstract
In the present paper, theoretical foundations of redundancy in spatially continuous, elastostatic, and linear representations of structures are derived. Adopting an operator-theoretical perspective, the redundancy operator is introduced, inspired by the concept of redundancy matrices, previously described for spatially discrete representations of structures. Studying symmetry, trace, rank, and spectral properties of this operator as well as revealing the relation to the concept of statical indeterminacy, a continuum-mechanical theory of redundancy is proposed. Here, the notion “continuum-mechanical” refers to the representation being spatially continuous. Apart from the theory itself, the novel outcome is a clear concept providing information on the distribution of statical indeterminacy in space and with respect to different load carrying mechanisms. The theoretical findings are confirmed and illustrated within exemplary rod, plane beam, and plane frame structures. The additional insight into the load carrying behavior may be valuable in numerous applications, including robust design of structures, quantification of imperfection sensitivity, assessment of adaptability, as well as actuator placement and optimized control in adaptive structures.BibTeX
Krüger, F., Thierer, R., Tahouni, Y., Sachse, R., Wood, D., Menges, A., Bischoff, M., & Rühe, J. (2021). Development of a Material Design Space for 4D-Printed Bio-Inspired Hygroscopically Actuated Bilayer Structures with Unequal Effective Layer Widths.
Biomimetics,
6(4), 58.
https://doi.org/10.3390/biomimetics6040058
Abstract
(1) Significance of geometry for bio-inspired hygroscopically actuated bilayer structures is well studied and can be used to fine-tune curvatures in many existent material systems. We developed a material design space to find new material combinations that takes into account unequal effective widths of the layers, as commonly used in fused filament fabrication, and deflections under self-weight. (2) For this purpose, we adapted Timoshenko’s model for the curvature of bilayer strips and used an established hygromorphic 4D-printed bilayer system to validate its ability to predict curvatures in various experiments. (3) The combination of curvature evaluation with simple, linear beam deflection calculations leads to an analytical solution space to study influences of Young’s moduli, swelling strains and densities on deflection under self-weight and curvature under hygroscopic swelling. It shows that the choice of the ratio of Young’s moduli can be crucial for achieving a solution that is stable against production errors. (4) Under the assumption of linear material behavior, the presented development of a material design space allows selection or design of a suited material combination for application-specific, bio-inspired bilayer systems with unequal layer widths.BibTeX
Oesterle, B., Trippmacher, J., Tkachuk, A., & Bischoff, M. (2021).
Intrinsically Selective Mass Scaling with Hierarchic Structural Element Formulations: Vol. Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference, 7th-9th July 2021, Valencia, Spain.
https://doi.org/10.4995/YIC2021.2021.12418
Abstract
Hierarchic shear deformable structural element formulations possess the advantage
of being intrinsically free from transverse shear locking, that is they avoid transverse shear
locking a priori through reparametrization of the kinematic variables. This reparametrization
results in shear deformable beam, plate and shell formulations with distinct transverse shear
degrees of freedom. The basic idea of selective mass scaling within explicit dynamic analyses is
to scale down the highest frequencies in order to increase the critical time step size, while keeping
the low frequency modes mostly unaffected. In most concepts, this comes at the cost of non-
diagonal mass matrices. In this contribution, we present first investigations on selective mass
scaling for hierarchic formulations. Since hierarchic structural formulations possess distinct
transverse shear degrees of freedom, they offer the intrinsic ability for selective scaling of the
high frequency shear modes, while keeping the bending dominated low frequency modes mostly
unaffected. The proposed instrinsically selective mass scaling concept achieves high accuracy,
which is typical for selective mass scaling schemes, but in contrast to existing concepts it retains
the simplicity of a conventianl mass scaling method and preserves the diagonal structure of a
lumped mass matrix. As model problem, we study frequency spectra of different isogeometric
Timoshenko beam formulations for a simply supported beam. We discuss the effects of transverse
shear parametrization, locking and mass lumping on the accuracy of results.BibTeX
Sachse, R., & Bischoff, M. (2021). A variational formulation for motion design of adaptive compliant structures.
International Journal for Numerical Methods in Engineering,
122, 972–1000.
https://doi.org/10.1002/nme.6570
Abstract
Adaptive structures are characterized by their ability to adjust their geometrical and other properties to changing loads or requirements during service. This contribution deals with a method for the design of quasi‐static motions of structures between two prescribed geometrical configurations that are optimal with regard to a specified quality function while taking large deformations into account. It is based on a variational formulation and the solution by two finite element discretizations, the spatial discretization (the standard finite element mesh) and an additional discretization of the deformation path or trajectory. For the investigations, an exemplary objective function, the minimization of the internal energy, integrated along the deformation path, is used. The method for motion design presented herein uses the Newton‐Raphson method as a second‐order optimization algorithm and allows for analytical sensitivity analysis. The proposed method is verified and its properties are investigated by benchmark examples including rigid body motions, instability phenomena and determination of inextensible deformations of shells.BibTeX
Sachse, R., Geiger, F., & Bischoff, M. (2021). Constrained motion design with distinct actuators and motion stabilization.
International Journal for Numerical Methods in Engineering,
122(11), 2712–2732.
https://doi.org/10.1002/nme.6638
Abstract
The design of adaptive structures is one method to improve sustainability of buildings. Adaptive structures are able to adapt to different loading and environmental conditions or to changing requirements by either small or large shape changes. In the latter case, also the mechanics and properties of the deformation process play a role for the structure’s energy efficiency. The method of variational motion design, previously developed in the group of the authors, allows to identify deformation paths between two given geometrical configurations that are optimal with respect to a defined quality function. In a preliminary, academic setting this method assumes that every single degree of freedom is accessible to arbitrary external actuation forces that realize the optimized motion. These (nodal) forces can be recovered a posteriori. The present contribution deals with an extension of the method of motion design by the constraint that the motion is to be realized by a predefined set of actuation forces. These can be either external forces or prescribed length chances of discrete, internal actuator elements. As an additional constraint, static stability of each intermediate configuration during the motion is taken into account. It can be accomplished by enforcing a positive determinant of the stiffness matrix.BibTeX
Sobek, W., Sawodny, O., Bischoff, M., Blandini, L., Böhm, M., Haase, W., Klett, Y., Mahall, M., Weidner, S., Burghardt, T., Leistner, P., Maierhofer, M., Park, S., Reina, G., Roth, D., & Tarín, C. (2021). Adaptive Hüllen und Strukturen. Aus den Arbeiten des Sonderforschungsbereichs 1244.
Bautechnik,
98(3), 208--221.
https://doi.org/10.1002/bate.202000107
Abstract
Die „Große Beschleunigung“ bei Bevölkerungszahlen, klimaschädlichen Emissionen, Wasserverbrauch und vielem anderen stellt die gesamte Menschheit vor große Herausforderungen. Dies trifft besonders auf das Bauschaffen zu. Es gilt, zukünftig für mehr Menschen mit weniger Material emissionsfrei zu bauen. Hierfür muss unsere Art des Planens, Bauens und Nutzens von Bauwerken neu gedacht und neu konzipiert werden. Auf der bautechnischen Seite bedeutet dies die konsequente flächendeckende Umsetzung von Leichtbaustrategien. Zu diesen zählt neben dem klassischen Leichtbau und den Gradientenbauweisen auch das Bauen mit adaptiven Hüllen und Strukturen. Unter Adaptivität sind dabei unterschiedliche Veränderungen der Geometrie, der physikalischen Eigenschaften von einzelnen Bauteilen oder von ganzen Bauwerken zu verstehen. Durch Adaption können Spannungsfelder homogenisiert, Bauteilverformungen reduziert und bauphysikalische Verhalten von Bauteilen verändert werden. All dies verringert nicht nur den Materialbedarf, sondern liefert auch einen wesentlichen Beitrag zur Steigerung des Nutzerkomforts. Adaptivität im weiteren Sinne bezeichnet einen ganzheitlichen Ansatz, in dem die Anpassung sozialer, kultureller und räumlicher Erfahrungen sowie architektonischer und planerischer Handlungsweisen eng mit den technologischen Entwicklungen verknüpft wird. Die Zusammenführung dieser Perspektiven ist Anspruch des SFB, um ganzheitliche Lösungen für eine zukünftige gebaute Umwelt zu finden.BibTeX
Vinod Kumar Mitruka, T. K. M. (2021). Implementation of a Hyperelastic and a Non-linear Viscoelastic Material Model for Elastomers in LS-DYNA. Masterarbeit. Betreuer: Tobias Willmann und Dr. Ulrich Mandel (Hilti AG, Kaufering). Institut für Baustatik und Baudynamik, Universität Stuttgart.
Abstract
Hammering tools uses damping elements of various geometries and hardness levels not only to reduce the reaction forces and vibrations, but also to protect the structural parts from failure. This makes damping elements a key component during the design phase of any tool. Since many design quantities initially rely on the results obtained via simulations for optimization and improvement purposes, it makes it essential to have an appropriate material model which could capture the behaviour of the damping elements accurately. Damping elements are made up of elastomeric compounds showcasing highly non-linear behaviour especially when subjected to very high strains and strain rates when mounted in a tool. This aim of this work is to study various phenomena regarding the rubber material behaviour and develop a user-defined material model in LS-DYNA which provides error-free stress updates at a given strain level for elastomers. The fundamental concepts of hyperelastic and viscoelastic constitutive theories are emphasized in the beginning as these theories are more suitable to model elastomeric behaviour. Material parameter identification procedure is also highlighted for both hyperelastic and linear viscoleastic material models. An Ogden-based linear viscoelastic model is programmed which is extended with strain-level based non-linearity included in the material model and later validated with the experimental results obtained with a gas-gun test fixture and O-ring specimens. Discussions regarding energy dissipation is focussed towards the end as it plays a crucial role in understanding the behaviour of the damping element.BibTeX
von Scheven, M., Ramm, E., & Bischoff, M. (2021). Quantification of the Redundancy Distribution in Truss and Beam Structures.
International Journal of Solids and Structures,
213, 41–49.
https://doi.org/10.1016/j.ijsolstr.2020.11.002
Abstract
The degree of statical indeterminacy as a fundamental property in structural mechanics is today mainly known as a property of a complete system without any information about its spatial distribution. The redundancy matrix provides information about the distribution of statical indeterminacy in the system and by this gives an additional valuable insight into the load-bearing behaviour. The derivation and definition of the redundancy matrix are presented based on truss systems and its mathematical properties and their mechanical interpretations are provided. The definition of the redundancy matrix is extended to other discrete systems like beam structures and a definition of the redundancy density is given for the continuous 1D case. Potential applications of the concept include robust design of structures, quantification of imperfection sensitivity as well as assessment of optimal actuator placement in adaptive structures.BibTeX
Willmann, T., Wessel, A., Beier, T., Butz, A., & Bischoff, M. (2021). Cross-Sectional Warping in Sheet Metal Forming Simulations. 13th European LS-DYNA Conference 2021, Ulm, Germany.
Abstract
For most sheet metal forming simulations, shell elements that consider a reduced stress state, in particular, assuming a zero transverse normal stress sigma_33 and neglecting the shear stress components sigma_13 and sigma_23 in the yield function, are used. Moreover, certain kinematic assumptions, like cross-sectional material fibers being assumed to remain straight during deformation, are typically applied. However, for some applications, like bending with small radii and thick sheets, this approach is not a workable solution to obtain accurate and reliable results, since the prerequisites that justify the aforementioned kinematic assumptions are not met anymore.
In this contribution, a 3d-shell element is presented that allows for cross-sectional warping. For the evaluation, numerical results of a metal stripe drawn through a draw bead are compared against experimental data. The results demonstrate that the 3d-shell element is able to represent warping of cross-sectional material fibers during deformation. In addition, further numerical tests conducted with this element are shown.BibTeX